JP3373141B2 - Partially silver-coated porous metal foam and gas diffusion electrode using it - Google Patents

Partially silver-coated porous metal foam and gas diffusion electrode using it

Info

Publication number
JP3373141B2
JP3373141B2 JP21866797A JP21866797A JP3373141B2 JP 3373141 B2 JP3373141 B2 JP 3373141B2 JP 21866797 A JP21866797 A JP 21866797A JP 21866797 A JP21866797 A JP 21866797A JP 3373141 B2 JP3373141 B2 JP 3373141B2
Authority
JP
Japan
Prior art keywords
porous body
silver
diffusion electrode
gas diffusion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21866797A
Other languages
Japanese (ja)
Other versions
JPH1161473A (en
Inventor
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kaneka Corp
Original Assignee
Mitsui Chemicals Inc
Toagosei Co Ltd
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Toagosei Co Ltd, Kaneka Corp filed Critical Mitsui Chemicals Inc
Priority to JP21866797A priority Critical patent/JP3373141B2/en
Publication of JPH1161473A publication Critical patent/JPH1161473A/en
Application granted granted Critical
Publication of JP3373141B2 publication Critical patent/JP3373141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、部分銀被覆発泡金
属多孔体とそれを用いたガス拡散電極に関し、詳しく
は、表裏両面に銀層を被覆形成した発泡金属多孔体とこ
れを構成要素の一つとして用いてなるガス拡散電極に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a partially silver-covered foam metal porous body and a gas diffusion electrode using the same, and more specifically, to a foam metal porous body in which silver layers are formed on both front and back surfaces and constituent elements thereof. It relates to a gas diffusion electrode used as one.

【0002】[0002]

【従来の技術】イオン交換膜法による塩化アルカリ溶液
の電解において、その陰極にガス拡散電極を酸素陰極と
して使用することが行われている。この種のイオン交換
膜法電解では、不溶性の陽極を有し塩化ナトリウム水溶
液を入れた陽極室と、酸素陰極を有し苛性ソ−ダ水溶液
が入っている陰極室とを陽イオン交換膜で区画された電
解槽で行われるが、その陰極部は、ガス拡散電極及びそ
れに酸素ガスを供給するための酸素ガス室から構成され
ている。このような構成の電解槽では、両電極間に通電
して電解する際に、ガス拡散極上で酸素還元反応が起こ
り、陰極電位が上昇するため、電解電圧が著しく低減さ
れるという利点を有する。
2. Description of the Related Art In electrolysis of an alkali chloride solution by an ion exchange membrane method, a gas diffusion electrode is used as an oxygen cathode for the cathode. In this type of ion exchange membrane electrolysis, an anode chamber having an insoluble anode and containing a sodium chloride aqueous solution and a cathode chamber having an oxygen cathode and containing a caustic soda aqueous solution are partitioned by a cation exchange membrane. The cathode part is composed of a gas diffusion electrode and an oxygen gas chamber for supplying oxygen gas to the gas diffusion electrode. In the electrolyzer having such a configuration, when conducting electrolysis by applying a current between both electrodes, an oxygen reduction reaction occurs on the gas diffusion electrode and the cathode potential rises, so that the electrolysis voltage is significantly reduced.

【0003】陰極部に設けたガス拡散電極は、反応層と
ガス供給層とを積層した構造をしており、反応層もガス
供給層も多孔性体を主体とした薄層で構成されている。
ガス拡散電極の電解液側の層である反応層には主として
カ−ボンブラックが使用され、その微細孔には白金など
の貴金属系からなる触媒が担持されており、反応層は親
水性で電解液が浸透し得るものである。一方、ガス供給
側の層であるガス供給層は、ガスは通過し得るが電解液
の漏洩が起こらない撥水性の多孔性の薄層で構成されて
いる。上記撥水性の薄層は通常は酸化還元反応に耐性の
あるフッ素樹脂系ポリマ−の微粒子を主体として形成さ
れている。
The gas diffusion electrode provided in the cathode portion has a structure in which a reaction layer and a gas supply layer are laminated, and both the reaction layer and the gas supply layer are composed of a thin layer mainly composed of a porous body. .
Carbon black is mainly used for the reaction layer, which is the layer on the electrolyte side of the gas diffusion electrode, and the fine pores carry a catalyst made of a noble metal such as platinum, and the reaction layer is hydrophilic and electrolyzed. The liquid can penetrate. On the other hand, the gas supply layer, which is the layer on the gas supply side, is composed of a water-repellent porous thin layer through which gas can pass but electrolyte does not leak. The water-repellent thin layer is usually formed mainly of fine particles of a fluororesin polymer which is resistant to a redox reaction.

【0004】従来のガス拡散電極は、図3に示すように
ガス供給層5の中間あるいは/およびガス供給層5の表
面に網状給電体12(金網ともいう)を設け、網状給電
体12からガス供給層5を介して(ガス供給層の中間に
網状給電体が介在する場合はそれを通じて)反応層4に
電流を供給していた。しかし疎水性のガス供給層5の電
気抵抗は大きいので電解電圧は大きくなった。電解槽を
大型化すると電極面積が大きくなり、電極の内部抵抗が
大きくなり抵抗損として電力の損失が大きくなる。そこ
で、図4に示したようにガス供給層表面に網状給電体を
接合させ、ガス室内に導電性多孔体を充填してそれと前
記網状給電体を接触させることにより給電することも検
討したが、ガス供給層表面に接合された網状給電体のた
めにガスの供給が妨げられるという欠点があった。
As shown in FIG. 3, the conventional gas diffusion electrode is provided with a mesh-shaped power supply body 12 (also referred to as a wire mesh) on the middle of the gas supply layer 5 and / or on the surface of the gas supply layer 5, and the gas is supplied from the mesh-shaped power supply body 12. An electric current was supplied to the reaction layer 4 through the supply layer 5 (through a mesh-shaped power feeding body in the middle of the gas supply layer). However, since the hydrophobic gas supply layer 5 has a large electric resistance, the electrolysis voltage becomes large. When the size of the electrolytic cell is increased, the electrode area is increased, the internal resistance of the electrode is increased, and the power loss is increased as a resistance loss. Therefore, as shown in FIG. 4, it was also considered to join a reticulated power supply body to the surface of the gas supply layer, fill the gas chamber with a conductive porous body, and contact the reticulated power supply body to supply power. There is a drawback that the supply of gas is hindered by the reticulated power supply joined to the surface of the gas supply layer.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明者は、
これらの欠点を解消するために、ガス拡散電極について
鋭意検討をし、酸素の陰極反応における電極過電圧を少
なくし、電流効率を向上するため、ガス室からガス拡散
電極のガス供給層にガスを供給する際のガス供給の均一
性、ガス拡散電極への電流の負荷の均一性を図るよう
に、ガス室内に3次元的にガスの流通が可能な多孔性材
料が充填する手段を開発し、さらにこのガス室に充填す
る多孔性材料を導電性のものとして給電体を兼ねさせる
ときには、ガス拡散電極への給電が良好で抵抗が低くす
ることができる技術を開発してきた。
Therefore, the inventor of the present invention
In order to eliminate these drawbacks, we have conducted intensive studies on the gas diffusion electrode, and supplied gas from the gas chamber to the gas supply layer of the gas diffusion electrode in order to reduce the electrode overvoltage in the cathode reaction of oxygen and improve the current efficiency. In order to achieve uniform gas supply and uniform current load to the gas diffusion electrode, a means for filling the gas chamber with a porous material that allows three-dimensional gas flow was developed. When the porous material filled in the gas chamber is made of a conductive material so as to serve also as a power supply body, a technology has been developed which can supply power to the gas diffusion electrode favorably and reduce the resistance.

【0006】さらに、進んでこのような導電性の多孔性
材料を基体としてそれにガス拡散電極を構成するときに
は、ガス拡散電極への給電が良好で抵抗を一層低くする
ことができ、さらには強度が大きくすることができる技
術を開発してきた。このような技術によるガス拡散電極
としては、例えば、導電性多孔体中の一部分に層状にガ
ス供給層を形成し、前記導電性多孔体の片面側に前記ガ
ス供給層と接触した状態で反応層を積層しており、前記
導電性多孔体の他面側の部分は前記ガス供給層がなく露
出状態でガス室の少なくとも一部を形成していることを
特徴とするガス拡散電極である。
Further, when the gas diffusion electrode is constructed by using such a conductive porous material as a substrate, the power supply to the gas diffusion electrode is good, the resistance can be further lowered, and the strength is further increased. We have developed technology that can be increased. As a gas diffusion electrode by such a technique, for example, a gas supply layer is formed in a layer form in a part of the conductive porous body, and the reaction layer is in contact with the gas supply layer on one side of the conductive porous body. And a portion of the other side of the conductive porous body that does not have the gas supply layer forms at least a part of the gas chamber in an exposed state.

【0007】このガス拡散電極は、図2に示すように、
導電性多孔体8を基体とし、該多孔体8の下側の薄層状
の露出部分10を残して、導電性多孔体8はガス透過性
で疎水性のガス供給層5として形成され、露出した前記
薄層状の露出部分の反対側となる表面側に透水性で触媒
を担持している反応層4を設けている。図2では、ガス
供給層5内にも導電性多孔体8があることを示すため
に、ガス供給層5の左側の部分の充填物を取り除いて導
電性多孔体8の充填部分9を露出している状態として示
している。このタイプの陰極部では、ガス拡散電極1の
ガス室側に別の導電性多孔体11を組み合わせ、前記多
孔体8の薄層状の露出部分10と前記導電性多孔体11
でガス室を形成している。
This gas diffusion electrode, as shown in FIG.
The conductive porous body 8 is formed as a gas permeable and hydrophobic gas supply layer 5 with the conductive porous body 8 as a substrate and the thin layer-like exposed portion 10 under the porous body 8 is left and exposed. On the surface side opposite to the exposed portion of the thin layer, a reaction layer 4 having a water-permeable catalyst is provided. In FIG. 2, in order to show that the conductive porous body 8 is also present in the gas supply layer 5, the filler on the left side of the gas supply layer 5 is removed to expose the filled portion 9 of the conductive porous body 8. It is shown as the state. In this type of cathode portion, another conductive porous body 11 is combined on the gas chamber side of the gas diffusion electrode 1, and a thin layer-like exposed portion 10 of the porous body 8 and the conductive porous body 11 are combined.
Form a gas chamber.

【0008】本発明者が発明した、このガス拡散電極に
おいては、その基体である多孔体を例えば発泡ニッケル
多孔体で製造した場合でも、ガス供給層が撥水性物質を
含有する関係で、その上に設ける反応層や電解槽フレー
ムとの接触箇所における接触抵抗が高いため、接触抵抗
の低減のため、さらにはその多孔体自体の導電性を高め
るために、発泡ニッケル多孔体に銀メッキが施されてい
る。その場合、5ミクロンの厚さに銀メッキした物は銀
の使用量が200g/m2以上となり高価となる。ま
た、ガス拡散電極にはそれに反応ガスを供給するために
は電解槽構造としてガス室が必要である。このガス室に
はガス拡散電極と電解槽フレ−ムとの通電の仲立ちをす
るため銀メッキした発泡ニッケル多孔体が充填用に用い
られている。これもコストアップの原因となる。
In this gas diffusion electrode invented by the present inventor, even when the porous body which is the substrate is made of, for example, a foamed nickel porous body, since the gas supply layer contains the water-repellent substance, In order to reduce the contact resistance and to increase the conductivity of the porous body itself, the foamed nickel porous body is plated with silver because of its high contact resistance in the contact area with the reaction layer and the electrolytic cell frame. ing. In this case, a silver-plated product having a thickness of 5 μm is expensive because the amount of silver used is 200 g / m 2 or more. Further, the gas diffusion electrode needs a gas chamber as an electrolytic cell structure in order to supply a reaction gas to the gas diffusion electrode. In this gas chamber, a silver-plated foamed nickel porous body is used for filling in order to mediate electric conduction between the gas diffusion electrode and the electrolytic cell frame. This also causes a cost increase.

【0009】本発明は、このような従来の問題点に鑑み
てなされたものであり、銀メッキ用の高価な銀の使用量
を節減して製造コストの低減を計ると共に、ガス拡散電
極の集電体として用いる発泡金属多孔体の集電能力を維
持させ、ガス室用充填材としての性能向上を併せ発揮す
ることができる、導電性の発泡金属多孔体とこれを用い
たガス拡散電極を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and reduces the amount of expensive silver used for silver plating to reduce the manufacturing cost and the gas diffusion electrode. Provided are a conductive foam metal porous body and a gas diffusion electrode using the same, which can maintain the current collecting ability of the foam metal porous body used as an electric body and can also exhibit the performance improvement as a gas chamber filling material. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究した結果、発泡金属多孔体の表面と
裏面にそれぞれその表面から500ミクロン以下の部分
に銀メッキを形成することにより上記目的を達成できる
ことを見い出して、本発明を完成するに至った。すなわ
ち、本発明は、次の構成からなるものである。 (1)銀微粒子の分散液を発泡金属多孔体に付着させ、
乾燥し、次いで焼成して発泡金属多孔体の表裏両表面に
その表面から500ミクロン以下の部分に銀層を被覆し
ていることを特徴とする部分銀被覆発泡金属多孔体。 (2)前記(1)記載の部分銀被覆発泡金属多孔体の内
部に撥水性多孔体から成るガス供給層が形成され、前記
多孔体の一方の銀被覆層の上に反応層が形成されて前記
銀被覆層が反応層と接触した構造を構成していることを
特徴とするガス拡散電極。 (3)前記(1)記載の部分銀被覆発泡金属多孔体をガ
ス拡散電極のガス室に充填したことを特徴とするガス拡
散電極。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has formed silver plating on the front surface and the back surface of a foamed metal porous body at portions of 500 μm or less from the front surface. As a result, they have found that the above object can be achieved, and completed the present invention. That is, the present invention has the following configuration. (1) A dispersion of fine silver particles is attached to a foamed metal porous body,
A partially silver-covered foamed metal porous body, characterized in that it is dried and then fired to cover both front and back surfaces of the foamed metal porous body with a silver layer at a portion of 500 μm or less from the surface. (2) A gas supply layer made of a water-repellent porous body is formed inside the partially silver-coated foamed metal porous body according to (1), and a reaction layer is formed on one silver coating layer of the porous body. A gas diffusion electrode having a structure in which the silver coating layer is in contact with a reaction layer. (3) A gas diffusion electrode, characterized in that the gas chamber of the gas diffusion electrode is filled with the partially silver-covered metal foam porous body according to (1).

【0011】[0011]

【発明の実施の形態】本発明は、ガス拡散電極の基体を
発泡金属多孔体により構成させた場合、その発泡金属多
孔体自体の電気抵抗は割合小さく、その電気抵抗の大き
さが問題となるのは、発泡金属多孔体と反応層との接続
部分、或いは発泡金属多孔体と電解槽フレームとの接触
部分、さらには発泡金属多孔体とガス室に充填する別の
多孔体との接触部分における電気抵抗の大きさであるこ
とから、それらの接触部分となる発泡金属多孔体の表面
及びそれに近い箇所であることに着目し、これらの部分
のみに銀メッキによる被覆をするようにして、銀の使用
量を著しく低減したのである。その表面に近い箇所とし
ては、表面から500ミクロン以下であるが、10〜1
00ミクロンまでの範囲とすることが好ましい。銀メッ
キによる被覆の厚さは、導電性を確保するに十分であれ
ばよいから、1〜10ミクロンの範囲でよい。また、銀
メッキの手段としては、部分的被覆するため、電気メッ
キや無電解メッキよりも加熱分解法や加熱分解還元法に
よる方が適している。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when the substrate of the gas diffusion electrode is made of a foamed metal porous body, the electric resistance of the foamed metal porous body itself is relatively small, and the magnitude of the electric resistance becomes a problem. At the connecting portion between the foamed metal porous body and the reaction layer, or the contacting portion between the foamed metal porous body and the electrolytic cell frame, and further at the contacting portion between the foamed metal porous body and another porous body filled in the gas chamber. Since it has a large electric resistance, pay attention to the surface of the foamed metal porous body that is the contact portion and the portion close to the surface, and only these portions are covered with silver plating so that the silver The amount used has been significantly reduced. The location near the surface is 500 microns or less from the surface, but 10 to 1
A range of up to 00 microns is preferred. The thickness of the silver-plated coating may be in the range of 1 to 10 microns, as long as it is sufficient to ensure conductivity. Further, as a means for silver plating, the partial decomposition is performed, so that the thermal decomposition method or the thermal decomposition reduction method is more suitable than the electroplating or the electroless plating.

【0012】本発明の発泡金属多孔体及びガス拡散電極
を図面を用いて具体的に説明する。図1において、本発
明のガス拡散電極1では、発泡金属多孔体2の表面6と
裏面7に、それぞれ外表面から500ミクロン以下の部
分に銀被覆部3が形成され、この銀被覆層3は各々約1
00ミクロン程度の厚さで析出形成されている。これに
より、表裏両面上に銀被覆層3が形成されることにな
る。この表面6側の銀被覆層3が反応層4内に埋め込ま
れ接触するように形成され、一方裏面7側には銀被覆層
3が露出している。これにより導電性多孔体が形成さて
いる。
The metal foam porous body and the gas diffusion electrode of the present invention will be specifically described with reference to the drawings. In FIG. 1, in the gas diffusion electrode 1 of the present invention, a silver coating portion 3 is formed on each of the front surface 6 and the back surface 7 of the foamed metal porous body 2 at a portion of 500 μm or less from the outer surface. About 1 each
It is deposited and formed with a thickness of about 00 microns. As a result, the silver coating layer 3 is formed on both front and back surfaces. The silver coating layer 3 on the front surface 6 side is formed so as to be embedded in and in contact with the reaction layer 4, while the silver coating layer 3 is exposed on the back surface 7 side. This forms a conductive porous body.

【0013】すなわち、発泡金属多孔体2を基体とし、
その表裏両面の表面及びそれに極めて近い部分のみに銀
を被覆して銀被覆層3を形成し、該多孔体の下側(裏
面)7の銀被覆層3の薄層上の露出部分9を残して、発
泡金属多孔体2はガス透過性で疎水性のガス供給層5と
して形成され、露出した前記薄層状の銀被覆層3の反対
側となる表面側6に透水性で触媒を担持している反応層
4を銀被覆層3の突起部分に埋め込まれるように設けら
れる。また、このタイプの陰極部では、発泡金属多孔体
2の表面6側の銀被覆層3の上に反応層4を設け、また
発泡金属多孔体2の内部が撥水処理されてガス供給層5
を形成し、陰極部を形成してもよい。また、別に発泡金
属多孔体2の表面及び裏面に銀被覆層3を設けたものを
導電性多孔体11として、ガス拡散電極のガス室に充填
してもよい。
That is, using the metal foam body 2 as a base,
A silver coating layer 3 is formed by coating silver only on the front and back surfaces and on portions very close thereto, leaving an exposed portion 9 on the thin layer of the silver coating layer 3 on the lower side (back surface) 7 of the porous body. The foamed metal porous body 2 is formed as a gas permeable and hydrophobic gas supply layer 5, and the surface side 6 opposite to the exposed thin silver coating layer 3 carries a catalyst with water permeability. The reaction layer 4 is provided so as to be embedded in the protruding portion of the silver coating layer 3. Further, in this type of cathode part, the reaction layer 4 is provided on the silver coating layer 3 on the surface 6 side of the foamed metal porous body 2, and the inside of the foamed metal porous body 2 is subjected to a water repellent treatment to provide a gas supply layer 5.
May be formed to form the cathode part. Alternatively, the foamed metal porous body 2 provided with the silver coating layer 3 on the front surface and the back surface thereof may be used as the conductive porous body 11 to fill the gas chamber of the gas diffusion electrode.

【0014】本発明の発泡金属多孔体としては、種々の
金属を用いたもので形成することができるが、金属とし
てはニッケル、銅、その他が挙げられる。具体的には、
ポリウレタンなどプラスチックの連続気泡発泡体にニッ
ケルをメッキしたもの、あるいはプラスチックの連続気
泡発泡体にニッケルをメッキした後これを焼結してニッ
ケル多孔体としたもの等であっても良い。また、カ−ボ
ン製多孔体にニッケルをメッキしたものであっても良
い。この導電性多孔体は、ガス拡散電極に強度を与える
他、集電体として作用するものであり、従来の金網のよ
うな網状給電体の場合より電極物質との接触面積は大き
い。また、発泡金属多孔体の厚さは1から10mmであ
ることが好ましい。
The foam metal porous body of the present invention can be formed by using various metals, and examples of the metal include nickel, copper and the like. In particular,
An open-cell foam made of plastic such as polyurethane may be plated with nickel, or an open-cell foam made of plastic may be plated with nickel and then sintered to form a porous nickel body. Alternatively, a carbon porous body may be plated with nickel. This conductive porous body not only gives strength to the gas diffusion electrode, but also acts as a current collector, and has a larger contact area with the electrode material than in the case of a mesh-shaped power feeding body such as a conventional wire mesh. The thickness of the foamed metal porous body is preferably 1 to 10 mm.

【0015】反応層の主要構成素材としては、白金など
の貴金属系からなる触媒、親水性カ−ボンの微粒子と撥
水性カ−ボン微粒子の混合物、少量のフッ素樹脂微粒子
とこれら微粒子を繋ぐ結着剤粒子である。ガス供給層の
主要構成素材としては、撥水性カ−ボン微粒子、フッ素
樹脂微粒子とこれら微粒子を繋ぐ結着剤粒子である。
The main constituent material of the reaction layer is a catalyst composed of a noble metal such as platinum, a mixture of fine particles of hydrophilic carbon and fine particles of water-repellent carbon, a small amount of fluororesin fine particles and a binder connecting these fine particles. It is a drug particle. The main constituent materials of the gas supply layer are water repellent carbon fine particles, fluororesin fine particles and binder particles connecting these fine particles.

【0016】発泡金属多孔体中にガス供給層を設ける方
法としては、前記主要構成素材である撥水性カ−ボン微
粒子、フッ素樹脂微粒子と結着剤粒子およびその他の粒
子を振動法によって多孔体の中に入れ、加熱・焼結して
ガス供給層を形成する方法や、撥水性カ−ボンブラック
と水と粉末状ポリテトラフルオロエチレンとを混合して
泥漿を作製し、次に導電性多孔体にこの泥漿を片面(あ
るいは両面)から充填し、乾燥前あるいは乾燥後に該泥
漿から必要により分散剤を除去し、乾燥し、焼結する方
法などが挙げられる。
As a method for providing the gas supply layer in the foamed metal porous body, the water repellent carbon fine particles, the fluororesin fine particles, the binder particles and other particles, which are the main constituent materials, are formed into a porous body by a vibration method. A method of forming a gas supply layer by putting it inside and heating / sintering it, or mixing water-repellent carbon black, water and powdered polytetrafluoroethylene to prepare sludge, and then forming a conductive porous body. In addition to the method, the sludge is filled from one side (or both sides), the dispersant is optionally removed from the sludge before or after drying, and the slurry is dried and sintered.

【0017】本発明のガス拡散電極の製造においては、
部分的に銀を被覆した発泡金属多孔体にガス供給層など
を形成する物質を充填・成形した後、必要により圧密化
し、焼結して完成する。成形を常温成形で行う場合は、
プレス圧は10〜60kg/cm2 でプレスし、焼結は
200〜300℃で行う。また、成形を加熱プレスで行
う場合には、プレス温度は150〜300℃、圧力は1
〜5kg/cm2 で行うのが好ましい。ガス供給層用材
料あるいは反応層用材料を泥漿とし、該泥漿を導電性多
孔体に塗り込みや圧入して電極層を充填・成形した場合
には、この成形段階で泥漿から分散のために使用した分
散剤を洗浄・除去した後に焼結して完成する。泥漿をつ
くるのに用いる分散剤としては、通常界面活性剤が使用
される。使用する界面活性剤としては、ノニオン、アニ
オン、カチオンのいずれの界面活性剤でも、単独あるい
は混合して使用できるが、ノニオン界面活性剤が好まし
い。また、前記界面活性剤は電極を製造する際に使用す
る材料、例えばポリテトラフルオロエチレンの懸濁水溶
液、中に含まれるもの等であっても良い。
In the production of the gas diffusion electrode of the present invention,
The foamed metal porous body partially covered with silver is filled and molded with a substance for forming a gas supply layer and the like, and then compacted if necessary and sintered to complete. When molding at room temperature,
The pressing pressure is 10 to 60 kg / cm 2 , and the sintering is performed at 200 to 300 ° C. When the molding is performed by a hot press, the press temperature is 150 to 300 ° C and the pressure is 1
It is preferable to carry out at about 5 kg / cm 2 . When the material for the gas supply layer or the material for the reaction layer is sludge, and when the sludge is applied or pressed into the conductive porous body to fill and mold the electrode layer, it is used to disperse from the sludge at this molding stage. The dispersant is washed and removed, and then sintered to complete the process. Surfactants are usually used as the dispersant used to make the slurry. As the surfactant to be used, any of nonionic, anionic and cationic surfactants can be used alone or in combination, but the nonionic surfactant is preferred. Further, the surfactant may be contained in a material used for manufacturing an electrode, for example, a suspension solution of polytetrafluoroethylene, or the like.

【0018】前記本発明のガス拡散電極における反応層
の製造には、電極触媒作用を有する触媒と前記電極構成
素材からの泥漿を部分銀被覆発泡金属多孔体の孔に、乾
燥しないように充填する方法が用いられる。その際、泥
漿は前記多孔体内に均一に充填されて所要の厚さのガス
拡散電極層を形成する。本発明のガス拡散電極の反応層
に混入する活性化触媒としては、次に挙げるようなもの
が好適であり、そこに示す工程で得たものを使用するこ
とができる。 白金黒:カ−ボンブラックのような触媒担体表面に例
えば白金塩のような触媒塩を付着させ、不活性ガス雰囲
気中で加熱・水素還元などして、白金黒とする工程。 還元銀:親水性カ−ボンブラックのような触媒担体表
面に例えば硝酸銀のような触媒塩を付着させ、80℃で
粉体が乾燥し、150℃で加熱・水素還元しカ−ボンブ
ラックに付着した銀の微粒子とする工程。
In the production of the reaction layer in the gas diffusion electrode of the present invention, a catalyst having an electrocatalytic action and a slurry from the electrode constituent material are filled in the pores of the partially silver-covered foam metal porous body so as not to dry. A method is used. At that time, the slurry is uniformly filled in the porous body to form a gas diffusion electrode layer having a required thickness. As the activation catalyst mixed in the reaction layer of the gas diffusion electrode of the present invention, the following catalysts are suitable, and the catalyst obtained in the steps shown therein can be used. Platinum black: A step of forming a platinum black by adhering a catalyst salt such as a platinum salt on the surface of a catalyst carrier such as carbon black and heating and reducing with hydrogen in an inert gas atmosphere. Reduced silver: A catalyst salt such as silver nitrate is adhered to the surface of a catalyst carrier such as hydrophilic carbon black, the powder is dried at 80 ° C., heated and reduced with hydrogen at 150 ° C., and adhered to carbon black. Step of making fine silver particles.

【0019】[0019]

【実施例】以下実施例により本発明を具体的に説明す
る。ただし本発明は、これらの実施例のみに限定される
ものではない。
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to these examples.

【0020】実施例1 銀微粒子(三井金属鉱業製、3010、平均粒径0.1
1ミクロン)とテレピン油を重量比で1対1の割合で混
合し、ペイントを作製した。このペイントをガラス板状
にコ−タを用いて20ミクロンの膜厚に塗布した。この
上に1.7mm厚の50ppIの発泡ニッケル多孔体を
のせ、転写した。裏表に転写した後、乾燥し、次いで窒
素気流中で500℃で1時間焼成して銀を表面部のみに
斑模様に1〜10ミクロン厚に被覆した。
Example 1 Fine silver particles (Mitsui Mining & Smelting Co., Ltd., 3010, average particle size 0.1
1 micron) and turpentine oil were mixed in a weight ratio of 1: 1 to prepare a paint. This paint was applied to a glass plate with a coater to a film thickness of 20 μm. A 1.7 mm thick 50 ppI foamed nickel porous body was placed on this and transferred. After transferring to the front and back sides, it was dried and then baked in a nitrogen stream at 500 ° C. for 1 hour to coat silver only on the surface portion in a mottled pattern with a thickness of 1 to 10 μm.

【0021】この銀部分被覆発泡ニッケル多孔体(12
×28センチ角)に、まずルブロンにエタノ−ルを重量
比で1対2の割合で加え糊状にし、発泡金属多孔体に2
ミクロン厚に塗り込みガス供給層を形成し、次に反応層
となる銀微粒子(三井金属鉱業製、3010、平均粒径
0.11ミクロン)3部とルブロン1部をエタノ−ル2
部(重量比)で練り、糊状にしたものを、その上から2
00ミクロン厚に塗り込み、10kg/cm2 の圧力で
プレスして内部に押し込んでガス供給層と反応層を形成
した。この操作で反応層と銀メッキ発泡ニッケル多孔体
とが接触する。80℃で3時間乾燥し、常温プレス圧4
0kg/cm2 で60秒間プレスし、次いで250℃で
10分間熱処理し、引き続き冷却して電極を得た。この
電極の酸素還元性能を測定したところ、30A/dm2
で0.78V(vs.RHE)という高い性能が得られ
た。電極背面とガス室の銀メッキ発泡ニッケル多孔体と
の接触抵抗は2mΩ/cm2 以下と小さい値を示した。
This silver part-covered foamed nickel porous body (12
X28 cm square), first, ethanol was added to Lubron at a weight ratio of 1: 2 to form a paste, and 2 parts were added to the foamed metal porous body.
A coating gas supply layer is formed in a thickness of micron, and then 3 parts of silver fine particles (3010, manufactured by Mitsui Mining & Smelting Co., Ltd., average particle size 0.11 micron) to be a reaction layer and 1 part of Lubron are mixed with ethanol 2
Knead in parts (weight ratio) and make a paste.
It was applied to a thickness of 00 microns and pressed at a pressure of 10 kg / cm 2 and pressed into the inside to form a gas supply layer and a reaction layer. This operation brings the reaction layer into contact with the silver-plated foamed nickel porous body. Dry at 80 ℃ for 3 hours, press at room temperature 4
It was pressed at 0 kg / cm 2 for 60 seconds, then heat-treated at 250 ° C. for 10 minutes and then cooled to obtain an electrode. The oxygen reduction performance of this electrode was measured and found to be 30 A / dm 2
A high performance of 0.78 V (vs. RHE) was obtained. The contact resistance between the back surface of the electrode and the silver-plated foamed nickel porous body in the gas chamber was a small value of 2 mΩ / cm 2 or less.

【0022】実施例2 コロイダル銀(平均粒径5nm:逆ミセル法で作製)を
用いペイントを作製した。このペイントをゴムロ−ラに
均一に載せ、50ppIの発泡ニッケル多孔体上を転が
して転写した。同様に裏面に転写した後、引き続き乾燥
し、次いで大気中で320℃で10分間焼成して銀を表
面部のみに1から5ミクロン厚に被覆した。この銀部分
被覆発泡ニッケル多孔体(12×28センチ角)に、ま
ずPTFEディスパ−ジョン(D−1,ダイキン工業
製)にエタノ−ルを重量比で1対2の割合で加え糊状に
し、発泡ニッケル多孔体に800ミクロン厚に塗り込み
ガス供給層を形成した。
Example 2 A paint was prepared using colloidal silver (average particle size 5 nm: prepared by the reverse micelle method). This paint was uniformly placed on a rubber roller, and transferred by rolling on a 50 ppI foamed nickel porous body. Similarly, after transferring to the back surface, it was subsequently dried, and then baked in the atmosphere at 320 ° C. for 10 minutes to coat silver only on the front surface with a thickness of 1 to 5 μm. To this silver part-covered foamed nickel porous body (12 × 28 cm square), first of all, a PTFE dispersion (D-1, manufactured by Daikin Industries, Ltd.) was mixed with ethanol at a weight ratio of 1: 2 to form a paste, The foamed nickel porous body was coated with a thickness of 800 μm to form a gas supply layer.

【0023】次に銀微粒子(三井金属鉱業製、301
0、平均粒径0.11ミクロン)5部に20%トライト
ンを2部に水10部を加え分散させた後、さらにPTF
Eディスパ−ジョン(D−1,ダイキン工業製)1部を
分散させた。この分散液10部にエタノ−ルを50部
(重量)加え凝集させ、軽くろ過して反応層原料とし
た。これをガス供給層を塗りこんだ上から200ミクロ
ン厚に塗り込み、ロ−ル掛けして発泡体内部にガス供給
層と反応層を押し込んだ。この操作で反応層と被覆銀と
が接触する。80℃で3時間乾燥後、エタノ−ルで界面
活性剤を除去した。再度乾燥後、圧力40kg/cm2
で常温で60秒間プレスし、次いで250℃で10分間
熱処理して電極を得た。この電極の酸素還元性能を測定
したところ、30A/dm2 で0.81V(vs.RH
E)という高い性能が得られた。電極背面も同様な方法
でガス室用の20ppI銀被覆発泡ニッケル多孔体との
接触抵抗は1mΩ/cm2 以下と小さい値を示した。実
電解槽で運転した結果、電解槽電圧は2.05Vで全体
銀メッキ品を用いた場合と同一であった。
Next, fine silver particles (Mitsui Mining & Smelting Co., Ltd., 301
0, average particle size 0.11 micron) After adding 5 parts of 20% Triton to 2 parts of 10 parts of water and dispersing, further PTF
1 part of E dispersion (D-1, manufactured by Daikin Industries, Ltd.) was dispersed. 50 parts (by weight) of ethanol was added to 10 parts of this dispersion to coagulate, and the mixture was lightly filtered to obtain a reaction layer raw material. This was applied to a thickness of 200 μm from the top of the gas supply layer and rolled to push the gas supply layer and the reaction layer inside the foam. This operation brings the reaction layer into contact with the coated silver. After drying at 80 ° C for 3 hours, the surfactant was removed with ethanol. After drying again, pressure 40kg / cm 2
At room temperature for 60 seconds and then heat treated at 250 ° C. for 10 minutes to obtain an electrode. When the oxygen reduction performance of this electrode was measured, it was 0.81 V (vs. RH at 30 A / dm 2 ).
A high performance of E) was obtained. In the same manner on the back surface of the electrode, the contact resistance with the 20 ppI silver-coated foamed nickel porous body for the gas chamber showed a small value of 1 mΩ / cm 2 or less. As a result of operating in an actual electrolytic cell, the electrolytic cell voltage was 2.05 V, which was the same as that in the case of using the whole silver-plated product.

【0024】[0024]

【発明の効果】本発明の発泡金属多孔体は、発泡金属多
孔体の表面と裏面のみに銀を被覆するだけであるから、
多孔体の全体を銀メッキする場合に比べて銀の使用量が
1/10以下となり、それでいて抵抗は全体を銀メッキ
したものの抵抗と差がない。このため、この発泡金属多
孔体を使用してガス拡散電極を製造する場合には、安価
なガス拡散電極を製造することができる。更に、本発明
のガス拡散電極は、ガス供給層がフッ素樹脂系のポリマ
−の微粒子で形成されるものと違って、電気抵抗が低
く、陽イオン交換膜からなる電解槽に酸素陰極として用
いて塩水を電解した場合などにおいて、極めて低い電解
電圧でかつ電流効率良く電解することができる。その
上、導電性多孔体の厚さを比較的厚くできるので、強度
の大きい電極を作製できる。
EFFECTS OF THE INVENTION The foamed metal porous body of the present invention has only the front and back surfaces of the foamed metal porous body coated with silver.
The amount of silver used is 1/10 or less compared to the case where the entire porous body is silver-plated, and the resistance is not different from the resistance of the whole silver-plated one. For this reason, when manufacturing a gas diffusion electrode using this foam metal porous body, an inexpensive gas diffusion electrode can be manufactured. Further, the gas diffusion electrode of the present invention has a low electric resistance, unlike the one in which the gas supply layer is formed of fine particles of a fluororesin polymer, and is used as an oxygen cathode in an electrolytic cell comprising a cation exchange membrane. In the case where salt water is electrolyzed, electrolysis can be performed with an extremely low electrolysis voltage and current efficiency. Moreover, since the thickness of the conductive porous body can be made relatively large, an electrode having high strength can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス拡散電極の一例を示す断面説明図
である。
FIG. 1 is a cross-sectional explanatory view showing an example of a gas diffusion electrode of the present invention.

【図2】本発明者が先に発明した一体成形型のガス拡散
電極の断面説明図を示す。
FIG. 2 is a cross-sectional explanatory view of an integrally molded gas diffusion electrode previously invented by the present inventor.

【図3】内部に網状給電体を有する従来のガス拡散電極
の断面説明図を示す。
FIG. 3 shows a cross-sectional explanatory view of a conventional gas diffusion electrode having a mesh-shaped power feeder inside.

【図4】ガス供給層の内部及び表面に網状給電体を有す
る従来のガス拡散電極の断面説明図を示す。
FIG. 4 is a cross-sectional explanatory view of a conventional gas diffusion electrode having a reticulated power supply inside and on the surface of a gas supply layer.

【符号の説明】[Explanation of symbols]

1 ガス拡散電極 2 発泡金属多孔体 3 銀被覆層 4 反応層 5 ガス供給層 6 表面 7 裏面 8 導電性多孔体 9 充填部分 10 露出部分 11 導電性多孔体(充填用) 12 網状給電体 1 gas diffusion electrode 2 Foamed metal porous body 3 Silver coating layer 4 Reaction layer 5 gas supply layer 6 surface 7 Back side 8 Conductive porous body 9 Filling part 10 Exposed part 11 Conductive porous body (for filling) 12 Reticulated power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古屋 長一 山梨県甲府市中村町2−14 (56)参考文献 特開 平10−158878(JP,A) 特開 平10−195687(JP,A) 特開 昭49−130878(JP,A) 特開 平9−41180(JP,A) 特開 平8−302493(JP,A) 特開 平7−216575(JP,A) 特開 平7−54181(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Choichi Furuya 2-14 Nakamura-cho, Kofu-shi, Yamanashi (56) References JP-A-10-158878 (JP, A) JP-A-10-195687 (JP, A) ) JP-A-49-130878 (JP, A) JP-A-9-41180 (JP, A) JP-A-8-302493 (JP, A) JP-A-7-216575 (JP, A) JP-A-7- 54181 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C25B 1/00-15/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銀微粒子の分散液を発泡金属多孔体に付
着させ、乾燥し、次いで焼成して発泡金属多孔体の表裏
両表面にその表面から500ミクロン以下の部分に銀層
を被覆していることを特徴とする部分銀被覆発泡金属多
孔体。
1. A dispersion of fine silver particles is adhered to a foamed metal porous body, dried, and then fired to coat both front and back surfaces of the foamed metal porous body with a silver layer at a portion of 500 μm or less from the surface. Partially silver-covered foam metal porous body characterized by being
【請求項2】 請求項1記載の部分銀被覆発泡金属多孔
体の内部に撥水性多孔体から成るガス供給層が形成さ
れ、前記多孔体の一方の銀被覆層の上に反応層が形成さ
れて前記銀被覆層が反応層と接触した構造を構成してい
ることを特徴とするガス拡散電極。
2. A gas supply layer made of a water-repellent porous body is formed inside the partially silver-coated foamed metal porous body according to claim 1, and a reaction layer is formed on one silver coating layer of the porous body. A gas diffusion electrode having a structure in which the silver coating layer is in contact with the reaction layer.
【請求項3】 請求項1記載の部分銀被覆発泡金属多孔
体をガス拡散電極のガス室に充填したことを特徴とする
ガス拡散電極。
3. A gas diffusion electrode, wherein the partially silver-covered foam metal porous body according to claim 1 is filled in a gas chamber of the gas diffusion electrode.
JP21866797A 1997-08-13 1997-08-13 Partially silver-coated porous metal foam and gas diffusion electrode using it Expired - Lifetime JP3373141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21866797A JP3373141B2 (en) 1997-08-13 1997-08-13 Partially silver-coated porous metal foam and gas diffusion electrode using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21866797A JP3373141B2 (en) 1997-08-13 1997-08-13 Partially silver-coated porous metal foam and gas diffusion electrode using it

Publications (2)

Publication Number Publication Date
JPH1161473A JPH1161473A (en) 1999-03-05
JP3373141B2 true JP3373141B2 (en) 2003-02-04

Family

ID=16723545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21866797A Expired - Lifetime JP3373141B2 (en) 1997-08-13 1997-08-13 Partially silver-coated porous metal foam and gas diffusion electrode using it

Country Status (1)

Country Link
JP (1) JP3373141B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1148468C (en) * 1999-02-16 2004-05-05 古屋长一 Gaseous diffusion electrode assembly and production method thereof
CN104947142B (en) * 2015-05-29 2017-10-13 广西大学 A kind of preparation method of electro-catalysis reductive halogenation organic matter cathode material
CN108963271A (en) * 2018-07-15 2018-12-07 四川康成博特机械制造有限公司 A kind of air cell electrode structure and preparation method thereof
EP3933074A4 (en) * 2019-03-01 2022-11-23 Tanaka Kikinzoku Kogyo K.K. Porous body, electrochemical cell, and method for producing porous body

Also Published As

Publication number Publication date
JPH1161473A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
EP0920065B1 (en) Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
CA1153057A (en) Carbon-cloth-based electrocatalytic gas diffusion electrodes, assembly and electrochemical cells comprising the same
US4500647A (en) Three layer laminated matrix electrode
JPS6143436B2 (en)
JPH09501541A (en) Gas diffusion electrode with catalyst for electrochemical cell with solid electrolyte and manufacturing method thereof
CA2677837C (en) Method for the electrochemical deposition of catalyst particles onto carbon fibre-containing substrates and apparatus therefor
JP2003511828A (en) Electrochemical electrode for fuel cell
JPH09511018A (en) High performance electrolysis cell electrode structure and method of manufacturing such electrode structure
KR20010043360A (en) Carbon based electrodes
JPH0774469B2 (en) Electrocatalytic gas diffusion electrode and method of making the same
EP2540872A1 (en) Oxygen gas diffusion cathode, electrolytic bath equipped with same, process for production of chlorine gas, and process for production of sodium hydroxide
CA1330777C (en) Cathode bonded to ion exchange membrane for use in electrolyzers for electrochemical processes and relevant method for conducting electrolysis
JPS58181881A (en) Manufacture of electrode
EP1295968B1 (en) Gas diffusion electrode, method for manufacturing the same and fuel cell using it
JP3373141B2 (en) Partially silver-coated porous metal foam and gas diffusion electrode using it
US8685575B2 (en) Air cathode for metal-air fuel cells
JPH0631457B2 (en) Multilayer structure for electrode-membrane assembly and electrolysis method using same
JP2805458B2 (en) Manufacturing method of gas diffusion electrode
JP3373140B2 (en) Gas diffusion electrode
CA1330316C (en) Process for the production of porous electrodes
US3305401A (en) Electrodes for galvanic primary and secondary cells and methods of producing such electrodes
CN1432664A (en) Water electrolyzing composit membrane electrode
JP3740677B2 (en) Gas diffusion electrode and manufacturing method thereof
JP3002974B2 (en) Manufacturing method of gas diffusion electrode
JPH11217688A (en) Solid polymer electrolyte-catalyst composite electrode, water electrolyzing device and fuel battery using the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term