JP2909539B1 - Gas diffusion electrode - Google Patents

Gas diffusion electrode

Info

Publication number
JP2909539B1
JP2909539B1 JP10149620A JP14962098A JP2909539B1 JP 2909539 B1 JP2909539 B1 JP 2909539B1 JP 10149620 A JP10149620 A JP 10149620A JP 14962098 A JP14962098 A JP 14962098A JP 2909539 B1 JP2909539 B1 JP 2909539B1
Authority
JP
Japan
Prior art keywords
diffusion electrode
gas diffusion
particle size
average particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10149620A
Other languages
Japanese (ja)
Other versions
JPH11343587A (en
Inventor
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kaneka Corp
Original Assignee
Mitsui Chemicals Inc
Toagosei Co Ltd
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Toagosei Co Ltd, Kaneka Corp filed Critical Mitsui Chemicals Inc
Priority to JP10149620A priority Critical patent/JP2909539B1/en
Application granted granted Critical
Publication of JP2909539B1 publication Critical patent/JP2909539B1/en
Publication of JPH11343587A publication Critical patent/JPH11343587A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Abstract

【要約】 【課題】 ガス拡散電極の性能が高く、かつその性能の
劣化がなく、製造の際に高い温度でホットプレスができ
るため機械的強度が大きく、各層が剥離しがたいガス拡
散電極を提供する。 【解決手段】 反応層とガス供給層とからなるガス拡散
電極において、平均粒径600nm以下の金属微粒子が
集合する空間の一部に平均粒径80nm以下の疎水性カ
ーボンブラックが点在し、平均粒径300nm以下のポ
リテトラフルオロエチレン(PTFE)微粒子が体積比
で20%から45%まで含む反応層と、平均粒径80n
m以下の疎水性カーボンブラックに平均粒径300nm
以下のPTFE微粒子が体積比で30%から45%まで
含むガス供給層とからなることを特徴とするガス拡散電
極。
Abstract: PROBLEM TO BE SOLVED: To provide a gas diffusion electrode which has high mechanical strength because the performance of the gas diffusion electrode is high, there is no deterioration of the performance, and hot pressing can be performed at a high temperature at the time of manufacturing, and the mechanical strength is large and each layer is difficult to peel off. provide. SOLUTION: In a gas diffusion electrode comprising a reaction layer and a gas supply layer, hydrophobic carbon black having an average particle size of 80 nm or less is scattered in a part of a space where metal fine particles having an average particle size of 600 nm or less are gathered. A reaction layer containing 20% to 45% by volume of polytetrafluoroethylene (PTFE) fine particles having a particle size of 300 nm or less;
m average particle size of 300 nm
A gas diffusion electrode comprising a gas supply layer containing the following PTFE fine particles in a volume ratio of 30% to 45%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解や燃料電池に
用いられるガス拡散電極に関し、特に食塩電解用の酸素
陰極に使用した場合に反応層における金属微粒子の比表
面積が低下しないガス拡散電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas diffusion electrode used for electrolysis and fuel cells, and more particularly to a gas diffusion electrode which does not reduce the specific surface area of metal fine particles in a reaction layer when used as an oxygen cathode for salt electrolysis. .

【0002】[0002]

【従来の技術】ガス拡散電極は、各種の電解や燃料電池
に用いられているが、最近特に食塩電解において酸素陰
極としての使用が注目されている。この分野では、ガス
拡散電極としては、通常反応層とガス供給層の2層から
なる構造のものが使用されているが、従来の形式の一つ
である図3に示すような構造のガス拡散電極11は、反
応層12が銀微粒子とポリテトラフルオロエチレン(以
下「PTFE」という)微粒子とからなり、ガス供給層
13がPTFE多孔体からなるものであり、両層の間に
例えば銀網の様な金属網が配置されている構造の、銀と
PTFEのみから構成されているガス拡散電極11は、
カーボンブラックを用いていないので、長寿命を有する
ことが期待されている。この電極は、銀微粒子とPTF
Eディスパージョンとの混合物をアルコールで自己組織
化した泥漿を銀網等に塗布し、乾燥後、界面活性剤を除
いて反応層シートを作る。この反応層シートとガス供給
層となるPTFEファインパウダー層とを、10kg/
cm2 、250℃の圧力、温度でホットプレスすること
により、ガス拡散電極を得ていた。
2. Description of the Related Art Gas diffusion electrodes have been used in various electrolysis and fuel cells, but recently, their use as oxygen cathodes in salt electrolysis has attracted attention. In this field, a gas diffusion electrode having a structure having two layers, a reaction layer and a gas supply layer, is usually used. However, a gas diffusion electrode having a structure as shown in FIG. In the electrode 11, the reaction layer 12 is made of silver fine particles and polytetrafluoroethylene (hereinafter referred to as “PTFE”) fine particles, and the gas supply layer 13 is made of a porous PTFE material. The gas diffusion electrode 11 composed of only silver and PTFE, having a structure in which such a metal net is arranged,
Since carbon black is not used, it is expected to have a long life. This electrode is composed of silver fine particles and PTF
A slurry obtained by self-assembling the mixture with E-dispersion with alcohol is applied to a silver screen or the like, and after drying, a surfactant is removed to form a reaction layer sheet. This reaction layer sheet and the PTFE fine powder layer serving as a gas supply layer were added at a rate of 10 kg /
The gas diffusion electrode was obtained by hot pressing at a pressure of 250 cm 2 and a temperature of 250 ° C.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記の手段
により製造されるガス拡散電極においては、PTFEフ
ァインパウダーをホットプレスしたガス供給層は、PT
FE微粒子相互の結着が弱いために、機械的強度が小さ
く、反応層との密着力も小さい。さらに、加熱によりP
TFEの結晶化が進行するため、脆くひび割れが生じ易
い。そのため、酸素陰極として使用していると、液圧に
よりガス室側に液漏れが生じる可能性が大きいという問
題点があった。この強度不足を解決するには、PTFE
の融点の327℃以上に加熱すれば強度の点は解決され
るが、ガス透過性がほとんど無くなり、ガス供給層とし
て役に立たなくなる。本発明は、ガス拡散電極の性能が
高く、かつその性能の劣化がなく、製造の際に高い温度
でホットプレスができるため機械的強度が大きく、各層
が剥離しがたいガス拡散電極を得ることを目的とするも
のである。
By the way, in the gas diffusion electrode manufactured by the above-mentioned means, the gas supply layer obtained by hot pressing PTFE fine powder is made of PT.
Since the binding between the FE fine particles is weak, the mechanical strength is low, and the adhesion to the reaction layer is low. In addition, P
Since the crystallization of TFE proceeds, it is brittle and easily cracked. Therefore, when used as an oxygen cathode, there is a problem that there is a high possibility that a liquid leak will occur on the gas chamber side due to the liquid pressure. To solve this lack of strength, use PTFE
Heating above the melting point of 327 ° C. solves the problem of strength, but almost eliminates gas permeability and renders the gas supply layer useless. The present invention provides a gas diffusion electrode that has high mechanical strength because the performance of the gas diffusion electrode is high, and the performance is not deteriorated, and hot pressing can be performed at a high temperature during manufacturing, so that each layer has a large mechanical strength. It is intended for.

【0004】[0004]

【課題を解決するための手段】本発明者が、従来の問題
点を検討したところ、カーボンブラックを用いたガス拡
散電極の劣化は、反応層を構成するのに用いられる触媒
担体の親水性カーボンブラックの腐食が主な原因であ
り、疎水性カーボンブラックの腐食はほとんどないこと
がこれまでの研究で明らかになった。そこで、反応層か
ら親水性カーボンブラックを除いて、触媒金属(銀)成
分と疎水性カーボンブラックとPTFEとの混合物で構
成し、ガス供給層は、疎水性カーボンブラックとPTF
Eとの混合物をホットプレスすることによりガス拡散電
極を得ることを検討した。その際、これらの各物質は微
粒子からなることが好ましく、それらの各物質の平均粒
径の範囲を検討した。また各物質の組成範囲を検討した
結果、性能がよく、かつ劣化のない本発明のガス拡散電
極を得ることができることを見出し、本発明に到達し
た。
The inventors of the present invention have studied the problems in the prior art, and found that the deterioration of the gas diffusion electrode using carbon black is caused by the hydrophilic carbon of the catalyst carrier used for forming the reaction layer. Previous studies have shown that black corrosion is the major cause, with little corrosion of hydrophobic carbon black. Therefore, the reaction layer is made of a mixture of a catalyst metal (silver) component, a hydrophobic carbon black and PTFE except for the hydrophilic carbon black, and the gas supply layer is made of a mixture of the hydrophobic carbon black and the PTFE.
It was studied to obtain a gas diffusion electrode by hot pressing the mixture with E. At that time, each of these substances is preferably composed of fine particles, and the range of the average particle diameter of each of these substances was examined. Further, as a result of studying the composition range of each substance, it was found that a gas diffusion electrode of the present invention having good performance and without deterioration could be obtained, and the present invention was reached.

【0005】本発明は、下記の手段により前記の課題を
解決した。 (1)反応層とガス供給層とからなるガス拡散電極にお
いて、平均粒径600nm以下の金属微粒子が集合する
空間の一部に平均粒径80nm以下の疎水性カーボンブ
ラックが点在し、平均粒径300nm以下のポリテトラ
フルオロエチレン(PTFE)微粒子が体積比で20%
から45%まで含む反応層と、平均粒径80nm以下の
疎水性カーボンブラックに平均粒径300nm以下のP
TFE微粒子が体積比で30%から45%まで含むガス
供給層とからなることを特徴とするガス拡散電極。
[0005] The present invention has solved the above-mentioned problems by the following means. (1) In a gas diffusion electrode composed of a reaction layer and a gas supply layer, hydrophobic carbon black having an average particle size of 80 nm or less is scattered in a part of a space where metal fine particles having an average particle size of 600 nm or less are gathered. 20% by volume of polytetrafluoroethylene (PTFE) fine particles with a diameter of 300 nm or less
And a reaction layer containing up to 45%, and a hydrophobic carbon black having an average particle diameter of 80 nm or less,
A gas diffusion electrode comprising a gas supply layer containing 30% to 45% by volume of TFE fine particles.

【0006】本発明は、反応層には劣化の原因である親
水性カーボンブラックを含まず、触媒金属(例えば銀)
成分と疎水性カーボンブラックとPTFEとの混合物で
構成し、ガス供給層は、疎水性カーボンブラックとPT
FEとの混合物を高強度を得られるPTFEの融点以上
でホットプレスすることにした。金属微粒子の平均粒径
は、小さいほどよく、上限が600nmであり、これよ
り大きいと金属の触媒活性が低下する。下限は理論的に
は特にないが、小さいものは製造が困難になるし、また
発火しやすくなって取扱がしにくくなるので、実用上の
制約があるだけである。反応層では、金属微粒子は体積
比で20〜60%含まれていることが好ましい。疎水性
カーボンブラックの平均粒径は、小さいほどよく、上限
が80nmであるが、その大きさは実用上入手できる製
品で決まる。下限は理論的には特にないが、小さいもの
は製造が困難になるし、また発火しやすくなって取扱が
しにくいなどの制約がある。疎水性カーボンブラック
は、反応層では、体積比で20〜60%含まれているこ
とが好ましく、またガス供給層では、体積比で30〜4
5%含まれていることが好ましい。
According to the present invention, the reaction layer does not contain the hydrophilic carbon black which causes deterioration, and the catalyst metal (for example, silver)
Component, a mixture of hydrophobic carbon black and PTFE, and the gas supply layer is made of a mixture of hydrophobic carbon black and PT.
The mixture with FE was hot-pressed at a temperature equal to or higher than the melting point of PTFE capable of obtaining high strength. The average particle size of the metal fine particles is preferably as small as possible, and the upper limit is 600 nm. If it is larger than this, the catalytic activity of the metal decreases. Although there is no particular lower limit in theory, a small one is difficult to manufacture and easily ignites, making it difficult to handle, so there is only a practical limitation. The reaction layer preferably contains 20 to 60% by volume of metal fine particles. The average particle size of the hydrophobic carbon black is preferably as small as possible, and the upper limit is 80 nm. The size is determined by a commercially available product. Although there is no particular lower limit in theory, there is a restriction that a small one is difficult to manufacture and easy to ignite and difficult to handle. The hydrophobic carbon black is preferably contained in the reaction layer in a volume ratio of 20 to 60%, and in the gas supply layer, 30 to 4% by volume.
Preferably, it is contained at 5%.

【0007】PTFE微粒子の平均粒径は、製造の際の
ホットプレスにより相互に溶着してマトリックスを形成
させる関係で決まり、平均粒径は300nm以下であ
る。下限は好ましくは100nmであるが、もっと小さ
くてもよい。強度を維持するためにマトリックスを形成
させるためには、各層に或る範囲の量が配合されている
ことが必要である。反応層には、PTFE微粒子が体積
比で20%から45%まで含まれていることが必要であ
り、好ましくは体積比で25%から40%までである。
ガス供給層には、PTFE微粒子が体積比で30%から
45%まで含まれていることが必要であり、好ましくは
体積比で35%から40%までである。PTFE微粒子
の割合が反応層より多いのは、ガス供給層では酸素ガス
を良く通すために、層内が疎水性が大きいことが必要で
ある関係からである。本発明では、反応層において、金
属微粒子の平均粒径と疎水性カーボンブラックの平均粒
径を前記したように選定したので、金属微粒子、疎水性
カーボンブラック及びPTFEディスパージョンを混合
した際に、疎水性カーボンブラックが金属微粒子の空隙
に点在する状態になり、ガス供給層とともに高温高圧で
ホットプレスした際に、金属微粒子の周りに疎水性カー
ボンブラックの微粒子が存在するので、金属微粒子の比
表面積は低下しない。これにより、電極性能が低下する
ことがない。また、PTFEの融点以上でホットプレス
することができるので、反応層とガス供給層の強度及び
接着力が増大する。
[0007] The average particle size of the PTFE fine particles is determined by the relationship in which they are mutually welded by hot pressing during production to form a matrix, and the average particle size is 300 nm or less. The lower limit is preferably 100 nm, but may be smaller. In order to form a matrix in order to maintain strength, it is necessary that a certain range of amounts be blended in each layer. The reaction layer needs to contain PTFE fine particles in a volume ratio of 20% to 45%, and preferably 25% to 40% in a volume ratio.
The gas supply layer needs to contain PTFE fine particles in a volume ratio of 30% to 45%, preferably 35% to 40% in a volume ratio. The reason that the ratio of the PTFE fine particles is larger than that of the reaction layer is that the inside of the gas supply layer needs to have high hydrophobicity in order to allow oxygen gas to pass therethrough. In the present invention, in the reaction layer, the average particle size of the metal fine particles and the average particle size of the hydrophobic carbon black are selected as described above. Therefore, when the metal fine particles, the hydrophobic carbon black and the PTFE dispersion are mixed, When the hydrophobic carbon black is scattered in the voids of the metal fine particles and is hot-pressed at a high temperature and high pressure together with the gas supply layer, the fine particles of the hydrophobic carbon black exist around the metal fine particles, so that the specific surface area of the metal fine particles Does not drop. Thereby, the electrode performance does not decrease. In addition, since hot pressing can be performed at a temperature equal to or higher than the melting point of PTFE, the strength and adhesion between the reaction layer and the gas supply layer increase.

【0008】[0008]

【発明の実施の形態】本発明は、具体的には、図1に示
すように、反応層2は、金属微粒子と疎水性カーボンブ
ラックとPTFEディスパージョンとからなり、ガス供
給層3は、疎水性カーボンブラックとPTFEディスパ
ージョンとから構成する。ここでは、まずガス供給層を
例えばアセチレンブラック(疎水性カーボンブラック)
とPTFEディスパージョンの混合物からシートを作製
した。使用するアセチレンブラックとPTFEディスパ
ージョンの平均粒径は前記した範囲にあるものである。
シートの作製方法はロール法が一般的であるが、均一な
シートが得られれば粉末をプレスしてシートを作製して
もよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, specifically, as shown in FIG. 1, a reaction layer 2 is composed of metal fine particles, hydrophobic carbon black and PTFE dispersion, and a gas supply layer 3 is composed of a hydrophobic layer. It is composed of a conductive carbon black and a PTFE dispersion. Here, first, the gas supply layer is made of, for example, acetylene black (hydrophobic carbon black).
And a PTFE dispersion to prepare a sheet. The average particle size of the acetylene black and the PTFE dispersion used is in the above range.
The method of producing the sheet is generally a roll method, but if a uniform sheet is obtained, the sheet may be produced by pressing powder.

【0009】反応層に用いる金属微粒子は、白金族金
属、金、銀、これらの合金及び酸化物を用いることがで
きる。具体的には、安価な銀微粒子とアセチレンブラッ
クとPTFEディスパージョンの組み合わせを挙げるこ
とができる。各物質の平均粒径は前記した範囲にあるも
のである。これらを界面活性剤を添加した水溶液中で分
散し、アルコールにより自己組織化して、水分を除き、
泥漿としたものを前記したガス供給層3上に塗布し、又
はスプレーすることで、反応層をガス供給層3上に載せ
る。乾燥後、界面活性剤を除いて、次に集電体の銀網4
を反応層2又はガス供給層3側に積層して、これらをホ
ットプレスすることによりガス拡散電極1を製造する。
As the fine metal particles used in the reaction layer, platinum group metals, gold, silver, alloys and oxides thereof can be used. Specifically, a combination of inexpensive silver fine particles, acetylene black and PTFE dispersion can be used. The average particle size of each substance is in the above-mentioned range. These are dispersed in an aqueous solution to which a surfactant is added, self-organized with alcohol, and water is removed.
The reaction layer is placed on the gas supply layer 3 by applying or spraying the slurry on the gas supply layer 3. After drying, the surfactant was removed, and then the current collector silver mesh 4
Is laminated on the reaction layer 2 or the gas supply layer 3 side, and hot-pressed to manufacture the gas diffusion electrode 1.

【0010】集電体の銀網4を反応層2内に設けたのが
図1であり、ガス供給層3側に設けたのが図2である。
また、金属網は導電体の断面積が小さいために、導電性
が余り高くならないので、導電性を高くしたい場合に
は、薄板状の導電性多孔体の片面からその中にガス供給
層の材料(泥漿)を押し込み、乾燥することにより、導
電性多孔体を骨格としたガス供給層3を形成させること
ができる。この導電性多孔体をガス室内に別の導電性多
孔体(図示しない)と接触させるように、ガス拡散電極
1を配置すると、高い導電性を持たせることができる。
導電性多孔体として、その大きさがガス室全部を含む大
きさのものを用いる時には、この導電性多孔体によりガ
ス拡散電極が支持されているので、全体の強度が増し、
また導電性がさらに良く、ガス室内でガス流れが攪乱さ
れるので、ガス拡散電極へのガスの供給が均一化される
という利点がある。
FIG. 1 shows that the silver net 4 of the current collector is provided in the reaction layer 2, and FIG. 2 shows that the silver net 4 is provided on the gas supply layer 3 side.
In addition, since the conductivity of the metal net is small because the cross-sectional area of the conductor is small, if it is desired to increase the conductivity, the material of the gas supply layer is introduced from one side of the thin plate-shaped conductive porous body. By pressing (slurry) and drying, the gas supply layer 3 having the conductive porous body as a skeleton can be formed. If the gas diffusion electrode 1 is arranged so that this conductive porous body is brought into contact with another conductive porous body (not shown) in the gas chamber, high conductivity can be provided.
When a conductive porous body having a size including the entire gas chamber is used, since the gas diffusion electrode is supported by the conductive porous body, the overall strength increases,
Further, since the conductivity is further improved and the gas flow is disturbed in the gas chamber, there is an advantage that the gas supply to the gas diffusion electrode is made uniform.

【0011】[0011]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこれらの実施例のみに限定される
ものではない。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to only these examples.

【0012】実施例1 疎水性カーボンブラック(No.6:平均粒径50n
m、電気化学工業社製)6部(重量)(以下同様)に界
面活性剤として10%トライトン160部を加え、超音
波分散機で分散させる。これにPTFEディスパージョ
ンD−1(平均粒径300nm、ダイキン工業社製)4
部を添加し、分散混合する。この分散物にエタノール5
00部を加え、自己組織化する。これを濾過、乾燥後
に、ソルベントナフサを加え、ロールすることで、厚さ
0.5mmのガス供給層シートをつくり、乾燥する。疎
水性カーボンブラック(No.6:平均粒径50nm、
電気化学工業社製)6部に界面活性剤として10%トラ
イトン160部を加え、超音波分散機で分散させる。銀
微粒子(三井金属鉱業社製、Ag−3010、平均粒径
110nm)3部を加え、超音波分散機で分散させる。
これにPTFEディスパージョンD−1(平均粒径30
0nm、ダイキン工業社製)2.5部を添加し、攪拌・
混合した後にエタノール400部を加え、攪拌すること
で自己組織化させる。この自己組織化させた時の沈殿物
を孔径0.8ミクロンの濾紙で濾過し、泥漿を得た。
Example 1 Hydrophobic carbon black (No. 6: average particle size 50n)
m, manufactured by Denki Kagaku Kogyo Co., Ltd.) (6 parts by weight) (the same applies hereinafter), 160 parts of 10% Triton as a surfactant is added, and the mixture is dispersed with an ultrasonic dispersing machine. PTFE dispersion D-1 (average particle size 300 nm, manufactured by Daikin Industries, Ltd.) 4
Parts, and disperse and mix. Add ethanol 5
Add 00 parts and self-organize. After filtration and drying, solvent naphtha is added and rolled to form a gas supply layer sheet having a thickness of 0.5 mm and dried. Hydrophobic carbon black (No. 6: average particle size 50 nm,
160 parts of 10% Triton as a surfactant is added to 6 parts of Denki Kagaku Kogyo Co., Ltd., and dispersed by an ultrasonic dispersing machine. 3 parts of silver fine particles (Ag-3010, average particle size 110 nm, manufactured by Mitsui Kinzoku Mining Co., Ltd.) are added, and the mixture is dispersed with an ultrasonic dispersing machine.
This was mixed with PTFE dispersion D-1 (average particle size 30).
0 nm, manufactured by Daikin Industries, Ltd.) and stirring.
After mixing, 400 parts of ethanol is added and the mixture is stirred to form a self-organized product. The precipitate at the time of self-assembly was filtered with a filter paper having a pore size of 0.8 μm to obtain a slurry.

【0013】この泥漿を前述のガス供給層シートに20
0ミクロンの厚さで均一に塗布する。乾燥後、このシー
トからエチルアルコールを用いた抽出器で界面活性剤を
除去する。更に、100℃で乾燥後、50メッシュ、
0.1mm厚さの銀網を反応層側に敷き、380℃、5
0kg/cm2 の圧力で、60秒間ホットプレスして銀
担持ガス拡散電極を得た。この電極の銀微粒子の使用量
は420g/m2 であった。この電極は、ガス供給層が
PTFEのみからなるガス拡散電極に比べ、引っ張り強
度は10倍以上、反応層とガス供給層の剥離強度は10
倍以上と増加した。また、この電極の酸素還元性能を測
定したところ、30A/dm2 で0.76V(vs.R
HE)の高い性能が得られた。集電体は、銀網、銀メッ
キニッケル網、銀メッキ発泡ニッケルが好適に用いられ
る。
The slurry is added to the above-mentioned gas supply layer sheet for 20 minutes.
Apply evenly with a thickness of 0 microns. After drying, the surfactant is removed from the sheet with an extractor using ethyl alcohol. Furthermore, after drying at 100 ° C., 50 mesh,
Spread a silver mesh of 0.1 mm thickness on the reaction layer side,
Hot pressing was performed at a pressure of 0 kg / cm 2 for 60 seconds to obtain a silver-carrying gas diffusion electrode. The amount of silver fine particles used in this electrode was 420 g / m 2 . This electrode has a tensile strength of 10 times or more and a peel strength of the reaction layer and the gas supply layer of 10 times or more as compared with a gas diffusion electrode in which the gas supply layer is made of only PTFE.
More than doubled. When the oxygen reduction performance of this electrode was measured, it was found to be 0.76 V (vs. R) at 30 A / dm 2.
HE). As the current collector, a silver net, a silver-plated nickel net, or a silver-plated foamed nickel is preferably used.

【0014】実施例2 疎水性カーボンブラック(No.6平均粒径50n
m、:電気化学工業社製)6部に10%トライトン20
0部を加え、超音波分散機で分散させる。これにPTF
EディスパージョンD−1(平均粒径300nm、ダイ
キン工業社製)4部を添加し、分散混合する。この分散
物にエタノール50部を加え、自己組織化する。これを
濾過、乾燥後に、ソルベントナフサを加え、ロールする
ことで、厚さ2.5mmのガス供給層シートをつくり、
乾燥する。疎水性カーボンブラック(No.6:平均粒
径50nm、電気化学工業社製)6部に界面活性剤とし
て10%トライトン200部を加え、超音波分散機で分
散させる。銀微粒子(三井金属鉱業社製、Ag−301
0、平均粒径110nm)3部を加え、超音波分散機で
分散させる。これにPTFEディスパージョンD−1
(平均粒径300nm、ダイキン工業社製)2.5部を
添加し、攪拌・混合した後にエタノール300部を加
え、攪拌することで自己組織化させる。この沈殿物を孔
径0.8ミクロンの濾紙で濾過、乾燥した。
Example 2 Hydrophobic carbon black (No. 6, average particle size: 50 n)
m, 10% Triton 20 in 6 parts
Add 0 parts and disperse with an ultrasonic disperser. This is PTF
4 parts of E-dispersion D-1 (average particle size: 300 nm, manufactured by Daikin Industries, Ltd.) are added and dispersed and mixed. 50 parts of ethanol is added to the dispersion to self-assemble. After filtering and drying this, solvent naphtha was added and rolled to create a 2.5 mm thick gas supply layer sheet.
dry. To 6 parts of hydrophobic carbon black (No. 6: average particle diameter 50 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.), 200 parts of 10% Triton is added as a surfactant, and the mixture is dispersed with an ultrasonic disperser. Silver fine particles (Ag-301, manufactured by Mitsui Kinzoku Mining Co., Ltd.)
(0, average particle size: 110 nm), and dispersed by an ultrasonic dispersing machine. PTFE dispersion D-1
(Average particle size: 300 nm, manufactured by Daikin Industries, Ltd.) 2.5 parts was added, and the mixture was stirred and mixed. Then, 300 parts of ethanol was added, and the mixture was self-organized by stirring. This precipitate was filtered through a filter paper having a pore diameter of 0.8 μm and dried.

【0015】それにソルベントナフサを加え、ロールす
ることで、厚さ0.5mmの反応層シートをつくり、前
述のガス供給層シートと合わせて0.7mmまで薄くす
る。この合わせシートをエチルアルコールを用いた抽出
器で界面活性剤を除去する。100℃で乾燥後、50メ
ッシュ、0.19mm厚の銀網をガス供給層側に敷き、
370℃、50kg/cm2 の圧力で、60秒間ホット
プレスして銀担持ガス拡散電極を得た。この電極の酸素
還元性能を測定したところ、30A/dm2 で0.77
V(vs.RHE)の高い性能が得られた。
[0015] Solvent naphtha is added thereto and rolled to form a reaction layer sheet having a thickness of 0.5 mm, which is thinned to 0.7 mm together with the gas supply layer sheet described above. The surfactant is removed from the combined sheet with an extractor using ethyl alcohol. After drying at 100 ° C., a 50-mesh, 0.19-mm-thick silver mesh is laid on the gas supply layer side,
Hot pressing was performed at 370 ° C. and a pressure of 50 kg / cm 2 for 60 seconds to obtain a silver-carrying gas diffusion electrode. When the oxygen reduction performance of this electrode was measured, it was 0.77 at 30 A / dm 2 .
V (vs. RHE) high performance was obtained.

【0016】[0016]

【発明の効果】本発明によれば、シンターし易い銀微粒
子のような金属微粒子を用いているにもかかわらず、疎
水性カーボンブラックの微粒子を金属微粒子の空隙に点
在させることができるので、高温高圧でホットプレスし
ても金属微粒子の比表面積は低下せず、従って電極性能
は低下しない。このガス拡散電極はPTFEの融点以上
でホットプレスできるので、反応層とガス供給層の強度
及び接着力が飛躍的に増大した。
According to the present invention, the fine particles of hydrophobic carbon black can be scattered in the voids of the fine metal particles despite the use of fine metal particles such as silver fine particles which are easy to sinter. Even if hot pressing is performed at a high temperature and a high pressure, the specific surface area of the metal fine particles does not decrease, and thus the electrode performance does not decrease. Since the gas diffusion electrode can be hot-pressed at a temperature equal to or higher than the melting point of PTFE, the strength and adhesion between the reaction layer and the gas supply layer are dramatically increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガス拡散電極の1例の概略断面図を示
す。
FIG. 1 shows a schematic cross-sectional view of one example of a gas diffusion electrode of the present invention.

【図2】本発明のガス拡散電極の別の例の概略断面図を
示す。
FIG. 2 shows a schematic sectional view of another example of the gas diffusion electrode of the present invention.

【図3】従来のガス拡散電極の概略断面図を示す。FIG. 3 shows a schematic sectional view of a conventional gas diffusion electrode.

【符号の説明】 1 ガス拡散電極 2 反応層 3 ガス供給層 4 銀網 11 ガス拡散電極 12 反応層 13 ガス供給層[Description of Signs] 1 gas diffusion electrode 2 reaction layer 3 gas supply layer 4 silver mesh 11 gas diffusion electrode 12 reaction layer 13 gas supply layer

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C25B 11/03 C25B 11/04 H01M 4/86 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) C25B 11/03 C25B 11/04 H01M 4/86

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応層とガス供給層とからなるガス拡散
電極において、平均粒径600nm以下の金属微粒子が
集合する空間の一部に平均粒径80nm以下の疎水性カ
ーボンブラックが点在し、平均粒径300nm以下のポ
リテトラフルオロエチレン微粒子が体積比で20%から
45%まで含む反応層と、平均粒径80nm以下の疎水
性カーボンブラックに平均粒径300nm以下のポリテ
トラフルオロエチレン微粒子が体積比で30%から45
%まで含むガス供給層とからなることを特徴とするガス
拡散電極。
In a gas diffusion electrode comprising a reaction layer and a gas supply layer, hydrophobic carbon black having an average particle size of 80 nm or less is scattered in a part of a space where metal fine particles having an average particle size of 600 nm or less are gathered, A reaction layer containing 20% to 45% by volume of polytetrafluoroethylene fine particles having an average particle size of 300 nm or less, and a polytetrafluoroethylene fine particle having an average particle size of 300 nm or less are added to hydrophobic carbon black having an average particle size of 80 nm or less. 30% to 45%
%. A gas diffusion electrode comprising a gas supply layer containing up to 10%.
JP10149620A 1998-05-29 1998-05-29 Gas diffusion electrode Expired - Lifetime JP2909539B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10149620A JP2909539B1 (en) 1998-05-29 1998-05-29 Gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10149620A JP2909539B1 (en) 1998-05-29 1998-05-29 Gas diffusion electrode

Publications (2)

Publication Number Publication Date
JP2909539B1 true JP2909539B1 (en) 1999-06-23
JPH11343587A JPH11343587A (en) 1999-12-14

Family

ID=15479207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10149620A Expired - Lifetime JP2909539B1 (en) 1998-05-29 1998-05-29 Gas diffusion electrode

Country Status (1)

Country Link
JP (1) JP2909539B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442819B1 (en) * 2000-10-25 2004-08-02 삼성전자주식회사 Membrane electrode assembly for fuel cell operable in non-humidified fuel condition
DE10130441B4 (en) * 2001-06-23 2005-01-05 Uhde Gmbh Process for producing gas diffusion electrodes
DE102010024053A1 (en) * 2010-06-16 2011-12-22 Bayer Materialscience Ag Oxygenating electrode and process for its preparation

Also Published As

Publication number Publication date
JPH11343587A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US4500647A (en) Three layer laminated matrix electrode
US4615954A (en) Fast response, high rate, gas diffusion electrode and method of making same
US4585711A (en) Hydrogen electrode for a fuel cell
US4456521A (en) Three layer laminate
US4518705A (en) Three layer laminate
JP5057698B2 (en) Method for manufacturing a gas diffusion electrode
JPS5846829B2 (en) How to manufacture fuel cell electrodes
JP2002513995A (en) Carbon based electrode
US4459197A (en) Three layer laminated matrix electrode
JPH02107792A (en) Platinum black air cathode, its operation method and a laminar gas diffusion electrode having an immediate layer combination
US3854994A (en) Gas electrodes
JP2003511828A (en) Electrochemical electrode for fuel cell
JP4897480B2 (en) Manufacturing method of gas diffusion electrode
JP2909539B1 (en) Gas diffusion electrode
US6428931B1 (en) Methods for making oxygen reduction catalyst using micelle encapsulation and metal-air electrode including said catalyst
JP2005216772A (en) Electrode catalyst, electrode and mea carrying the same
US4643235A (en) Method for making oxygen electrode for alkaline galvanic cells
JP3002974B2 (en) Manufacturing method of gas diffusion electrode
JP2805458B2 (en) Manufacturing method of gas diffusion electrode
JP3400089B2 (en) One-step manufacturing method of gas diffusion electrode
JPS5944749B2 (en) gas diffusion electrode
JP3373141B2 (en) Partially silver-coated porous metal foam and gas diffusion electrode using it
CA1214753A (en) Producing electrode active layer from active carbon particles and fibrillated polytetrafluoroethylene coated carbon black
JP3373140B2 (en) Gas diffusion electrode
JP3086855B1 (en) Gas diffusion electrode with silver particles filled in the gap

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term