JP2985738B2 - Low-melting-point metal particles, method for manufacturing the same, and manufacturing apparatus - Google Patents

Low-melting-point metal particles, method for manufacturing the same, and manufacturing apparatus

Info

Publication number
JP2985738B2
JP2985738B2 JP7158734A JP15873495A JP2985738B2 JP 2985738 B2 JP2985738 B2 JP 2985738B2 JP 7158734 A JP7158734 A JP 7158734A JP 15873495 A JP15873495 A JP 15873495A JP 2985738 B2 JP2985738 B2 JP 2985738B2
Authority
JP
Japan
Prior art keywords
metal
cooling
nozzle
molten metal
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7158734A
Other languages
Japanese (ja)
Other versions
JPH08325603A (en
Inventor
道広 田中
裕美 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7158734A priority Critical patent/JP2985738B2/en
Publication of JPH08325603A publication Critical patent/JPH08325603A/en
Application granted granted Critical
Publication of JP2985738B2 publication Critical patent/JP2985738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は球形の整った低融点金属
粒およびその製造方法と装置に関する。詳しくは、ガリ
ウム、水銀、アマルガムなどの低融点金属の微小粒とそ
の製造手段に関する。本製造手段によれば、平均粒径
0.1〜1.0mmφのほぼ真球状の微粒子を得ることが
でき、本製造手段によって得たガリウム粒子は各種ラン
プの封印発光粒子として最適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spherical, low-melting metal particle, and a method and an apparatus for producing the same. More specifically, the present invention relates to fine particles of a low-melting-point metal such as gallium, mercury, and amalgam and a method for producing the same. According to this production means, almost spherical fine particles having an average particle diameter of 0.1 to 1.0 mmφ can be obtained, and the gallium particles obtained by this production means are most suitable as sealed luminescent particles for various lamps.

【0002】[0002]

【従来技術とその課題】金属ガリウムはハロゲン化金属
ランプの封印発光金属として有用であるが、この発光材
料として用いるには、個々の重量バラツキを10%以内
に、好ましくは5%以内にすることが必要であり、その
ためには粒径が0.1〜1.0mmφの間でフルイによっ
て重量選別できる真球に近い微小粒子とすることが重要
である。しかし、従来の方法では球形の整ったガリウム
微粒子を得ることが難しいという問題がある。
2. Description of the Related Art Metallic gallium is useful as a sealing luminescent metal for metal halide lamps. To use this luminescent material, it is necessary to keep the individual weight variation within 10%, preferably within 5%. It is important to use fine particles close to a true sphere that can be weight-selected by a sieve with a particle size of 0.1 to 1.0 mmφ. However, there is a problem that it is difficult to obtain spherical gallium fine particles by the conventional method.

【0003】一般に、ガリウムなどの低融点金属の微粒
子を製造する方法としては、滴下法やアトマイズ法など
が一般的であり、また、短く切断した金属細線を加熱帯
に落下させ、加熱溶融して球状化した後に冷却する方法
なども知られている。滴下法は目的金属の溶湯を小孔な
いしノズルから空気、アルゴンガス等の冷媒ガス中に滴
下し、あるいは水、油等の冷却液中に滴下して粒状化す
る方法であるが、ガリウムなどの低融点金属は、冷却ガ
ス中に滴下する方法では滴下中に十分な温度差が確保で
きないために固化せず、液体窒素などで強制的に冷却し
ても糸状になり、微粒子にならない。
In general, as a method for producing fine particles of a low-melting-point metal such as gallium, a dripping method or an atomizing method is generally used. In addition, a thin metal wire cut short is dropped into a heating zone, and is melted by heating. A method of cooling after spheroidization is also known. The dropping method is a method in which a molten metal of a target metal is dropped from a small hole or a nozzle into a refrigerant gas such as air or argon gas, or dropped into a cooling liquid such as water or oil to granulate it. The method of dropping a low-melting metal into a cooling gas does not solidify because a sufficient temperature difference cannot be ensured during the dropping, and becomes a thread even if forcedly cooled with liquid nitrogen or the like, and does not become fine particles.

【0004】また、冷却液に滴下する方法では、溶湯が
液面に衝突した際に変形してフレーク状になり、球形の
整った微粒子を得ることができない。アトマイズ法によ
っても同様に溶湯が衝撃により変形するので球形の整っ
た微粒子を得ることはできない。一方、短く切断した金
属細線を用いる方法でも冷却時の同様な問題がある。さ
らに、上記低融点金属は過冷却の状態になり易いので、
従来の方法では、溶湯が微粒子化されても、その液滴が
冷却媒体中でなかなか固化せず、液滴どうしが接合して
形状が崩れる致命的な問題がある。
In addition, in the method of dropping the liquid into the cooling liquid, when the molten metal collides with the liquid surface, the molten metal is deformed into flakes, and spherical fine particles cannot be obtained. Even by the atomizing method, the molten metal is similarly deformed by impact, so that spherical fine particles cannot be obtained. On the other hand, the method using a short-cut thin metal wire has the same problem at the time of cooling. Furthermore, since the low-melting point metal tends to be supercooled,
In the conventional method, even if the molten metal is finely divided, the droplets are not easily solidified in the cooling medium, and there is a fatal problem that the droplets are joined to each other and the shape is collapsed.

【0005】本発明は従来の製造方法における上記問題
を解決した低融点金属粒の製造手段を提供することを目
的とする。本発明者等は、低融点金属の溶湯を冷却媒体
中に押出して冷却する際に、超音波振動を与えることに
より、金属粒の相転移を促して固化させることが有効で
あることを見出した。過冷却の状態の物質に衝撃を与え
ると急激に低温相に転移する一般的な現象は知られてい
るが、従来の低融点金属粒の製造方法では、過冷却の問
題から解決手段を検討したものは知られていない。本発
明は従来の製造方法では看過されていた観点から問題を
解決したものであって、本発明によれば、球形の整った
微小な低融点金属粒を容易に製造することができる。
An object of the present invention is to provide a means for producing low melting point metal grains which solves the above-mentioned problems in the conventional production method. The present inventors have found that, when extruding a molten metal of a low melting point metal into a cooling medium and cooling the same, it is effective to apply ultrasonic vibration to promote the phase transition of the metal particles and solidify them. . Although a general phenomenon of sudden transition to a low-temperature phase when a shock is applied to a material in a supercooled state is known, in the conventional method for producing low melting point metal particles, a solution was examined from the problem of supercooling. Things are not known. The present invention has solved the problem from the viewpoint that was overlooked in the conventional manufacturing method, and according to the present invention, it is possible to easily manufacture fine low melting point metal particles having a spherical shape.

【0006】[0006]

【課題の解決手段】本発明によれば、以下の低融点金属
粒とその製造方法および製造装置が提供される。 (1)ガリウム、水銀、またはこれらのアマルガムにつ
いて、冷却液に超音波振動を与えた状態で、この冷却液
に挿入したノズルの先端から上記金属の溶湯を押し出し
て製造した金属粒であって、平均粒径が0.1〜1.0mm
φ、球形度が0.95以上であることを特徴とする低融
点金属粒。 (2)冷却液に超音波振動を与えた状態で、この冷却液
に挿入したノズルの先端から、ガリウム、水銀、または
これらのアマルガムの溶湯を、その融点よりも10℃以
上低い温度の上記冷却液に押し出すことにより、その金
属粒を製造することを特徴とする低融点金属粒の製造方
法。 (3)低融点金属の溶湯を入れる溶湯槽、および該金属
溶湯を冷却する冷却液を入れる冷却槽を備え、上記溶湯
槽には溶湯を押し出すノズルおよび加圧手段が設けら
れ、該ノズルの下方に上記冷却槽が設置されていると共
に該ノズルの先端が冷却液に挿入され、また上記冷却槽
には冷却液に超音波振動を与える振動手段が付設されて
いることを特徴とする低融点金属粒の製造装置。
According to the present invention, there are provided the following low-melting metal particles, and a method and apparatus for producing the same. (1) Metal particles produced by extruding a molten metal of the above metal from gallium, mercury, or amalgam thereof, while applying ultrasonic vibration to the cooling liquid, from a tip of a nozzle inserted into the cooling liquid, Average particle size is 0.1 to 1.0mm
Low melting point metal particles having a φ and a sphericity of 0.95 or more. (2) In a state where ultrasonic vibration is applied to the cooling liquid, gallium, mercury, or a melt of these amalgams is cooled from the tip of the nozzle inserted into the cooling liquid to a temperature lower than its melting point by 10 ° C. or more. A method for producing metal particles having a low melting point, wherein the metal particles are produced by extruding into a liquid. (3) a molten metal tank for storing a low-melting metal melt, and a cooling tank for storing a cooling liquid for cooling the molten metal, wherein the molten metal tank is provided with a nozzle for extruding the molten metal and pressurizing means, and is provided below the nozzle. The cooling tank is installed in the cooling tank, and the tip of the nozzle is inserted into the cooling liquid, and the cooling tank is provided with vibration means for applying ultrasonic vibration to the cooling liquid. Granulation equipment.

【0007】[0007]

【具体的な説明】本発明は、亜鉛、カドミウム、インジ
ウムなどの合金やハンダ合金などのように融点が200
℃以下の低融点金属に関し、特に、ガリウム、水銀およ
びこれらのアマルガムの微粒子とその製造に関する。ガ
リウムの融点は約29.7℃、水銀の融点は約−38.
9℃であり、これらは従来の製造方法では真球状の微粒
子を得ることができない。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a melting point of 200, such as alloys of zinc, cadmium and indium, and solder alloys.
The present invention relates to a metal having a low melting point of less than or equal to ℃, particularly to gallium, mercury and fine particles of these amalgams and their production. Gallium has a melting point of about 29.7 ° C, and mercury has a melting point of about -38.
These are 9 ° C., and these cannot produce true spherical fine particles by the conventional production method.

【0008】本発明は冷却水などの冷却液に超音波振動
を与えた状態で、上記低融点金属の溶湯をノズルから冷
却液中に押出して微粒子化する。溶湯が冷却液の液面に
衝突しないようにノズルの先端は冷却液中に入れ、冷却
液中に溶湯を押出すのが好ましい。溶湯の圧力は溶湯が
冷却液中に流れ出す程度に調整すればよく、具体的には
ノズル径とその長さによって異なるが、概ね0.2〜2
kg/cm2 程度とすればよい。溶湯温度は目的金属の融点
よりやや高い温度で、なおかつ一定に保持されていれば
特に制限はないが、あまり高過ぎると冷却不良となり好
ましくない。冷却液としては水が一般的であるが、水銀
のように融点が極めて低く氷点下のものを冷却する場合
には、冷却液として水を用いると、冷却温度で水が氷結
するためアルコールなどが用いられる。冷却液の温度は
目的金属の融点温度よりも10℃程度以上低い温度であ
ればよい。具体的には金属が融点29.7℃のガリウム
である場合には15℃以下、好ましくは5℃以下の冷却
液が用いられ、また金属が融点−38.9℃の水銀であ
る場合には−50℃以下、好ましくは−60℃以下のア
ルコールが用いられる。
According to the present invention, the molten metal of the low melting point metal is extruded from the nozzle into the cooling liquid while the ultrasonic vibration is applied to the cooling liquid such as the cooling water to form fine particles. Preferably, the tip of the nozzle is placed in the coolant so that the melt does not collide with the coolant level, and the melt is extruded into the coolant. The pressure of the molten metal may be adjusted to such an extent that the molten metal flows into the cooling liquid. Specifically, the pressure varies depending on the nozzle diameter and its length.
It may be about kg / cm 2 . The temperature of the molten metal is a temperature slightly higher than the melting point of the target metal and is not particularly limited as long as it is kept constant. Water is generally used as a cooling liquid, but when cooling something with a very low melting point and below freezing such as mercury, water is used as the cooling liquid, and alcohol is used because water freezes at the cooling temperature. Can be The temperature of the cooling liquid may be lower than the melting point of the target metal by about 10 ° C. or more. Specifically, when the metal is gallium having a melting point of 29.7 ° C., a cooling liquid having a temperature of 15 ° C. or less, preferably 5 ° C. or less is used. When the metal is mercury having a melting point of −38.9 ° C., An alcohol having a temperature of -50C or lower, preferably -60C or lower is used.

【0009】ガリウムについて、溶湯約35℃、冷却液
約5℃の条件下で、内径約0.5mmφのステンレス製ノ
ズルを用いて粒径約0.7mmの微粒子が得られ、内径約
0.2mmのノズルでは粒径約0.5mmの微粒子が得られ
る。水銀については、−40℃のアルコールを用いる場
合に、内径約0.15mmφのステンレス製ノズルを用い
て粒径約0.4mmの微粒子が得られる。
As for gallium, under the condition of about 35 ° C. of molten metal and about 5 ° C. of coolant, fine particles having a particle diameter of about 0.7 mm are obtained using a stainless steel nozzle having an inner diameter of about 0.5 mmφ, and an inner diameter of about 0.2 mm With this nozzle, fine particles having a particle size of about 0.5 mm can be obtained. Regarding mercury, when alcohol at −40 ° C. is used, fine particles having a particle diameter of about 0.4 mm can be obtained using a stainless steel nozzle having an inner diameter of about 0.15 mmφ.

【0010】本発明の製造方法は、超音波振動を与えな
がら金属溶湯を冷却液に押し出す。超音波の周波数およ
び出力は特に限定されず、例えば、超音波探傷や超音波
洗浄において一般的に使用されているものであれば良
い。一例として、超音波洗浄装置では振動数50〜10
0kHzの超音波振動が常用されている。
In the manufacturing method of the present invention, a molten metal is extruded into a cooling liquid while applying ultrasonic vibration. The frequency and output of the ultrasonic waves are not particularly limited, and may be, for example, those generally used in ultrasonic flaw detection and ultrasonic cleaning. As an example, in an ultrasonic cleaning device, a frequency of 50 to 10 is used.
0 kHz ultrasonic vibration is commonly used.

【0011】以上の方法により得られた本発明の微粒子
は、いずれも平均粒径が0.1〜1.0mmφの、球形度
が0.95以上のほぼ真球粒子であり、また粒径も比較
的整っておりシャープな粒径分布となる。なお、球形度
(真球度)は、粒子の表面積とその粒子と同じ体積の球
の表面積との比によって定義されるが、便宜的には粒子
断面の最長径R1と最短径R2の比(R2/R1) によって表わさ
れる。球形度が1に近いほど真球となる。また、本発明
の金属粒は表面が平滑であること、表面酸化層が薄いこ
となどの特長をも有する。
The fine particles of the present invention obtained by the above method are almost true spherical particles having an average particle diameter of 0.1 to 1.0 mmφ and a sphericity of 0.95 or more, and have a particle diameter of 0.1 to 1.0 mm. It is relatively well-formed and has a sharp particle size distribution. The sphericity (sphericity) is defined by the ratio of the surface area of a particle to the surface area of a sphere having the same volume as the particle. For convenience, the ratio of the longest diameter R1 to the shortest diameter R2 of the particle cross section ( R2 / R1). The closer the sphericity is to 1, the more the sphere becomes a true sphere. Further, the metal particles of the present invention also have features such as a smooth surface and a thin surface oxide layer.

【0012】本発明の製造方法を実施する装置構成を図
1に示す。同図は該装置の概略断面図であり、該装置1
0は金属溶湯11を貯留する溶湯槽12と該溶湯11を
冷却する冷却槽13を有している。溶湯槽12の底面に
は溶湯を冷却槽13に押出すためのノズル14が設けら
れており、該ノズル14の先端は槽内の冷却液中に挿入
されている。溶湯槽12の外周には、所望により金属溶
湯11の凝固を防止するための加熱装置(図示せず)あ
るいは保温材16などが設けられ、該溶湯槽内を少なく
とも金属の融点より10℃以上程度上回る温度に保たれ
る。
FIG. 1 shows the configuration of an apparatus for implementing the manufacturing method of the present invention. FIG. 1 is a schematic sectional view of the device, and FIG.
Numeral 0 has a molten metal tank 12 for storing the molten metal 11 and a cooling tank 13 for cooling the molten metal 11. A nozzle 14 for extruding the molten metal into the cooling tank 13 is provided on the bottom surface of the molten metal tank 12, and the tip of the nozzle 14 is inserted into the cooling liquid in the tank. A heating device (not shown) or a heat insulator 16 for preventing solidification of the molten metal 11 is provided on the outer periphery of the molten metal tank 12 as required, and the inside of the molten metal tank is at least about 10 ° C. higher than the melting point of the metal. Temperature is kept above.

【0013】冷却槽13の外壁部には、ノズル12から
押出された金属粒の過冷却を抑制して固化を促進させる
ための超音波振動器18が設けられている。該超音波振
動器18はその振動により液相状態の金属液滴を固相に
転移させる。なお、超音波による振動の他に、冷却液を
撹拌したり、或いは冷却槽を叩くなどして振動を与える
ことも考えられるが、これらの場合には固化する前に金
属液滴が凝集し易いために目的とする平均粒径約0.1
〜1.0mmφの微粒子を得るのが難しい。また、冷却槽
13には必要に応じて冷却液の冷却手段や、製造した金
属粒の回収手段などが設けられる(いずれも図示せ
ず)。
An ultrasonic vibrator 18 for suppressing supercooling of metal particles extruded from the nozzle 12 and promoting solidification is provided on an outer wall portion of the cooling tank 13. The ultrasonic vibrator 18 causes the metal droplet in a liquid phase to be transferred to a solid phase by the vibration. In addition to the vibration by the ultrasonic waves, it is conceivable to vibrate by stirring the cooling liquid or hitting the cooling tank, but in these cases, the metal droplets tend to aggregate before solidifying. Average particle size of about 0.1
It is difficult to obtain fine particles of about 1.0 mmφ. Further, the cooling tank 13 is provided with a cooling means for cooling liquid, a collecting means for the produced metal particles, and the like as necessary (neither is shown).

【0014】ノズル14から冷却液17に押出された金
属溶湯11の液滴15は、容器12の下方に設けられた
液体冷媒槽13で冷却される。ノズル14の先端を冷却
液中に挿入して金属溶湯を押出すことにより、微細な球
形の整った球状粒子15を形成させることができる。す
なわち、溶湯はノズル先端開口から液中に押出される際
にノズルの内径より僅かに大きい球径に膨らみ、これが
液圧によりノズル先端から切り離されることにより微小
粒となり、液中を沈下する間にほぼ真球に球形化すると
考えられる。なお、低融点金属の場合、ノズルの先端を
冷却液面より高く設置すると、滴下された液滴が液面に
衝突して変形し、その衝撃によりそのまま固化するので
偏平な金属粒となり、真球状の、かつ球形の整った金属
微粒子を得ることができない。
The droplets 15 of the molten metal 11 extruded from the nozzle 14 into the cooling liquid 17 are cooled in a liquid refrigerant tank 13 provided below the container 12. By inserting the tip of the nozzle 14 into the cooling liquid and extruding the molten metal, it is possible to form fine spherical and spherical particles 15. In other words, when the molten metal is extruded into the liquid from the nozzle tip opening, it swells to a sphere diameter slightly larger than the inner diameter of the nozzle, and this is separated from the nozzle tip by the liquid pressure to become fine particles, while sinking in the liquid It is considered to be almost spherical. In the case of low melting point metal, if the tip of the nozzle is installed higher than the cooling liquid level, the dropped droplet collides with the liquid surface and deforms, and solidifies as a result of the impact, resulting in flat metal particles and a true spherical shape However, it is not possible to obtain spherical and fine metal particles.

【0015】[0015]

【実施例】実施例1 純度99.999%(5N)の金属ガリウムを図1に示
す装置を用いて下記の条件下で製造したところ、平均粒
径0.5mmφの均質な球状粒子が得られた。このガリウ
ム粒子は球形度95%以上で表面は滑らかなものであっ
た。 製造条件 溶湯温度:40℃ 冷却水温度:3℃ ノズル(ステンレス製)内径:0.2mmφ ノズルからの押出圧力:0.5kg/cm2 超音波振動器:超音波洗浄用(振動数:50〜100k
Hz)
EXAMPLE 1 Metal gallium having a purity of 99.999% (5N) was produced using the apparatus shown in FIG. 1 under the following conditions. As a result, homogeneous spherical particles having an average particle diameter of 0.5 mmφ were obtained. Was. The gallium particles had a sphericity of 95% or more and a smooth surface. Manufacturing conditions Melt temperature: 40 ° C Cooling water temperature: 3 ° C Nozzle (made of stainless steel) Inner diameter: 0.2mmφ Extrusion pressure from nozzle: 0.5kg / cm 2 Ultrasonic vibrator: For ultrasonic cleaning (frequency: 50 ~ 100k
Hz)

【0016】実施例2 Hg−Alアマルガム(Al:1.0%,融点150
℃)を図1に示す装置を用いて下記の条件下で製造した
ところ、平均粒径0.4mmφの均質な球状粒子を得た。
この粒子は球形度95%以上で表面は滑らかなものであ
った。 製造条件 溶湯温度:180℃、 冷却水温度:30℃ ノズル(ステンレス製)内径:0.2mmφ ノズルからの押出圧力:0.3kg/cm2 超音波振動器:超音波洗浄用(振動数:50〜100k
Hz)
Example 2 Hg-Al amalgam (Al: 1.0%, melting point 150)
C.) using the apparatus shown in FIG. 1 under the following conditions to obtain homogeneous spherical particles having an average particle diameter of 0.4 mmφ.
The particles had a sphericity of 95% or more and a smooth surface. Manufacturing conditions Melt temperature: 180 ° C, Cooling water temperature: 30 ° C Nozzle (stainless steel) Inner diameter: 0.2mmφ Extrusion pressure from nozzle: 0.3kg / cm 2 Ultrasonic vibrator: For ultrasonic cleaning (frequency: 50) ~ 100k
Hz)

【0017】比較例 実施例1において超音波を与える代わりに冷却水を撹拌
しながらガリウム溶湯を押出したところ、ガリウムの液
滴は凝集して大粒のボタン状に固化した。超音波振動の
代わりに冷却槽を打撃しても同様であった。また、超音
波振動を与えず、しかも冷却液の攪拌および水槽の打撃
も行わずに溶湯を冷却水中に押し出した場合には、液滴
が水中で暫く固化せず、付近の液滴が集合して大粒の金
属粒になることが確認された。
COMPARATIVE EXAMPLE In Example 1, when gallium melt was extruded while stirring cooling water instead of applying ultrasonic waves, gallium droplets were aggregated and solidified into large buttons. The same was true when the cooling tank was hit instead of the ultrasonic vibration. Also, when the molten metal is extruded into the cooling water without applying ultrasonic vibration and without stirring the cooling liquid and hitting the water tank, the droplets do not solidify in the water for a while, and the nearby droplets collect. It was confirmed that large metal particles were obtained.

【0018】[0018]

【発明の効果】本発明の製造手段によれば、ガリウム、
水銀、アマルガムなどの低融点金属について、平均粒径
0.1〜1.0mmφの真球状の金属粒が得られる。この
金属粒をフルイにかけると任意の球径の整ったほぼ真球
の粒子が得られるので重量バラツキの極めて小さい金属
粒となり、精密な用途に用いることができる。また本発
明の製造方法は装置構成が簡単であり、容易に実施でき
ると共に連続して多数の均一な金属微粒子を製造するこ
とができる。
According to the production means of the present invention, gallium,
For low-melting metals such as mercury and amalgam, true spherical metal particles having an average particle size of 0.1 to 1.0 mmφ are obtained. When the metal particles are sieved, almost spherical particles having an arbitrary sphere diameter are obtained, so that the metal particles have extremely small variation in weight, and can be used for precise applications. Further, the production method of the present invention has a simple apparatus configuration, can be easily implemented, and can continuously produce a large number of uniform metal fine particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法を実施する装置の一例を概略的に
示した断面図。
FIG. 1 is a cross-sectional view schematically showing an example of an apparatus for performing the method of the present invention.

【符号の説明】[Explanation of symbols]

10…滴下装置、11…金属溶湯、12…溶湯槽、13
…冷却槽、14…ノズル、15…金属粒、16…保温
材,17…冷却液、18…超音波振動器
10: Dropping device, 11: Molten metal, 12: Molten tank, 13
... Cooling tank, 14 ... Nozzle, 15 ... Metal particles, 16 ... Heat insulator, 17 ... Cooling liquid, 18 ... Ultrasonic vibrator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−243202(JP,A) 特開 昭50−120565(JP,A) 特開 昭61−186408(JP,A) 特開 平3−162505(JP,A) 特開 平3−162506(JP,A) 特開 平4−74801(JP,A) 特開 昭63−28802(JP,A) 実開 昭62−126331(JP,U) 特公 昭56−22921(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B22F 1/00 B22F 9/08 H01J 61/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-243202 (JP, A) JP-A-50-120565 (JP, A) JP-A-61-186408 (JP, A) 162505 (JP, A) JP-A-3-162506 (JP, A) JP-A-4-74801 (JP, A) JP-A-63-28802 (JP, A) JP-A-62-126331 (JP, U) JP-B-56-22921 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B22F 1/00 B22F 9/08 H01J 61/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガリウム、水銀、またはこれらのアマル
ガムについて、冷却液に超音波振動を与えた状態で、こ
の冷却液に挿入したノズルの先端から上記金属の溶湯を
押し出して製造した金属粒であって、平均粒径が0.1
〜1.0mmφ、球形度が0.95以上であることを特徴
とする低融点金属粒。
1. A metal particle produced by extruding a molten metal of gallium, mercury, or an amalgam thereof from a tip of a nozzle inserted into the cooling liquid while applying ultrasonic vibration to the cooling liquid. The average particle size is 0.1
Low melting point metal particles characterized by having a sphericity of 0.95 or more and a sphericity of 0.95 or more.
【請求項2】 冷却液に超音波振動を与えた状態で、こ
の冷却液に挿入したノズルの先端から、ガリウム、水
銀、またはこれらのアマルガムの溶湯を、その融点より
も10℃以上低い温度の上記冷却液に押し出すことによ
り、その金属粒を製造することを特徴とする低融点金属
粒の製造方法。
2. In a state in which ultrasonic vibration is applied to the coolant, gallium, mercury, or a melt of these amalgams is discharged from the tip of a nozzle inserted into the coolant at a temperature lower by at least 10 ° C. than its melting point. A method for producing metal particles having a low melting point, wherein the metal particles are produced by extruding the metal particles into the cooling liquid.
【請求項3】 低融点金属の溶湯を入れる溶湯槽、およ
び該金属溶湯を冷却する冷却液を入れる冷却槽を備え、
上記溶湯槽には溶湯を押し出すノズルおよび加圧手段が
設けられ、該ノズルの下方に上記冷却槽が設置されてい
ると共に該ノズルの先端が冷却液に挿入され、また上記
冷却槽には冷却液に超音波振動を与える振動手段が付設
されていることを特徴とする低融点金属粒の製造装置。
3. A molten metal tank containing a molten metal of a low melting point metal, and a cooling tank containing a cooling liquid for cooling the molten metal,
The melt bath is provided with a nozzle for extruding the melt and a pressurizing means. The cooling bath is provided below the nozzle, and the tip of the nozzle is inserted into the coolant. A vibrating means for applying ultrasonic vibration to the apparatus.
JP7158734A 1995-06-01 1995-06-01 Low-melting-point metal particles, method for manufacturing the same, and manufacturing apparatus Expired - Fee Related JP2985738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7158734A JP2985738B2 (en) 1995-06-01 1995-06-01 Low-melting-point metal particles, method for manufacturing the same, and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7158734A JP2985738B2 (en) 1995-06-01 1995-06-01 Low-melting-point metal particles, method for manufacturing the same, and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH08325603A JPH08325603A (en) 1996-12-10
JP2985738B2 true JP2985738B2 (en) 1999-12-06

Family

ID=15678171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7158734A Expired - Fee Related JP2985738B2 (en) 1995-06-01 1995-06-01 Low-melting-point metal particles, method for manufacturing the same, and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2985738B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111266595A (en) * 2020-03-27 2020-06-12 成都中建材光电材料有限公司 Gallium particle preparation device and preparation method
CN111659897B (en) * 2020-06-23 2021-07-06 楚雄川至电子材料有限公司 Production process method of high-purity gallium particles
CN113500197A (en) * 2021-06-08 2021-10-15 先导薄膜材料(广东)有限公司 Indium particle preparation device and method
CN114643363B (en) * 2022-03-15 2024-04-05 先导薄膜材料(广东)有限公司 Indium particle preparation device and method
CN115815589A (en) * 2022-12-26 2023-03-21 株洲科能新材料股份有限公司 High-purity gallium particle rapid forming method

Also Published As

Publication number Publication date
JPH08325603A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US3845805A (en) Liquid quenching of free jet spun metal filaments
US4428894A (en) Method of production of metallic granules, products obtained and a device for the application of the said method
US2919471A (en) Metal fabrication
EP0226323B1 (en) Apparatus for preparing metal particles from molten metal
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
JP2985738B2 (en) Low-melting-point metal particles, method for manufacturing the same, and manufacturing apparatus
JPH06228612A (en) Method and device for producing small metal spheres nearly equal in diameter
JPH0328341A (en) Aluminum-strontium mother alloy
JP3212133B2 (en) Rare earth metal-nickel based hydrogen storage alloy ingot and method for producing the same
JPH05271719A (en) Production of metal powder
CA1105295A (en) Nickel and cobalt irregularly shaped granulates
US20030019547A1 (en) Method of grain refining cast magnesium alloy
US3960200A (en) Apparatus for liquid quenching of free jet spun metal
JPH03226508A (en) Manufacture of beryllium spherical particle
CN110355376B (en) Method for preparing aluminum or aluminum alloy powder by exciting aluminum-salt mixed melt through ultrasonic waves
US4394332A (en) Crucibleless preparation of rapidly solidified fine particulates
JP2577173B2 (en) Method and apparatus for producing fine metal powder
US3177573A (en) Method of die-expressing an aluminum-base alloy
Kaysser et al. Principles of atomization
JPS6075504A (en) Production of low melting alloy for sealing fluorescent lamp
US4060430A (en) Production of filaments of hexagonal close-packed metals and alloys thereof
US3182390A (en) Method of die-expressing a magnesiumbase alloy
JPH0149768B2 (en)
JP2001226705A (en) Method for manufacturing fine metallic ball and apparatus for manufacturing fine metallic ball
JPH075937B2 (en) Method for producing rapidly solidified metal-based composite powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees