JP2987277B2 - Water cooling structure of metal melting furnace - Google Patents

Water cooling structure of metal melting furnace

Info

Publication number
JP2987277B2
JP2987277B2 JP5216218A JP21621893A JP2987277B2 JP 2987277 B2 JP2987277 B2 JP 2987277B2 JP 5216218 A JP5216218 A JP 5216218A JP 21621893 A JP21621893 A JP 21621893A JP 2987277 B2 JP2987277 B2 JP 2987277B2
Authority
JP
Japan
Prior art keywords
furnace
heat transfer
water
slag
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5216218A
Other languages
Japanese (ja)
Other versions
JPH0771878A (en
Inventor
勉 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5216218A priority Critical patent/JP2987277B2/en
Publication of JPH0771878A publication Critical patent/JPH0771878A/en
Application granted granted Critical
Publication of JP2987277B2 publication Critical patent/JP2987277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電気炉、金属溶解炉など
の金属溶解炉において、この溶解炉の上方に開口し原料
が装入される有底炉体の炉壁やこの有底炉体を上方から
塞ぐ搭載自在な炉天井の水冷構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal melting furnace, such as an electric furnace or a metal melting furnace, which has a furnace wall or a bottomed furnace body which is opened above the melting furnace and into which raw materials are charged. To a water-cooled structure of a freely mountable furnace ceiling that closes the ceiling from above.

【0002】[0002]

【従来の技術】近年、電気炉によるたとえば粗鋼の生産
量が増加傾向にあり、主原料であるスクラップ鋼の増加
に伴って、溶解能力を向上するために、炉容量の大型化
ならびに大電力化が図られている。ところが電気炉にお
いて高力率ロングアークのUHP(ウルトラハイパワ
ー)操業では、炉壁および炉天井に対する熱負荷が大き
く、従来から使用されている耐火物を使用した耐火物構
造の方式の炉では、耐火物の損耗が激しく、寿命の低下
を余儀なくされる。このため、耐火物構造方式に代え
て、長寿命を図るために炉壁および炉天井の水冷化が実
施されている。
2. Description of the Related Art In recent years, for example, the amount of crude steel produced by an electric furnace has been increasing, and as the amount of scrap steel, which is a main raw material, increases, the furnace capacity and power consumption increase in order to improve the melting capacity. Is planned. However, in the UHP (ultra high power) operation of a high power factor long arc in an electric furnace, the heat load on the furnace wall and the furnace ceiling is large, and in a furnace having a refractory structure using a refractory conventionally used, The refractories are severely worn and their life is reduced. For this reason, instead of using the refractory structure method, water cooling of the furnace wall and the furnace ceiling is performed for long life.

【0003】図10に電気炉の典型的な先行技術が断面
示される。この図に示されるように、一般に水冷される
炉天井5および有底炉体2の炉壁3の構造は、水冷用の
伝熱管8が炉内中心軸O方向に対して等距離に位置する
同心円状に設けられるとともに、炉内側表面は出入りが
ない平面的な構造となっている。
FIG. 10 shows a cross section of a typical prior art electric furnace. As shown in this figure, in the structure of the furnace ceiling 5 and the furnace wall 3 of the bottomed furnace body 2 which are generally water-cooled, the heat transfer tubes 8 for water cooling are positioned equidistant with respect to the direction of the central axis O in the furnace. In addition to being provided concentrically, the inside surface of the furnace has a planar structure with no access.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこのよう
な炉内を水冷化した場合、従来の耐火物構造方式に比べ
て炉内からの熱損失が大きく、電力原単位が悪化する不
都合があることに加えて、炉内の熱損失が大きくかつ温
度管理が不安定になるために金属を含む主副原料の溶解
性や溶融性および様々の精錬反応を含む冶金反応が低下
してしまうという問題がある。
However, when the inside of the furnace is water-cooled, heat loss from the inside of the furnace is large as compared with the conventional refractory structure system, and there is a disadvantage that the power consumption is deteriorated. In addition, since the heat loss in the furnace is large and the temperature control becomes unstable, there is a problem that the solubility and meltability of the main and auxiliary raw materials including metals and metallurgical reactions including various refining reactions are reduced. .

【0005】また、水冷される炉天井(以下、水冷炉天
井と称する)および水冷される炉壁(以下、水冷炉壁と
称する)では、非常に高温から低温(常温)までの熱応
力の繰り返しの疲労や物理的にかつ局部的に溶融金属や
スクラップが接触することなどがあるから、機械的、局
部的、突発的な損耗や破損を生じ易く、水冷炉天井およ
び水冷炉壁の損傷による炉内への水漏れは、炉本来の溶
解・溶融や様々の反応を行わす機能(作用)を消失させ
るだけでなく、取り分け水蒸気爆発の危険性があり、水
冷炉天井および水冷炉壁の保護が必要となる。
[0005] Further, in a furnace ceiling to be water-cooled (hereinafter referred to as a water-cooled furnace ceiling) and a furnace wall to be water-cooled (hereinafter referred to as a water-cooled furnace wall), thermal stress from a very high temperature to a low temperature (normal temperature) is repeated. Mechanical, local, and sudden wear and tear due to the fatigue of steel and physical and local contact with molten metal and scrap. Water leaks into the furnace not only destroys the function (action) of melting and melting the furnace and performs various reactions, but also has the danger of steam explosion. Required.

【0006】この対策として、炉体内の金属や溶融金属
と共に介在するスラグの塩基度を1.5以下に下げ、ス
ラグの粉化作用を抑えて水冷炉天井および水冷炉壁の表
面に炉内で飛散するスラグをコーティングさせる方法が
ある。たとえば、ステンレス鋼を溶製するときに共存す
るスラグの成分組成はCaO−SiO2系を主体とし
て、Cr23、MnO、MgO、Al23などから成り
立っており、スラグの粉化現象は2CaO−SiO2
相転移に関連する。2CaO−SiO2の相転移は、冷
却過程では下記の化1を表す。
As a countermeasure, the basicity of the slag interposed with the metal and the molten metal in the furnace is reduced to 1.5 or less, and the powdering action of the slag is suppressed, and the surface of the water-cooled furnace ceiling and the water-cooled furnace wall is placed inside the furnace. There is a method of coating the flying slag. For example, the component composition of slag that coexists when smelting stainless steel is mainly composed of CaO—SiO 2 and is composed of Cr 2 O 3 , MnO, MgO, Al 2 O 3, etc. Is related to the phase transition of 2CaO—SiO 2 . The phase transition of 2CaO—SiO 2 represents the following chemical formula 1 in the cooling process.

【0007】[0007]

【化1】 Embedded image

【0008】この時、α′型、β型がγ型のCa2Si
4に転移するとき約14%の大きな体積膨張を伴い、
その結果スラグ全体が粉化し、崩壊する。したがって、
炉壁に付着したスラグはこの粉化現象により炉壁から剥
離し、したがって、炉壁へのスラグコーティングは不可
能となる。
At this time, α′-type and β-type are γ-type Ca 2 Si
With a large volume expansion of about 14% when transforming to O 4 ,
As a result, the entire slag powders and disintegrates. Therefore,
The slag adhered to the furnace wall is separated from the furnace wall by this powdering phenomenon, and therefore, slag coating on the furnace wall becomes impossible.

【0009】しかし、スラグの粉化現象はスラグの塩基
度と関連があり、スラグの塩基度を1.5以上の高塩基
度にするとCaO:SiO2のモル比が2:1に近づく
につれ、スラグ中の2CaO−SiO2の量の占める割
合が大きくなるためスラグの粉化現象が生じる。逆に、
スラグの塩基度を1.5以下にすれば、スラグが粉化現
象が抑制され炉壁へのスラグをコーティングが可能とな
る。ただし、スラグの塩基度は電気炉の様々な精錬反応
を含む冶金反応と大きな関連があり、スラグの塩基度を
1.5以下とした場合、ステンレス鋼溶製時における脱
硫反応が行われにくく、その溶銑成分の異常を生ずるな
どの欠点がある。しかし、このステンレス鋼溶製時にお
ける脱硫反応を確実に行わさせる必要がある条件下にあ
っては、脱硫反応は高いがスラグコーティングが行われ
にくい高塩基度状態においても、水冷炉天井および水冷
炉壁へのスラグコーティングを可能とし、これらから容
易に剥離しないようにする必要がある。
However, the slag powdering phenomenon is related to the basicity of the slag. When the basicity of the slag is increased to a high basicity of 1.5 or more, as the molar ratio of CaO: SiO 2 approaches 2: 1, Since the ratio of the amount of 2CaO—SiO 2 in the slag increases, powdering of the slag occurs. vice versa,
When the basicity of the slag is 1.5 or less, the slag is prevented from being powdered, and the slag can be coated on the furnace wall. However, the basicity of slag has a great relationship with metallurgical reactions including various refining reactions in electric furnaces, and when the basicity of slag is 1.5 or less, desulfurization reaction during melting of stainless steel is difficult to be performed, There are drawbacks such as abnormalities in the hot metal component. However, under conditions where it is necessary to ensure that the desulfurization reaction during the melting of stainless steel is carried out, the water-cooled ceiling and the water-cooled There is a need to allow slag coating on the walls and not to easily peel off them.

【0010】したがって本発明の目的は、金属溶解炉内
でたとえ高塩基度状態で操業されていても水冷炉天井お
よび水冷炉壁へのスラグコーティングを可能とし、容易
に剥離しないように安定したスラグコーティング層を形
成させることによって、冷却水による炉内からの抜熱を
可及的に小さくし、電力原単位の低減を図ると共に、熱
応力による繰り返しの疲労や物理的かつ局部的な溶融金
属やスクラップの接触により生じる機械的・局部的・突
発的な損耗とか破損を防ぎ、炉内における炉天井および
炉体の炉壁の耐用寿命を極力延長して、炉本来の溶解・
溶融や様々の冶金反応を行わす機能を円滑にかつ有利に
しかも安全に果たせるように操業することを可能とする
金属溶解炉の水冷構造を提供することである。
[0010] Accordingly, an object of the present invention is to provide a slag coating on a water-cooled furnace ceiling and a water-cooled furnace wall even when the slag is operated in a high-basic state in a metal melting furnace, and to provide a stable slag so as not to be easily separated. By forming the coating layer, the heat removal from the furnace by the cooling water is reduced as much as possible, the power consumption is reduced, and the repeated fatigue due to thermal stress and the physical and local molten metal and Prevents mechanical, local and sudden wear and damage caused by scrap contact, extends the useful life of the furnace ceiling and the furnace wall of the furnace inside the furnace as much as possible,
An object of the present invention is to provide a water-cooling structure of a metal melting furnace capable of smoothly and advantageously performing a function of performing melting and various metallurgical reactions.

【0011】[0011]

【課題を解決するための手段】本発明は、上方に開口し
原料が装入される有底の炉体と、この炉体を上方から塞
ぐ搭載自在な炉天井とを有する金属溶解炉において、当
該溶解炉の外周表面を形成する鉄皮に近接して炉内側に
設けられ、冷却水が循環される伝熱管と、当該鉄皮の炉
内部空間に臨む内面に沿い、伝熱管の周りの空間に充填
して形成されるスラグコーティング層とを含み、伝熱管
が、少なくとも一部箇所において、隣接する管相互の鉄
皮との距離が交互に大小異なる千鳥2列に配列され、か
つ鉄皮にほぼ平行に設けられ、さらに炉内中心に近い方
の1列目の伝熱管群の各管径が、鉄皮に近い方の2列目
の伝熱管群の各管径よりも小さくなるように、伝熱管が
設けられることを特徴とする金属溶解炉の水冷構造であ
る。
SUMMARY OF THE INVENTION The present invention relates to a metal melting furnace having a bottomed furnace body which is opened upward and into which raw materials are charged, and a mountable furnace ceiling which closes the furnace body from above. A heat transfer tube provided inside the furnace in close proximity to the steel shell forming the outer peripheral surface of the melting furnace and through which cooling water is circulated, and a space around the heat transfer tube along the inner surface of the steel shell facing the furnace internal space. And a slag coating layer formed by filling the heat transfer tubes in at least a part of two rows of staggered staggered staggered distances between adjacent tubes and the steel shell. The tube diameters of the first row of heat transfer tube groups closer to the center of the furnace are set to be smaller than the diameters of the second row of heat transfer tube groups closer to the steel shell. , A water cooling structure of a metal melting furnace, wherein a heat transfer tube is provided.

【0012】[0012]

【0013】また本発明は、炉内中心に近い方の1列目
の伝熱管群の断面積の合計がそれら管群の配設領域の断
面積に対する占積率の方が、鉄皮に近い方の2列目の伝
熱管群の同様の占積率よりも小さくなるように、伝熱管
が設けられることを特徴とする。
Further, in the present invention, the sum of the cross-sectional areas of the heat transfer tube groups in the first row closer to the center of the furnace is closer to the steel bar in the space factor with respect to the cross-sectional area of the arrangement region of the tube groups. The heat transfer tubes are provided so as to be smaller than the same space factor of the heat transfer tube group in the second row.

【0014】[0014]

【0015】[0015]

【0016】[0016]

【作用】本発明に従えば、金属溶解炉の外周表面を形成
する鉄皮内面に近接して伝熱管を設け、この伝熱管に冷
却水を循環させ、鉄皮の内面に沿い伝熱管の周りの空間
に充填してスラグコーティング層が形成される。伝熱管
は、一部個所において隣接する管相互の鉄皮との距離が
異なるよう千鳥配列などたとえば2列に設けられる。こ
れによって、水冷炉天井および水冷炉壁からの抜熱量
は、伝熱管に熱伝導率の低いスラグをコーティングしス
ラグコーティング層を形成させることによって、伝熱管
内を循環する冷却水への抜熱が制限を受けるために小さ
くなり、熱放散ロスが低減され、電力原単位の低下が図
れる。
According to the present invention, a heat transfer tube is provided in the vicinity of the inner surface of the steel shell forming the outer peripheral surface of the metal melting furnace, and cooling water is circulated through the heat transfer tube. To form a slag coating layer. The heat transfer tubes are provided in a staggered arrangement, for example, in two rows so that the distances between adjacent tubes at different locations are different from the steel sheath. As a result, the amount of heat removed from the water-cooled furnace ceiling and the water-cooled furnace wall is reduced by removing heat to the cooling water circulating in the heat transfer tube by coating the heat transfer tube with slag with low thermal conductivity and forming a slag coating layer. Due to the restriction, the size is reduced, the heat dissipation loss is reduced, and the unit power consumption can be reduced.

【0017】また、水冷炉天井および水冷炉壁にスラグ
をコーティングさせることは、伝熱管やこの伝熱管群な
どによって構成される水冷炉天井および水冷炉壁に対し
ての熱応力による疲労を低減し、さらに溶融金属やスク
ラップが伝熱管に直接触れることがないので、水冷炉天
井および水冷炉壁の機械的、局部的、突発的な損耗や破
損を抑え、これらを有する炉全体の耐用寿命が延長す
る。
Further, coating the slag on the water-cooled furnace ceiling and the water-cooled furnace wall reduces fatigue caused by thermal stress on the water-cooled furnace ceiling and the water-cooled furnace wall constituted by the heat transfer tubes and the heat transfer tube group. In addition, since the molten metal and scrap do not directly touch the heat transfer tubes, mechanical, local and sudden wear and breakage of the water-cooled reactor ceiling and water-cooled reactor walls are suppressed, and the service life of the entire furnace including these is extended. I do.

【0018】さらに、水冷炉天井および水冷炉壁の伝熱
管の配置、炉内中心に近い方の1列目とこれに続く2列
目との伝熱管群同士のそれぞれ配設される領域の断面積
に対する占有率の比較差、この1列目と2列目との伝熱
管群の管径の比較差をたとえスラグが風化し易くてもコ
ーティングし易く剥離し難い構造に構成しているため、
スラグの風化現象が生じにくく、かつ、脱硫反応の不利
な低塩基度条件下で操業する必要がなく、精錬反応不足
による成分の異常が生ずるなどの問題は解消される。そ
して、炉としての溶解・溶融や様々な冶金反応を行わす
機能を円滑かつ有利にしかも安全に果たし、炉本来の操
業を満足し得る状態にできるのである。
Further, the arrangement of the heat transfer tubes on the water-cooled furnace ceiling and the water-cooled furnace wall, and the cutoff of the areas where the heat transfer tube groups of the first row near the center in the furnace and the second row following the first row are arranged. Since the difference in occupancy relative to the area and the difference in tube diameter of the heat transfer tube group between the first and second rows are configured in a structure that is easy to coat and hard to peel even if the slag is easily weathered,
Problems such as the fact that slag weathering does not easily occur and that it is not necessary to operate under low basicity conditions that are disadvantageous to the desulfurization reaction, and that abnormal components occur due to insufficient refining reaction, are solved. Then, the function of performing melting and melting as well as various metallurgical reactions as a furnace can be smoothly, advantageously and safely performed, and the furnace can be brought into a state in which the original operation can be satisfied.

【0019】[0019]

【実施例】図1は本発明の一実施例の金属溶解炉1の炉
天井5を開けた状態を示す縦断正面図である。この実施
例において、金属溶解炉1は、交流アーク式3相電気炉
であって、上方に開口し金属を含む主副原料を装入され
る有底の炉体2と、この炉体2を上方から塞ぐ搭載自在
な炉天井5とを有する。炉天井5は、該炉天井5を固定
設置されている有底炉体2に対して矢示線Aのように昇
降および旋回させる図示しない開閉手段によって開閉動
作される。
FIG. 1 is a vertical sectional front view showing a state in which a furnace ceiling 5 of a metal melting furnace 1 according to one embodiment of the present invention is opened. In this embodiment, a metal melting furnace 1 is an AC arc type three-phase electric furnace, and has a bottomed furnace body 2 which is opened upward and into which main and auxiliary materials containing metal are charged, and a furnace body 2 having a bottom. And a freely mountable furnace ceiling 5 for closing from above. The furnace ceiling 5 is opened / closed by opening / closing means (not shown) for raising and lowering and turning as shown by the arrow A with respect to the bottomed furnace body 2 on which the furnace ceiling 5 is fixedly installed.

【0020】前記炉体2は、略円筒状の炉壁3と、炉床
4とを有し、その内部空間6には、電極7への通電によ
って発生するアークによって、装入された鋼屑などの金
属を含む主副原料を溶解、溶融した溶銑や金属溶湯やス
ラグが貯留される。電極7には、変圧器からの二次電圧
が印加され、前記内部空間6内に装入した主副原料の間
にアークを発生させて、その原料を溶解および溶融する
ことができる。このようなアークの発生によって内部空
間6は、たとえば約1000℃程度の高温度となり、直
接アークの熱負荷を受ける電極7直下付近のホットスポ
ット部では1500〜2000℃の高温度領域となる。
そして、このような金属溶解炉1の操業中に、炉体2内
の炉床4上に、貯留されている溶銑や金属溶湯に浮遊し
ているスラグ層15から炉内に向けて、つまり炉天井5
の内面側や炉壁3の内面側に向けてスラグ16が飛散す
るのである。
The furnace body 2 has a substantially cylindrical furnace wall 3 and a hearth 4, and an internal space 6 has a steel chip charged by an arc generated by energizing an electrode 7. The molten hot metal, molten metal, and slag that have melted and melted the main and auxiliary raw materials containing metals such as slag are stored. A secondary voltage from a transformer is applied to the electrode 7, and an arc is generated between the main and sub-raw materials charged in the internal space 6 to melt and melt the raw materials. Due to the generation of such an arc, the internal space 6 has a high temperature of, for example, about 1000 ° C., and has a high temperature range of 1500 to 2000 ° C. in a hot spot portion immediately below the electrode 7 which is directly subjected to the heat load of the arc.
During the operation of the metal melting furnace 1, the slag layer 15 floating on the stored hot metal or the molten metal is placed on the hearth 4 in the furnace body 2, that is, toward the furnace. Ceiling 5
The slag 16 is scattered toward the inner surface of the furnace wall 3 and the inner surface of the furnace wall 3.

【0021】図2は、炉天井5の一部切欠示平面図、図
3は図2におけるA−A線矢視断面図である。炉天井5
は、大略的に円錐台状に形成され、電極7が貫挿通され
る小天井部12を中央部に、伝熱管8が設けられる大天
井部13を小天井部12に囲ませた周囲部に一体に備え
る。大天井部13に設けられる伝熱管8は、炉天井5の
中心に対して同心円状のパターンで配設される。この伝
熱管8は、円弧状に曲げ加工された曲管8Aと、U字状
に曲げ加工されたU字管8Cとを溶接によって接合して
形成され、たとえば普通鋼を材料とする鋼管が使用され
る。
FIG. 2 is a partially cutaway plan view of the furnace ceiling 5, and FIG. 3 is a sectional view taken along line AA in FIG. Furnace ceiling 5
Is formed substantially in a truncated cone shape, with the small ceiling 12 in which the electrode 7 is inserted and inserted in the center and the large ceiling 13 in which the heat transfer tubes 8 are provided surrounded by the small ceiling 12. Prepare together. The heat transfer tubes 8 provided in the large ceiling portion 13 are arranged in a concentric pattern with respect to the center of the furnace ceiling 5. The heat transfer tube 8 is formed by welding a curved tube 8A bent into an arc shape and a U-shaped tube 8C bent into a U shape by welding. For example, a steel tube made of ordinary steel is used. Is done.

【0022】図2に伝熱管8の配列パターンが示される
ように、3相電気炉の場合、小天井部12に等分周して
配置される3本の電極7に合わせて、炉天井5の中心を
基準に、大天井部13を中心角120°毎に3等分し
て、この等分した各部分円環内で、それぞれジグザク状
の水の流路が形成されるように伝熱管8相互を接続す
る。その際、炉天井5の外板としての鉄皮9に対して炉
1内側(炉体2内側)で近接してほぼ平行に延在し、か
つ、隣接する管8相互の鉄皮9との距離が、図3におい
て実線示のものと破線示のものとの場合、交互に大きく
また小さくなって異なるように、たとえば千鳥2列に配
列されて設けられる。このようにして各部分円環内でそ
れぞれ形成される冷却水の流路を直列に接続することに
よって、炉天井5には単一の冷却水の流路が形成され
る。なお、この冷却水の流路を形成する伝熱管8群に対
して後述するようにスラグコーティング層11が掩って
形成される。なお、これらの伝熱管8群は、金属板をL
形に折り曲げて所要個所に伝熱管8を介挿するための半
円溝が凹設されてなる支持部材14を介して、鉄皮9に
取り付けられる。
As shown in the arrangement pattern of the heat transfer tubes 8 in FIG. 2, in the case of a three-phase electric furnace, the furnace ceiling 5 is aligned with the three electrodes 7 which are equally divided and arranged on the small ceiling 12. The heat transfer tubes are divided such that the large ceiling portion 13 is divided into three equal parts at a central angle of 120 ° with respect to the center of the central part, and a zigzag water flow path is formed in each of the divided partial rings. 8 Connect each other. At this time, it extends close to and substantially parallel to the inside of the furnace 1 (the inside of the furnace body 2) with the steel shell 9 as the outer plate of the furnace ceiling 5 and is adjacent to the steel shell 9 of the adjacent pipes 8. In the case where the distance is the one shown by the solid line and the one shown by the broken line in FIG. By connecting the flow paths of the cooling water formed in each partial ring in series in this manner, a single flow path of the cooling water is formed in the furnace ceiling 5. The slag coating layer 11 is formed by covering the heat transfer tubes 8 forming the flow path of the cooling water, as described later. In addition, these heat transfer tubes 8 group, L
It is bent into a shape and is attached to the steel shell 9 via a support member 14 having a concave semicircular groove for inserting the heat transfer tube 8 at a required location.

【0023】図4は炉体2における炉壁3部の取り外し
た鉄皮側から見た正面図である。図5は図4におけるB
−B線矢視断面図である。炉壁3は大略的に円筒形状に
形成され、その外板としての鉄皮10に対して、炉1内
側(この場合は炉体2内側といえる)の内面に近接して
伝熱管8が設けられる、この伝熱管8は、大天井部13
に設けられる伝熱管8と同様に、円弧状に曲げ加工され
た曲管8Bと、U字管8Cとを溶接によって接合して形
成され、普通鋼を材料とする鋼管が使用される。
FIG. 4 is a front view of the furnace wall 2 of the furnace body 2 viewed from the side of the removed steel shell. FIG. 5 shows B in FIG.
FIG. 4 is a cross-sectional view taken along a line B. The furnace wall 3 is formed in a substantially cylindrical shape, and a heat transfer tube 8 is provided near an inner surface of the furnace 1 (in this case, the inside of the furnace body 2) with respect to a steel shell 10 as an outer plate thereof. The heat transfer tube 8 has a large ceiling 13
As in the case of the heat transfer tube 8 provided in the first embodiment, a curved tube 8B bent in an arc shape and a U-shaped tube 8C are joined by welding, and a steel tube made of ordinary steel is used.

【0024】図6および図7に、炉壁3部の伝熱管8の
配列パターンが水平断面図および斜視図で示されるよう
に、円筒形の炉壁3の中心軸O(すなわち炉1内中心
軸)を基準に炉壁3をたとえば中心角45°毎に8等分
し、この等分した各部分円弧の壁に沿って、大天井部1
3の場合と同じ要領で上下方向にジグザク状となり、か
つ、縦断面内で千鳥2列の配列となって冷却水の流路が
形成されるように伝熱管8相互を接続する。このように
して各区分される領域にそれぞれ形成される冷却水の流
路を、たとえば各領域単位で直列に接続して、8系統の
冷却水流路を形成し、さらにこれを図示しないヘッダに
よって並列に接続することによって、炉壁3全体として
単一の冷却水の流路が形成される。
6 and 7, the arrangement pattern of the heat transfer tubes 8 in the furnace wall 3 is shown in a horizontal sectional view and a perspective view, so that the central axis O of the cylindrical furnace wall 3 (that is, the center in the furnace 1) is shown. The furnace wall 3 is divided into eight equal parts, for example, at a central angle of 45 ° on the basis of the axis), and the large ceiling 1
The heat transfer tubes 8 are connected to each other so as to form a zigzag shape in the vertical direction in the same manner as in the case of 3, and to form an arrangement of two rows in a staggered manner in a vertical cross section to form a flow path of the cooling water. In this way, the cooling water flow paths respectively formed in the divided areas are connected in series, for example, in units of the respective areas to form eight cooling water flow paths, which are further paralleled by a header (not shown). To form a single cooling water flow path as a whole of the furnace wall 3.

【0025】この冷却水の流路を形成する伝熱管8群
は、大天井部13の場合と同じように、支持部材14に
よって、鉄皮10にねじ締めなどの固着手段を用いて取
り付けられるとともに、スラグコーティング層11が掩
って形成される。
The heat transfer tubes 8 forming the flow path of the cooling water are attached to the steel shell 10 by a support member 14 by means of fixing means such as screws, similarly to the case of the large ceiling portion 13. , The slag coating layer 11 is formed.

【0026】図5に示される千鳥2列の配列パターンに
なる実施例の水冷構造が、冷却水による抜熱量が少な
く、かつ、炉壁3および炉天井5の長寿命化が奏される
点で有効であることについて以下説明する。
The water cooling structure of the embodiment having a two-row staggered arrangement pattern shown in FIG. 5 is characterized in that the amount of heat removed by cooling water is small and the life of the furnace wall 3 and the furnace ceiling 5 is prolonged. The validity will be described below.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】上記表1は、本発明に係る水冷炉天井5お
よび水冷炉壁3と、従来の構造の水冷炉天井、水冷炉壁
とを、比較のために90T(トン)電気炉に設置し、上
記表2に示す主副原料配合および上記表1,2に示す操
業条件の下で、具体的にSUS−304系のステンレス
鋼を溶製する際に得られた結果が示される。なお、比較
例1は、従来の水冷炉天井、水冷炉壁を設置し、これら
の主副原料を溶解したとき、スラグの塩基度を2.0
(高塩基度)に上げて操業したときの結果である。ま
た、比較例2は、スラグの塩基度を1.5に下げて操業
したときの結果である。
Table 1 shows that the water-cooled ceiling 5 and the water-cooled wall 3 according to the present invention and the water-cooled ceiling and the water-cooled wall having the conventional structure are installed in a 90T (ton) electric furnace for comparison. The results obtained when the SUS-304 stainless steel is melted under the main and auxiliary raw material formulations shown in Table 2 and the operating conditions shown in Tables 1 and 2 are shown. In Comparative Example 1, a conventional water-cooled furnace ceiling and a water-cooled furnace wall were installed, and when these main and auxiliary materials were dissolved, the basicity of the slag was 2.0.
(High basicity). Comparative Example 2 is the result when the operation was performed with the basicity of the slag reduced to 1.5.

【0030】まず、脱硫反応について説明する。電気炉
における脱硫能(S%)/〔S%〕は、塩基度C/Sに
よって影響され、たとえばステンレス鋼の電気炉におけ
る脱硫反応は次式で表される。
First, the desulfurization reaction will be described. The desulfurization capacity (S%) / [S%] in an electric furnace is affected by the basicity C / S. For example, the desulfurization reaction in a stainless steel electric furnace is represented by the following equation.

【0031】 (CaO)+=(CaS)+ …(1) または、 O2-=S2- …(2) ここに、(CaO),(CaS)はスラグ中のCaO,
CaSであり、はメタル中のO,Sである。した
がって脱硫反応の平衡定数Kは、
(CaO) + S = (CaS) + O (1) or O 2− + S = S 2− + O (2) where (CaO) and (CaS) are CaO in the slag. ,
CaS, and S and O are O and S in the metal. Therefore, the equilibrium constant K of the desulfurization reaction is

【0032】[0032]

【数1】 (Equation 1)

【0033】によって求められ、この第3式からSの分
配は、
From the third equation, the distribution of S is

【0034】[0034]

【数2】 (Equation 2)

【0035】または、Or

【0036】[0036]

【数3】 (Equation 3)

【0037】ここで次のように仮定する。Here, the following is assumed.

【0038】 a(S2-)≒(%S),a(O2-)≒ Ncao …(6) ただし、Ncaoはスラグ中のCaOのモル分率である。
これらを第5式に代入すると、Sのスラグおよびメタル
間の分配は、
A (S 2− ) ≒ (% S), a (O 2− ) ≒ N cao (6) where N cao is the molar fraction of CaO in the slag.
Substituting these into Equation 5, the distribution of S between slag and metal is

【0039】[0039]

【数4】 (Equation 4)

【0040】となる。この第7式によって、理論的には
スラグ中のCaO量を増すほど、あるいはメタル中のO
の量を減じるほど、すなわち塩基度が高いほど脱硫反応
が進行することがわかる。
## EQU4 ## According to this equation (7), theoretically, as the amount of CaO in the slag increases, or the amount of O in the metal increases.
It can be seen that the desulfurization reaction progresses as the amount of is reduced, that is, as the basicity increases.

【0041】比較例2は、比較例1に比べ塩基度が低い
ため、水冷炉天井および水冷炉壁にスラグがコーティン
グされるため、耐用寿命の延長、電力原単位の低減が図
られるが、脱硫能が著しく低下し、脱硫が必要な電気炉
操業条件では比較例2は不適切である。
In Comparative Example 2, since the slag is coated on the water-cooled furnace ceiling and the water-cooled furnace wall since the basicity is lower than that in Comparative Example 1, the service life can be extended and the power consumption can be reduced. Comparative Example 2 was unsuitable under the operating conditions of an electric furnace which required remarkable reduction in desulfurization.

【0042】これに比べ、本発明では 塩基度が2.0
(高塩基度)で操業できるので脱硫能を下げることな
く、脱硫の必要な操業条件に適用できる。
In contrast, the present invention has a basicity of 2.0
(High basicity), so it can be applied to operating conditions that require desulfurization without lowering the desulfurization ability.

【0043】図8には、表1に示される本発明に係る条
件で操業したときの水冷炉壁3に形成されるスラグコー
ティング層11の生成推移が示される。本発明の実施例
は、図5にも示されるように、炉1内中心軸O方向に向
かって2列構造にし、1列目の伝熱管8と2列目の伝熱
管8とが交互にレベルが異なるように配置した千鳥2列
式となっているために、スラグの粉化現象が生じ易くス
ラグコーティングし難い高塩基度条件においても、鉄皮
10に近い2列目の伝熱管8の部分に、図8(a)のよ
うに飛散したスラグが急冷されながら堆積し、さらにそ
の部分にスラグがスラグ層から飛散し続けるが、この場
合に伝熱管8に直接飛散する場合に比べて、飛散スラグ
が急冷される度合いが弱まるため相変態によるスラグの
粉化現象が抑制され、また伝熱管8群が千鳥2列式とな
っているためであると共に同一化学組成のスラグ同士の
付着であるため、順次コーティングが容易に行われる。
このような繰り返しにより、図8(b)にように伝熱管
8群の周りの水冷炉壁3全体がスラグでコーティングさ
れ、安定なスラグコーティング層11が形成される。
FIG. 8 shows the generation transition of the slag coating layer 11 formed on the water-cooled furnace wall 3 when operating under the conditions according to the present invention shown in Table 1. In the embodiment of the present invention, as shown in FIG. 5, the heat transfer tubes 8 in the first row and the heat transfer tubes 8 in the second row are alternately arranged in a two-row structure toward the central axis O in the furnace 1. Since the staggered two-row type is arranged so that the levels are different, even in a high basicity condition in which slag powdering is likely to occur and slag coating is difficult, the heat transfer tubes 8 in the second row close to the steel shell 10 can be formed. As shown in FIG. 8A, the slag that has scattered accumulates while being quenched as shown in FIG. 8A, and the slag continues to scatter from the slag layer at that portion. Since the degree of rapid cooling of the scattered slag is reduced, the slag powdering phenomenon due to phase transformation is suppressed, and because the heat transfer tubes 8 are in a staggered two-row type, slags having the same chemical composition are adhered to each other. Therefore, coating is easily performed sequentially.
By such repetition, the entire water cooling furnace wall 3 around the heat transfer tube group 8 is coated with slag as shown in FIG. 8B, and a stable slag coating layer 11 is formed.

【0044】このため苛酷な炉内雰囲気を断熱でき、表
1中の本発明1に示されるように、電力原単位が従来技
術の比較例1に対し20KWH/Tも低減され、また溶
融金属やスクラップが伝熱管8に直接触れることがない
ので、炉壁3の寿命が500回延長し、炉天井5の寿命
は600回延長させることができる。
As a result, the severe furnace atmosphere can be insulated, and as shown in the present invention 1 in Table 1, the power consumption is reduced by 20 KWH / T as compared with Comparative Example 1 of the prior art. Since the scrap does not directly touch the heat transfer tube 8, the life of the furnace wall 3 can be extended 500 times and the life of the furnace ceiling 5 can be extended 600 times.

【0045】また図9には、電気炉の炉中心軸に対して
炉内方向に炉天井5および炉体2の炉壁3に設ける各水
冷伝熱管8群の配置を千鳥構造にし、炉内中心に近い位
置の伝熱管8群を1列目伝熱管8群とし、炉の鉄皮10
に近い位置の伝熱管8群を2列目伝熱管8群とすると
き、鉄皮10に近い2列目伝熱管8群の占める面積の割
合を炉内中心に近い1列目伝熱管8群より大きく配置す
る構造が示されている。
FIG. 9 shows a staggered arrangement of groups of water cooling heat transfer tubes 8 provided on the furnace ceiling 5 and the furnace wall 3 of the furnace body 2 in the furnace inward direction with respect to the furnace center axis of the electric furnace. The group of heat transfer tubes 8 near the center is set as the first group of heat transfer tubes 8 and the furnace shell 10
When the group of heat transfer tubes 8 at a position close to the furnace is the second group of heat transfer tubes 8, the ratio of the area occupied by the group of second row heat transfer tubes 8 near the steel shell 10 is determined by the group of first row heat transfer tubes 8 near the center of the furnace. A larger arrangement is shown.

【0046】[0046]

【0047】すなわち図9では、1列目と2列目の両伝
熱管8群における伝熱管8の合計数としてはほぼ同一で
あるが、鉄皮10に近い2列目の伝熱管8群の管径が1
列目のそれより大きい伝熱管8を用いて配置されてい
る。
That is, in FIG. 9, the total number of the heat transfer tubes 8 in both the first and second rows of heat transfer tubes 8 is substantially the same, 1 pipe diameter
It is arranged using a heat transfer tube 8 larger than that of the row.

【0048】この図9に示す配列構造においても、スラ
グコーティングする割合が増し安定なスラグコーティン
グ層11が形成されるので、冷却水への抜熱が小さくな
り、熱放散ロスが減少され、電力原単位の低減が図れ
る。さらに炉壁3や炉天井5の各寿命を延長できるので
ある。
Also in the arrangement structure shown in FIG. 9, since the slag coating ratio is increased and the stable slag coating layer 11 is formed, the heat extraction to the cooling water is reduced, the heat dissipation loss is reduced, and the power source is reduced. The unit can be reduced. Further, each life of the furnace wall 3 and the furnace ceiling 5 can be extended.

【0049】表1中の本発明2は、炉壁2および炉天井
5の各水冷伝熱管8群の配置を図9に示す如き千鳥2列
式の配置構造にし、鉄皮9,10に近い2列目伝熱管8
群の占める面積の割合、すなわち占積率を炉内中心に近
い1列目伝熱管8群より大きくした配置構造とし、スラ
グの塩基度を2.0(高塩基度)で操業したときの結果
である。本発明2は、本発明1に対して電力原単位で5
KWH/T低減できると共に炉壁3や炉天井5の寿命を
50〜100回延長させることができた。
In the present invention 2 in Table 1, the arrangement of the water-cooled heat transfer tubes 8 in the furnace wall 2 and the furnace ceiling 5 is arranged in a staggered two-row arrangement as shown in FIG. Second row heat transfer tube 8
Results when the ratio of the area occupied by the group, that is, the space factor, was set to be larger than that of the first row of heat transfer tubes 8 near the center of the furnace, and the slag basicity was 2.0 (high basicity). It is. The present invention 2 is different from the present invention 1 in terms of electric power consumption by 5 units.
The KWH / T can be reduced, and the life of the furnace wall 3 and the furnace ceiling 5 can be extended 50 to 100 times.

【0050】[0050]

【発明の効果】以上に詳述したように構成される本発明
によれば、以下に列挙するような効果が奏され、工業的
価値は非常に大きなものが認められる。 (a)水冷伝熱管内を流れる冷却水による抜熱が小さく
なるので、電力原単位が低減でき、溶解時間の短縮も可
能となり生産性が向上する。 (b)水冷伝熱管群等から構成される炉天井や炉体の炉
壁への熱応力による繰り返し疲労が減少し、スクラップ
や溶銑や金属溶湯が水冷伝熱管に直接触れることがない
ために、炉天井や炉壁の機械的、局部的、突発的な損耗
や破損を抑制することが可能となり、これらの耐用寿命
が延長する。 (c)スラグの粉化現象が生じにくく安定したスラグコ
ーティング層が形成されるし、良好な温度管理も可能と
なり、脱硫反応などの精錬反応を含む冶金反応をこの脱
硫反応に不利な低塩基度条件下で操業する必要もなくな
り、しかも精錬反応不足による成分組成の異常が生ずる
などの問題もない。 (d)水冷炉天井や水冷炉壁が保護されるので、これら
の損傷による炉内への水洩れが回避され、この水洩れに
よる水蒸気爆発の危険性を防止できる。 (e)したがって、金属溶解炉としての溶解・溶融や様
々な冶金反応を行わす機能(作用)を円滑かつ非常に経
済的にも有利に、しかも安全に果たし、炉本来の操業を
安全な満足し得る状態に維持できる。 (f)水冷炉天井や水冷炉壁の構造および配置等が従来
のものと基本的に同一であって、水冷構造の伝熱管等の
配置態様などが異なるだけであるから、既存金属溶解炉
を大幅に設備改造することなく改造できるし、その改造
コストも小さくすむ。
According to the present invention configured as described above, the following effects can be obtained, and the industrial value is very large. (A) Since the heat removal by the cooling water flowing in the water-cooled heat transfer tube is reduced, the power consumption can be reduced, the melting time can be shortened, and the productivity is improved. (B) In order to reduce the repetitive fatigue due to thermal stress on the furnace ceiling and the furnace wall composed of the water-cooled heat transfer tube group etc., and to prevent scrap, hot metal or molten metal from directly touching the water-cooled heat transfer tube. Mechanical, local and sudden wear and tear of the furnace ceiling and furnace wall can be suppressed, and their useful life is extended. (C) A stable slag coating layer is formed, which hardly causes powdering of the slag, and good temperature control can be performed. There is no need to operate under the conditions, and there is no problem such as an abnormal component composition due to insufficient refining reaction. (D) Since the ceiling of the water-cooled furnace and the wall of the water-cooled furnace are protected, water leakage into the furnace due to such damage is avoided, and the danger of steam explosion due to the water leakage can be prevented. (E) Therefore, the function (action) of performing melting and melting as well as various metallurgical reactions as a metal melting furnace is performed smoothly and very economically advantageously and safely, and the furnace's original operation is safely satisfied. Can be maintained. (F) The structure and arrangement of the water-cooled furnace ceiling and the water-cooled furnace wall are basically the same as those of the prior art, and only the arrangement of the water-cooled heat transfer tubes and the like is different. It can be remodeled without major remodeling, and the cost of remodeling can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の縦断示正面図である。FIG. 1 is a longitudinal sectional front view of an embodiment of the present invention.

【図2】図1に示される炉天井5の一部切欠示平面図で
ある。
FIG. 2 is a partially cutaway plan view of a furnace ceiling 5 shown in FIG.

【図3】図2におけるA−A線矢視断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2;

【図4】図1に図示の炉壁3部における取り外した鉄皮
側から見た正面図である。
FIG. 4 is a front view of the furnace wall 3 shown in FIG.

【図5】図4におけるB−B線矢視断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 4;

【図6】本発明の実施例に係る炉壁3部の伝熱管8の配
列パターンを示す水平断面図である。
FIG. 6 is a horizontal sectional view showing an arrangement pattern of the heat transfer tubes 8 in the furnace wall 3 according to the embodiment of the present invention.

【図7】図6図示の伝熱管8の配列パターンを示す斜視
図である。
FIG. 7 is a perspective view showing an arrangement pattern of the heat transfer tubes 8 shown in FIG.

【図8】本発明の実施例に係る炉壁3におけるスラグコ
ーティング層11の生成推移が示される縦断面図であ
る。
FIG. 8 is a longitudinal sectional view showing a generation transition of the slag coating layer 11 on the furnace wall 3 according to the embodiment of the present invention.

【図9】本発明の他の各実施例に係る炉壁3部の縦断面
図である。
FIG. 9 is a longitudinal sectional view of a furnace wall 3 according to other embodiments of the present invention.

【図10】先行技術の電気炉における炉天井の断面図で
ある。
FIG. 10 is a sectional view of a furnace ceiling in a prior art electric furnace.

【符号の説明】[Explanation of symbols]

1 金属溶解炉 2 炉体 3 炉壁 4 炉床 5 炉天井 6 内部空間 7 電極 8 伝熱管 9,10 鉄皮 11 スラグコーティング層 DESCRIPTION OF SYMBOLS 1 Metal melting furnace 2 Furnace body 3 Furnace wall 4 Furnace floor 5 Furnace ceiling 6 Internal space 7 Electrode 8 Heat transfer tube 9,10 Iron shell 11 Slag coating layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上方に開口し原料が装入される有底の炉
体と、この炉体を上方から塞ぐ搭載自在な炉天井とを有
する金属溶解炉において、 当該溶解炉の外周表面を形成する鉄皮に近接して炉内側
に設けられ、冷却水が循環される伝熱管と、 当該鉄皮の炉内部空間に臨む内面に沿い、伝熱管の周り
の空間に充填して形成されるスラグコーティング層とを
含み、伝熱管が、少なくとも一部箇所において、隣接す
る管相互の鉄皮との距離が交互に大小異なる千鳥2列に
配列され、かつ鉄皮にほぼ平行に設けられ、さらに炉内
中心に近い方の1列目の伝熱管群の各管径が、鉄皮に近
い方の2列目の伝熱管群の各管径よりも小さくなるよう
に、伝熱管が設けられることを特徴とする金属溶解炉の
水冷構造。
1. A metal melting furnace having a bottomed furnace body which is opened upward and into which raw materials are charged, and a mountable furnace ceiling for closing the furnace body from above, wherein an outer peripheral surface of the melting furnace is formed. Heat transfer tube provided inside the furnace in the vicinity of the steel shell to be cooled and through which cooling water is circulated, and slag formed by filling the space around the heat transfer tube along the inner surface of the steel shell facing the furnace internal space. A coating layer, wherein at least a portion of the heat transfer tubes are arranged in two rows in a staggered manner in which the distance between the adjacent tubes is different from each other in a staggered manner, and the heat transfer tubes are provided substantially parallel to the steel shell. The heat transfer tubes are provided so that each tube diameter of the first row of heat transfer tube groups closer to the inner center is smaller than each tube diameter of the second row of heat transfer tube groups closer to the steel shell. Characterized by water cooling structure of metal melting furnace.
【請求項2】 炉内中心に近い方の1列目の伝熱管群の
断面積の合計がそれら管群の配設領域の断面積に対する
占積率の方が、鉄皮に近い方の2列目の伝熱管群の同様
の占積率よりも小さくなるように、伝熱管が設けられる
ことを特徴とする請求項1記載の金属溶解炉の水冷構
造。
2. The sum of the cross-sectional areas of the first row of heat transfer tube groups closer to the center of the furnace is equal to the space factor of the cross-sectional area of the area where the tube groups are disposed, which is closer to the steel shell. The water cooling structure of a metal melting furnace according to claim 1, wherein the heat transfer tubes are provided so as to be smaller than a similar space factor of the heat transfer tube group in the row.
JP5216218A 1993-08-31 1993-08-31 Water cooling structure of metal melting furnace Expired - Lifetime JP2987277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5216218A JP2987277B2 (en) 1993-08-31 1993-08-31 Water cooling structure of metal melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5216218A JP2987277B2 (en) 1993-08-31 1993-08-31 Water cooling structure of metal melting furnace

Publications (2)

Publication Number Publication Date
JPH0771878A JPH0771878A (en) 1995-03-17
JP2987277B2 true JP2987277B2 (en) 1999-12-06

Family

ID=16685132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5216218A Expired - Lifetime JP2987277B2 (en) 1993-08-31 1993-08-31 Water cooling structure of metal melting furnace

Country Status (1)

Country Link
JP (1) JP2987277B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69839178T2 (en) * 1997-07-25 2009-02-19 International Flower Developments Pty. Ltd., Bundoora GENES THAT CODE FOR PROTEINS WITH TRANSGLYCOLYSIS ACTIVITY.
KR20030092905A (en) * 2002-05-31 2003-12-06 주식회사 포스코 Electric furnace
KR200450698Y1 (en) * 2008-08-28 2010-10-22 현대제철 주식회사 Jig for casting for ceiling for ladle furnace
KR200453675Y1 (en) * 2008-10-28 2011-05-23 현대제철 주식회사 A jig for building unshaped refractory in electric furnace
JP5905133B2 (en) * 2015-02-03 2016-04-20 アイシン高丘株式会社 Hybrid type metal melting furnace

Also Published As

Publication number Publication date
JPH0771878A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
US4637034A (en) Cooling panel for electric arc furnace
KR101349229B1 (en) Direct smelting vessel and cooler therefor
RU2203961C2 (en) Tuyere for feeding raw material and method for introducing solid raw materials into metallurgical vessel
JP6027982B2 (en) Arc furnace
JP2987277B2 (en) Water cooling structure of metal melting furnace
KR20070011298A (en) Metallurgical vessel
JPH11223464A (en) Electric furnace
MXPA02002533A (en) Copper cooling plate for metallurgical furnaces.
ZA200409784B (en) Continuous steelmaking process in an eaf and plantslag composition for use therein
JPH0773078B2 (en) DC arc furnace equipment
JP3094035B2 (en) DC electric furnace
US5809055A (en) Metallurgical vessel heated by direct current and having a bottom electrode
JPH1047861A (en) Electric furnace
JP3206956B2 (en) Water-cooled furnace lid of metal melting furnace
US5719897A (en) Furnace vessel for a direct current arc furnace
WO1997016051A1 (en) Electric heating element
JPH05331521A (en) Steel tapping hole in refining furnace for steel-making
US4238632A (en) Arc furnace for making steel from directly reduced iron
KR20200119325A (en) Smelting equipment for steel making
US3895783A (en) Cooling assembly for steel converter vessels
JP3247855B2 (en) Water cooling panel for metal smelting furnace and metal smelting furnace
SE501964C2 (en) submerged arc furnace
KR20010071274A (en) Water-cooled vessel for vacuum processing of liquid steel
JPH0723498B2 (en) Iron bath smelting reduction furnace
JPS5945726B2 (en) Partial cooling method for converter furnace body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 14