JP2988107B2 - Magnetic fluid sealing device and magnetic fluid composition used therein - Google Patents

Magnetic fluid sealing device and magnetic fluid composition used therein

Info

Publication number
JP2988107B2
JP2988107B2 JP4055443A JP5544392A JP2988107B2 JP 2988107 B2 JP2988107 B2 JP 2988107B2 JP 4055443 A JP4055443 A JP 4055443A JP 5544392 A JP5544392 A JP 5544392A JP 2988107 B2 JP2988107 B2 JP 2988107B2
Authority
JP
Japan
Prior art keywords
magnetic fluid
magnetic
organic solvent
shaft
sealing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4055443A
Other languages
Japanese (ja)
Other versions
JPH05263948A (en
Inventor
俊一 矢部
敦 横内
利行 根来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP4055443A priority Critical patent/JP2988107B2/en
Publication of JPH05263948A publication Critical patent/JPH05263948A/en
Application granted granted Critical
Publication of JP2988107B2 publication Critical patent/JP2988107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/762Sealings of ball or roller bearings by means of a fluid
    • F16C33/763Sealings of ball or roller bearings by means of a fluid retained in the sealing gap
    • F16C33/765Sealings of ball or roller bearings by means of a fluid retained in the sealing gap by a magnetic field

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、磁性流体シール装置
及びそれに使用する磁性流体組成物(以下単に、磁性流
体ともいう)に関し、特に、シール部が周速2.0 m/sec
以上で高速回転する場合の、磁性流体のスプラッシュ
(飛散)を効果的に防止するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic fluid sealing device and a magnetic fluid composition used for the same (hereinafter, also simply referred to as a magnetic fluid).
As described above, splash (scatter) of the magnetic fluid when rotating at high speed is effectively prevented.

【0002】[0002]

【従来の技術】従来のスプラッシュ防止対策を考慮した
磁性流体シール装置としては、特開平3−163271
号公報に示されたものがある。このものは、シール装置
の構成部品であるポールピースや永久磁石の形状や配置
に工夫を加えることによりスプラッシュ防止を図ってい
る。すなわち、一般的に磁性流体シール装置は、軸とハ
ウジングとの間の円筒空間に、永久磁石を挟持した2枚
の円環状のポールピースを配置して、例えば永久磁石か
ら一方のポールピース,軸,他方のポールピースを経て
永久磁石に戻る磁気回路を形成し、その磁力で各ポール
ピースの内周縁と軸外周面との間のすきまに注入した磁
性流体を保持してリング状のすきまを塞ぐようにしてい
る。しかし、軸とハウジングとの間に、一方のポールピ
ース(内側)に近接して転がり軸受等の磁性体が配設さ
れている場合などは、上記磁気回路の磁束の一部がその
転がり軸受の方にも分岐してしまい、一方のポールピー
スの内周縁と軸の外周面との間に存在する磁束の密度が
低くなる。そのため、より高い磁束密度を有する他方の
ポールピース(外側)のすきまに保持される磁性流体の
量が増えて盛り上がり、その結果、軸またはハウジング
の相対回転により生じる遠心力で磁性流体が外部に飛散
し易い。その対策として、前記特開平3−163271
号公報に示されたものにあっては、一方のポールピース
と転がり軸受との間に、更に第二の永久磁石を配設した
もので、これにより一方のポールピースの方に流れる磁
束を増やし、他方のポールピースの内周縁と軸外周面と
の間のすきまに過剰に保持される磁性流体の量を抑制し
てスプラッシュを防止している。
2. Description of the Related Art As a conventional magnetic fluid sealing device in which splash prevention measures are taken into consideration, Japanese Patent Application Laid-Open No. 3-163271 is known.
There is one shown in Japanese Patent Publication No. In this device, splash is prevented by devising the shape and arrangement of the pole piece and the permanent magnet, which are components of the sealing device. That is, in general, a magnetic fluid sealing device has two annular pole pieces sandwiching a permanent magnet disposed in a cylindrical space between a shaft and a housing. , Forming a magnetic circuit that returns to the permanent magnet via the other pole piece, and closes the ring-shaped gap by holding the magnetic fluid injected into the gap between the inner peripheral edge of each pole piece and the outer peripheral surface of the shaft by its magnetic force Like that. However, when a magnetic body such as a rolling bearing is disposed between the shaft and the housing in the vicinity of one of the pole pieces (inside), a part of the magnetic flux of the magnetic circuit may cause a part of the rolling bearing. The magnetic flux existing between the inner peripheral edge of one of the pole pieces and the outer peripheral surface of the shaft decreases. As a result, the amount of the magnetic fluid held in the clearance of the other pole piece (outside) having a higher magnetic flux density increases and swells, and as a result, the magnetic fluid scatters outside due to centrifugal force generated by the relative rotation of the shaft or the housing. Easy to do. As a countermeasure, Japanese Patent Application Laid-Open No. 3-163271
In the device shown in the above publication, a second permanent magnet is further disposed between one of the pole pieces and the rolling bearing, thereby increasing the magnetic flux flowing toward the one of the pole pieces. In addition, the amount of magnetic fluid that is excessively held in the clearance between the inner peripheral edge of the other pole piece and the outer peripheral surface of the shaft is suppressed to prevent splash.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の磁性流体シール装置におけるスプラッシュ防止技術
では、シール部の回転の周速が高くなり2m/sec 以上
に達するような高速外輪回転(転がり軸受の外輪側、す
なわちハウジングが高速度で回転する)の場合、その遠
心力に対して磁性流体を保持しきれずにスプラッシュが
生じる。そのため飛散した磁性流体中の強磁性体微粒子
によるダストが発生したり、シール部の磁性流体が不足
してシール耐力低下を引き起こすなど、防塵シールとし
ての機能を果たせなくなるという問題点があった。
However, in the above-described splash prevention technology in the conventional magnetic fluid sealing device, the high speed outer ring rotation (the outer ring of the rolling bearing) in which the peripheral speed of the rotation of the seal portion is increased to reach 2 m / sec or more. Side, i.e., the housing rotates at a high speed), the centrifugal force cannot maintain the magnetic fluid and a splash occurs. Therefore, there is a problem that the function as a dust-proof seal cannot be performed, such as generation of dust due to the ferromagnetic fine particles in the scattered magnetic fluid and a decrease in the seal strength due to a shortage of the magnetic fluid in the seal portion.

【0004】そこで、この発明は上記従来技術の問題点
を解決するためになされたものであり、シール部の周速
が2m/sec 以上の高速回転においても磁性流体のスプ
ラッシュを生じることのない磁性流体シール装置及びそ
れに使用する磁性流体組成物を提供することを目的とす
る。
Therefore, the present invention has been made to solve the above-mentioned problems of the prior art, and a magnetic fluid which does not cause a splash of a magnetic fluid even at a high speed rotation of the seal portion at a peripheral speed of 2 m / sec or more. An object of the present invention is to provide a fluid seal device and a magnetic fluid composition used for the fluid seal device.

【0005】[0005]

【課題を解決するための手段】この出願の第一の発明
は、軸とその軸に相対回転可能に嵌合したハウジングと
の間に形成された円管状の空間部に、永久磁石を2枚の
円輪状のポールピースで挟持してなる磁気回路形成部材
を配置し、前記ポールピースの内外の端面のうちの一方
の端面と前記軸の外周面またはハウジングの内周面との
間にすきまを介在せしめて磁気回路を形成するとともに
当該すきまに磁性流体を注入してなる磁性流体シールー
装置に係り、前記磁性流体の粘度が40℃で150〜6
00cPの範囲にあることを特徴とする。
According to a first aspect of the present invention, two permanent magnets are provided in a tubular space formed between a shaft and a housing which is rotatably fitted to the shaft. A magnetic circuit forming member sandwiched between the ring-shaped pole pieces is disposed, and a gap is formed between one of the inner and outer end faces of the pole piece and the outer peripheral surface of the shaft or the inner peripheral surface of the housing. The present invention relates to a magnetic fluid sealing device in which a magnetic circuit is formed with a magnetic fluid interposed therebetween and a magnetic fluid is injected into the gap, wherein the viscosity of the magnetic fluid is 150 to 6 at 40 ° C.
It is in the range of 00 cP.

【0006】この出願の第二の発明は、上記第一の発明
の磁性流体シール装置に使用する磁性流体組成物に係
り、キャリアとなる低揮発性有機溶媒と、その有機溶媒
と親和性のある親油基を有する分散剤と、その分散剤で
表面が被覆され前記低揮発性有機溶媒中に分散した強磁
性体微粒子とを有し、前記低揮発性有機溶媒がオクタデ
シルジフェニルエーテルとジテトラデシルテトラフェニ
ルエーテルとの混合物からなることを特徴とする。
The second invention of this application relates to a magnetic fluid composition used for the magnetic fluid sealing device of the first invention, and has a low-volatile organic solvent as a carrier and an affinity for the organic solvent. A dispersant having a lipophilic group, and ferromagnetic fine particles whose surface is coated with the dispersant and dispersed in the low-volatile organic solvent, wherein the low-volatile organic solvent is octadecyldiphenyl ether and ditetradecyltetra It is characterized by comprising a mixture with phenyl ether.

【0007】[0007]

【作用】上記粘度範囲の磁性流体組成物を用いると、シ
ール部の周速が2m/sec 以上における遠心力に対して
もその高い粘性で対抗してスプラッシュを効果的に防止
できる。上記の粘度範囲を有する磁性流体組成物は、蒸
気圧が低いオクタデシルジフェニルエーテルとジテトラ
デシルテトラフェニルエーテルとを所定の比率で混合し
て調整した低揮発性有機溶媒をキャリアとすると、蒸発
減量を抑制することができてシールの寿命が延長され
る。また高真空装置にも好適に用いることができる。
When the magnetic fluid composition having the above viscosity range is used, splash can be effectively prevented by countering the centrifugal force at a peripheral speed of the seal portion of 2 m / sec or more with a high viscosity. The ferrofluid composition having the above viscosity range suppresses evaporation loss by using a low-volatile organic solvent prepared by mixing a low vapor pressure of octadecyl diphenyl ether and ditetradecyl tetraphenyl ether at a predetermined ratio as a carrier. Can extend the life of the seal. It can also be suitably used for high vacuum devices.

【0008】以下、さらに詳細に説明する。この発明の
磁性流体組成物の低揮発性有機溶媒としては、ポリα−
オレフィン油,アルキルジフェニルエーテル,アルキル
ナフタレン,ジアルキルテトラフェニルエーテル,アル
キルトリフェニルエーテル,脂肪酸エステル油、または
それらの油の混合物が好ましい。更に、炭化水素系の油
の他に、ジメチルポリシロキサンなどのシリコン油,パ
ーフルオロポリエーテルなどのフッ素油であってもよ
い。
Hereinafter, the present invention will be described in more detail. As the low volatile organic solvent of the magnetic fluid composition of the present invention, poly-α-
Preferred are olefin oils, alkyl diphenyl ethers, alkyl naphthalenes, dialkyl tetraphenyl ethers, alkyl triphenyl ethers, fatty acid ester oils, or mixtures of these oils. Further, in addition to hydrocarbon oils, silicone oils such as dimethylpolysiloxane and fluorine oils such as perfluoropolyether may be used.

【0009】この発明の磁性流体の粘度は40℃で15
0〜600cPであるが、特に150〜400cPの範
囲で良好な耐スプラッシュ性が得られる。所定の粘度に
調整するには、上記の低揮発性有機溶媒を種々の組合せ
で混合するのがよく、オクタデシルジフェニルエーテル
とジテトラデシルテトラフェニルエーテルとを混合した
ものが、特に蒸気圧が低く好適である。
The viscosity of the magnetic fluid of the present invention is 15 at 40 ° C.
Although it is 0 to 600 cP, good splash resistance is obtained particularly in the range of 150 to 400 cP. In order to adjust the viscosity to a predetermined value, it is preferable to mix the above low-volatile organic solvents in various combinations, and a mixture of octadecyl diphenyl ether and ditetradecyl tetraphenyl ether is particularly preferable because the vapor pressure is low. is there.

【0010】また、上記の低揮発性有機溶媒のいずれか
に、または上記の低揮発性有機溶媒を組合せて混合した
ものに、本出願人が先に出願の特願平3−23262号
公報で提案した高分子添加剤を添加して粘度を上記範囲
内に調整したものでもよい。その場合、高分子添加剤は
ポリブテンコハク酸またはポリブテンスルホン酸ナトリ
ウムが好適であり、耐水性,耐熱性の高い磁性流体組成
物を得ることができる。
The applicant of the present invention has disclosed in Japanese Patent Application No. 3-23262, which was previously filed by the present applicant, with any of the above-mentioned low-volatile organic solvents or a mixture obtained by combining the above-mentioned low-volatile organic solvents. The viscosity may be adjusted within the above range by adding the proposed polymer additive. In this case, the polymer additive is preferably polybutene succinic acid or sodium polybutene sulfonate, and a magnetic fluid composition having high water resistance and heat resistance can be obtained.

【0011】この発明の磁性流体の粘度が40℃で15
0cPより小さいと、磁性流体が粘性によって軸とポー
ルピースとの間のすきまに維持しょうとする力が弱く、
高速回転のよる遠心力に抗しきれずスプラッシュする。
一方、磁性流体の粘度が40℃で600cPより大きい
と、周速2m/sec 以上の高速回転によって発生するシ
ール部の磁性流体の表面波が大きくなり、その表面波の
盛り上がり部分が遠心力の影響をより多く受けてスプラ
ッシュする現象が考えられる。
The viscosity of the magnetic fluid of the present invention at 40 ° C. is 15
If it is less than 0 cP, the force of the magnetic fluid to maintain the clearance between the shaft and the pole piece due to viscosity is weak,
Splashes cannot withstand the centrifugal force of high-speed rotation.
On the other hand, if the viscosity of the magnetic fluid is greater than 600 cP at 40 ° C., the surface wave of the magnetic fluid in the seal portion generated by the high-speed rotation at a peripheral speed of 2 m / sec or more becomes large, and the rising portion of the surface wave is affected by the centrifugal force. The phenomenon that splash receives more and can be considered.

【0012】また、磁性流体の粘度が40℃で600c
Pより大きいと、磁性流体注入時の盛り上がりが大きく
なり、その盛り上がった部分が磁力で保持されようとす
る力が弱まると同時に、周速2m/sec 以上の高速回転
によって発生する大きな遠心力の影響を多く受けてスプ
ラッシュする現象が考えられる。この発明の磁性流体の
飽和磁束密度は、シール部の周速2m/sec 以上の高速
回転における遠心力に対抗するために、250Gaus
s以上が必要である。
Further, the viscosity of the magnetic fluid at 40 ° C. is 600 c.
If it is larger than P, the swelling at the time of injecting the magnetic fluid becomes large, the force for holding the swelled portion by the magnetic force is weakened, and at the same time, the effect of the large centrifugal force generated by the high-speed rotation of the peripheral speed of 2 m / sec or more. A phenomenon that receives a large amount of splash and can be considered. The saturation magnetic flux density of the magnetic fluid of the present invention is set to 250 Gauss in order to oppose the centrifugal force at high speed rotation of the seal portion at a peripheral speed of 2 m / sec or more.
s or more is required.

【0013】[0013]

【実施例】以下、この発明を実施例により更に詳しく説
明する。 〔実施例1〕磁性流体組成物の粘度調整の実施例:ま
ず、公知の湿式法によりマグネタイトコロイド液を製造
した。
The present invention will be described in more detail with reference to the following examples. [Example 1] Example of adjusting viscosity of magnetic fluid composition: First, a magnetite colloid liquid was produced by a known wet method.

【0014】このマグネタイトコロイド液に、3NのH
Claqを加えてそのpHを3に調整した後、これに分
散剤として合成スルホン酸ナトリウムを添加し、60℃
で30分間攪拌することにより,マグネタイト微粒子の
表面に分散剤を吸着させた。その後静置して、液中のマ
グネタイト微粒子を凝集沈降させ、その上澄み液を捨て
る。更に新たな水を加えて攪拌してから静置し、上澄み
液を捨てる。この水洗を数回繰り返して水溶液中の電解
質を除去した後、濾過,脱水,乾燥を行い、表面が界面
活性剤で被覆された粉末状のマグネタイト微粒子とし
た。
The magnetite colloid solution is mixed with 3N H
After adding Claq to adjust the pH to 3, a synthetic sodium sulfonate was added as a dispersant thereto, and
For 30 minutes to adsorb the dispersant on the surfaces of the magnetite fine particles. Thereafter, the mixture is allowed to stand, and the magnetite fine particles in the liquid are aggregated and settled, and the supernatant is discarded. Further, add fresh water, stir and let stand, and discard the supernatant. This washing was repeated several times to remove the electrolyte in the aqueous solution, followed by filtration, dehydration and drying to obtain powdery magnetite fine particles whose surface was coated with a surfactant.

【0015】次に、このマグネタイト粉末に低沸点有機
溶媒としてヘキサンを加えて十分に振とうすることによ
り、マグネタイト粒子がヘキサン中に分散した中間媒体
を得た。 このコロイド液に低沸点極性有機溶媒である
メタノールを加え、一度粒子を凝集沈澱させて、上澄み
液を捨てる。これにより微粒子に単分子吸着した分散剤
以外の余分な分散剤が除去される。その後、沈澱した微
粒子を再度ヘキサン中に分散させて中間媒体を得る。
Next, hexane was added to the magnetite powder as a low-boiling organic solvent and shaken sufficiently to obtain an intermediate medium in which magnetite particles were dispersed in hexane. Methanol, which is a low-boiling-point polar organic solvent, is added to the colloidal solution to coagulate and precipitate particles once, and the supernatant is discarded. As a result, extra dispersants other than the dispersant adsorbed on the fine particles by a single molecule are removed. Thereafter, the precipitated fine particles are dispersed again in hexane to obtain an intermediate medium.

【0016】この中間媒体を遠心分離機にかけて800
0Gの遠心力下で30分間遠心分離し、マグネタイト分
散粒子のうちの比較的大きな分散性の悪い粒子を沈降せ
しめて除去する。ついで、沈降せずに残ったマグネタイ
ト微粒子が分散している上澄み液をロータリエバポレー
タに移し、90℃に保って低沸点有機溶媒成分すなわち
ヘキサンを蒸発除去して、親油性のマグネタイト微粒子
を得た。
The intermediate medium is centrifuged at 800
The mixture is centrifuged under a centrifugal force of 0 G for 30 minutes to settle and remove relatively large particles of magnetite dispersed particles having poor dispersibility. Then, the supernatant liquid in which the magnetite fine particles remaining without settling were dispersed was transferred to a rotary evaporator, and the low-boiling organic solvent component, that is, hexane was removed by evaporation at 90 ° C. to obtain lipophilic magnetite fine particles.

【0017】ここ迄の工程は、例えば本出願人が先に出
願した特開平3−139596号公報に記載された工程
とほぼ同じである。ついで、このマグネタイト微粒子を
5g採取し、ヘキサン中に再分散させた後、これにキャ
リアとなるオクタデシルジフェニルエーテル及びジテト
ラデシルテトラフェニルエーテルを表1に示す6種の配
合で混合した。
The steps so far are substantially the same as those described in, for example, Japanese Patent Application Laid-Open No. 3-139596 filed earlier by the present applicant. Next, 5 g of the magnetite fine particles were collected and redispersed in hexane, and octadecyl diphenyl ether and ditetradecyl tetraphenyl ether as carriers were mixed in the six kinds shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】この混合液をロータリエバポレータに移
し、90℃に保って低沸点有機溶媒成分すなわちヘキサ
ンを蒸発除去した。その結果、マグネタイト微粒子はキ
ャリア中に分散する。これを更に遠心分離機にかけ、8
000Gの遠心力下に30分間処理して非分散固形物を
取り除き、6種類の磁性流体が得られた。次いで、この
磁性流体に添加剤としてポリブテンコハク酸(平均分子
量1100)0.5 g を加え、100℃の液温でよく攪拌
してポリブテンコハク酸を磁性流体中に溶解せしめるこ
とにより、粘度の異なる6種類の極めて安定な磁性流体
が得られた。表1に、これらの磁性流体の粘度測定結果
を併記する。
The mixed solution was transferred to a rotary evaporator and kept at 90 ° C. to remove the low-boiling organic solvent components, ie, hexane, by evaporation. As a result, the magnetite fine particles disperse in the carrier. This is further centrifuged, and 8
The mixture was treated under a centrifugal force of 000 G for 30 minutes to remove non-dispersed solids, and six types of magnetic fluids were obtained. Next, 0.5 g of polybutene succinic acid (average molecular weight 1100) was added as an additive to the magnetic fluid, and the mixture was stirred well at a liquid temperature of 100 ° C. to dissolve the polybutene succinic acid in the magnetic fluid. Was obtained. Table 1 also shows the results of measuring the viscosity of these magnetic fluids.

【0020】〔実施例2〕上記の6種類の磁性流体組成
物を使用したシール装置について、シール部の周速3m
/sec におけるスプラッシュの状態の比較試験を実施し
た。図1は、磁性流体シール装置を取付けた高速外輪回
転スプラッシュ試験機の要部の断面図である。
Example 2 A seal device using the above-described six types of magnetic fluid compositions was used.
A comparison test of the state of the splash at / sec was performed. FIG. 1 is a sectional view of a main part of a high-speed outer ring rotating splash tester to which a magnetic fluid sealing device is attached.

【0021】磁性体からなる軸1が架台2に固定して立
設されている。この軸1に、ハウジング3が円筒状の空
間4を介して嵌合され、玉軸受5で回転可能に支持され
ている。ハウジング3の外周面にはベルト用溝6が設け
てあり、このベルト用溝6と図示しない駆動モータのプ
ーリとの間をべルト掛けして、ハウジング3を任意の速
度で回転駆動させる。磁性流体シール装置10は、ハウ
ジング3の上部において、軸1との間の空間4内に配設
される。その磁性流体シール装置10は、円環状の永久
磁石11をその厚さ方向に着磁するとともに2枚の円環
状のポールピース12で挟持して構成した磁気回路形成
部材13を備え、その外周部をハウジング3の内周面に
固定して取付けることにより、永久磁石11,一方のポ
ールピース12,軸1,他方のポールピース12,永久
磁石11と回る磁気回路が形成される。そして、各ポー
ルピース12の内周面と軸1の外周面との間のすきま
に、磁性流体15を注入して磁力で保持することによ
り、環状のすきまを塞いでシールするものである。
A shaft 1 made of a magnetic material is fixed to a gantry 2 and stands upright. A housing 3 is fitted to the shaft 1 via a cylindrical space 4 and is rotatably supported by a ball bearing 5. A belt groove 6 is provided on the outer peripheral surface of the housing 3, and the housing 3 is rotated at an arbitrary speed by belting between the belt groove 6 and a pulley of a drive motor (not shown). The magnetic fluid sealing device 10 is disposed in the space 4 between the shaft 1 and the upper part of the housing 3. The magnetic fluid sealing device 10 includes a magnetic circuit forming member 13 formed by magnetizing an annular permanent magnet 11 in the thickness direction and sandwiching the annular permanent magnet 11 between two annular pole pieces 12. Is fixed to the inner peripheral surface of the housing 3 to form a magnetic circuit that rotates with the permanent magnet 11, the one pole piece 12, the shaft 1, the other pole piece 12, and the permanent magnet 11. Then, a magnetic fluid 15 is injected into a gap between the inner peripheral surface of each pole piece 12 and the outer peripheral surface of the shaft 1 and is held by magnetic force, thereby closing and sealing the annular clearance.

【0022】この高速外輪回転スプラッシュ試験機を8
台と1台の図示しないスピードコントロール付駆動モー
タとを用意し、モータ出力軸に取付けたプーリと各試験
機のベルト用溝6とをベルトで連結して、8台の試験機
を同時に同速度で回転させるようにした。全試験機に、
同一の磁性流体(例えばNo.1)を用いた磁性流体シール
装置10を被検体としてそれぞれ取付け、シール部の周
速を3m/sec 一定として室温で5分間作動させ、その
間に8台中で何台に磁性流体のスプラッシュが発生した
かを調べて記録し、被検体の磁性流体No.1〜No.6の結果
を比較した。なお、使用した磁性流体の飽和磁束密度は
310Gaussであった。
This high-speed outer ring rotating splash tester is
And one drive motor with speed control (not shown) were prepared, and the pulley attached to the motor output shaft and the belt groove 6 of each test machine were connected by a belt, and eight test machines were simultaneously operated at the same speed. To rotate. For all testing machines,
A magnetic fluid sealing device 10 using the same magnetic fluid (for example, No. 1) was mounted as a subject, and the peripheral speed of the sealing portion was kept constant at 3 m / sec and operated at room temperature for 5 minutes. Was measured and recorded, and the results of magnetic fluids No. 1 to No. 6 of the subject were compared. The saturation magnetic flux density of the magnetic fluid used was 310 Gauss.

【0023】結果を表2に示す。The results are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】表2から明らかなように、飽和磁束密度が
同一の場合、40℃での粘度150〜600cPの範囲
にはいる磁性流体No.2〜No.5は、その範囲外の磁性流体
No.1及びNo.6に比べて耐スプラッシュ性に優れている。 〔実施例3〕上記の6種類の磁性流体No.1〜No.6を使用
したシール装置について、実施例2と同様の比較試験
を、シール部の周速を1.0m/sec, 1.5m/sec, 2.0m/se
c, 2.5m/ sec,3.0m/secの各段階に設定して実施し
た。
As is clear from Table 2, when the saturation magnetic flux densities are the same, the magnetic fluids No. 2 to No. 5 having a viscosity of 150 to 600 cP at 40 ° C. are magnetic fluids outside the range.
Excellent splash resistance compared to No.1 and No.6. Example 3 A comparative test similar to that of Example 2 was performed on a sealing device using the above-described six types of magnetic fluids No. 1 to No. 6, and the peripheral speed of the sealing portion was changed to 1.0 m / sec, 1.5 m / sec. sec, 2.0m / se
c, 2.5 m / sec and 3.0 m / sec were set at each stage.

【0026】結果を表3に示す。The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】表3から明らかなように、シール部の周速
が2.0m/secよりも小さい1.0m/sec, 1.5m/secでは、
磁性流体の粘度による耐スプラッシュ性の差異は認めら
れない。これに対して、シール部の周速が2.0m/sec以
上では、本発明の粘度範囲にある 磁性流体No.2〜No.5
にはスプラッシュが殆ど見られず、耐スプラッシュ性に
優れていることが判明した。
As apparent from Table 3, when the peripheral speed of the seal portion is 1.0 m / sec or 1.5 m / sec, which is smaller than 2.0 m / sec,
No difference in splash resistance due to the viscosity of the magnetic fluid is observed. On the other hand, when the peripheral speed of the seal portion is 2.0 m / sec or more, the magnetic fluids No. 2 to No.
Showed almost no splash and was found to be excellent in splash resistance.

【0029】なお、以上の実施例は、ポールピースの内
周面と軸との間をシールする内周シールの場合について
のみ行ったが、本発明はこれに限らず、ポールピースの
外周面とハウジングとの間をシールする外周シールにも
適用できる。
Although the above embodiment has been described only for the case of the inner peripheral seal for sealing between the inner peripheral surface of the pole piece and the shaft, the present invention is not limited to this, and the present invention is not limited to this. The present invention can also be applied to an outer peripheral seal for sealing between the housing and the housing.

【0030】[0030]

【発明の効果】以上説明したように、この出願の第一の
発明によれば、磁性流体シールー装置の磁性流体の粘度
を40℃で150〜600cPの範囲にしたことで、シ
ール部の周速が2m/sec 以上の高速回転においても磁
性流体のスプラッシュが抑制でき、ダスト発生やシール
耐力低下を引き起こすなどの現象が防止されて防塵シー
ル機能が全うできるという効果が得られる。
As described above, according to the first invention of this application, the viscosity of the magnetic fluid of the magnetic fluid sealer is set to be in the range of 150 to 600 cP at 40 ° C. However, even at a high speed rotation of 2 m / sec or more, the splash of the magnetic fluid can be suppressed, and the effects such as the generation of dust and the reduction of the sealing strength can be prevented, and the effect that the dustproof sealing function can be completed can be obtained.

【0031】また、第二の発明によれば、上記第一の発
明の磁性流体シール装置に使用する磁性流体組成物の低
揮発性有機溶媒を、低蒸気圧のオクタデシルジフェニル
エーテルとジテトラデシルテトラフェニルエーテルとの
混合物で構成したため、スプラッシュ防止効果ととも
に、蒸発減量の抑制によるシールの寿命の延長が達成で
き、また及び高真空装置への適用ができるという効果が
得られる。
According to the second invention, the low-volatile organic solvent of the magnetic fluid composition used in the magnetic fluid sealing device of the first invention is a low-vapor-pressure octadecyldiphenyl ether and a ditetradecyltetraphenyl. Since it is composed of a mixture with ether, the effect of preventing the splash, extending the life of the seal by suppressing the evaporation loss, and applying to a high vacuum apparatus can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁性流体シール装置を取付けた高速外輪回転ス
プラッシュ試験機の要部の断面図である。
FIG. 1 is a cross-sectional view of a main part of a high-speed outer ring rotating splash tester to which a magnetic fluid sealing device is attached.

【符号の説明】[Explanation of symbols]

1 軸 3 ハウジング 10 磁性流体シール装置 11 永久磁石 12 ポールピース 13 磁気回路形成部材 15 磁性流体(組成物) Reference Signs 1 shaft 3 housing 10 magnetic fluid sealing device 11 permanent magnet 12 pole piece 13 magnetic circuit forming member 15 magnetic fluid (composition)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C10M 135:10) C10N 20:06 30:02 30:06 40:14 40:34 (58)調査した分野(Int.Cl.6,DB名) F16J 15/40 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C10M 135: 10) C10N 20:06 30:02 30:06 40:14 40:34 (58) Fields surveyed (Int.Cl. 6 , DB name) F16J 15/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸とその軸に相対回転可能に嵌合したハ
ウジングとの間に形成された円管状の空間部に、永久磁
石を2枚の円輪状のポールピースで挟持してなる磁気回
路形成部材を配置し、前記ポールピースの内外の端面の
うちの一方の端面と前記軸の外周面またはハウジングの
内周面との間にすきまを介在せしめて磁気回路を形成す
るとともに当該すきまに磁性流体を注入してなる磁性流
体シールー装置において、前記磁性流体の粘度が40℃
で150〜600cPの範囲にあることを特徴とする磁
性流体シール装置。
1. A magnetic circuit comprising: a permanent magnet sandwiched between two annular pole pieces in a tubular space formed between a shaft and a housing which is rotatably fitted to the shaft. A forming member is disposed, a magnetic circuit is formed by interposing a clearance between one of the inner and outer end surfaces of the pole piece and an outer peripheral surface of the shaft or an inner peripheral surface of the housing, and a magnetic circuit is formed in the clearance. In a magnetic fluid sealer in which a fluid is injected, the viscosity of the magnetic fluid is 40 ° C.
Wherein the magnetic fluid sealing device is in the range of 150 to 600 cP.
【請求項2】キャリアとなる低揮発性有機溶媒と、該有
機溶媒と親和性のある親油基を有する分散剤と、該分散
剤で表面が被覆され前記低揮発性有機溶媒中に分散した
強磁性体微粒子とを有し、前記低揮発性有機溶媒がオク
タデシルジフェニルエーテルとジテトラデシルテトラフ
ェニルエーテルとの混合物からなることを特徴とする請
求項1記載の磁性流体シール装置に使用する磁性流体組
成物。
2. A low-volatile organic solvent as a carrier, a dispersant having a lipophilic group having an affinity for the organic solvent, and a surface coated with the dispersant and dispersed in the low-volatile organic solvent. 2. The magnetic fluid composition according to claim 1, further comprising ferromagnetic fine particles, wherein the low-volatile organic solvent comprises a mixture of octadecyl diphenyl ether and ditetradecyl tetraphenyl ether. Stuff.
JP4055443A 1992-03-13 1992-03-13 Magnetic fluid sealing device and magnetic fluid composition used therein Expired - Lifetime JP2988107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4055443A JP2988107B2 (en) 1992-03-13 1992-03-13 Magnetic fluid sealing device and magnetic fluid composition used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4055443A JP2988107B2 (en) 1992-03-13 1992-03-13 Magnetic fluid sealing device and magnetic fluid composition used therein

Publications (2)

Publication Number Publication Date
JPH05263948A JPH05263948A (en) 1993-10-12
JP2988107B2 true JP2988107B2 (en) 1999-12-06

Family

ID=12998742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4055443A Expired - Lifetime JP2988107B2 (en) 1992-03-13 1992-03-13 Magnetic fluid sealing device and magnetic fluid composition used therein

Country Status (1)

Country Link
JP (1) JP2988107B2 (en)

Also Published As

Publication number Publication date
JPH05263948A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
US4673997A (en) Electrically conductive ferrofluid bearing and seal apparatus and low-viscosity electrically conductive ferrofluid used therein
JP3275412B2 (en) Magnetic fluid composition and magnetic fluid sealing device
US4732706A (en) Method of preparing low viscosity, electrically conductive ferrofluid composition
US4687596A (en) Low viscosity, electrically conductive ferrofluid composition and method of making and using same
DE3049334C2 (en)
US5124060A (en) Magnetic fluid composition
US5085789A (en) Ferrofluid compositions
CA2232192A1 (en) A method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid device
EP0206516A2 (en) Ferrofluid composition, method of making, and apparatus and method using same
US6261471B1 (en) Composition and method of making a ferrofluid having an improved chemical stability
JP2988107B2 (en) Magnetic fluid sealing device and magnetic fluid composition used therein
US6068785A (en) Method for manufacturing oil-based ferrofluid
JPH09210060A (en) Magnetic fluid bearing unit and motor provided with the unit
JPH0413842B2 (en)
JPH01231302A (en) Conductive magnetic fluid composition and manufacture thereof
JPS63232402A (en) Conductive magnetic fluid composition and manufacture thereof
JPS63175401A (en) Low temperature magnetic fluid
JPH0491196A (en) Magnetic fluid composition
JP3331605B2 (en) Fluorine-based magnetic fluid composition
JP2595535B2 (en) Magnetic fluid
JPS62109896A (en) Bearing and seal apparatus of conductive ferromagnetic fluidand low viscosity conductive ferromagnetic fluid used in said apparatus
DE19708399A1 (en) Magneto-rheological coupling
JP3102127B2 (en) Conductive magnetic fluid composition
US20230303946A1 (en) Method using an organic solvent emulsion process for manufacturing oilgel capsules and method for manufacturing contact parts for a vehicle including the oilgel capsules
JPH0226766B2 (en)