JP2984542B2 - Heat-shrinkable conjugate fiber with thermal adhesion - Google Patents

Heat-shrinkable conjugate fiber with thermal adhesion

Info

Publication number
JP2984542B2
JP2984542B2 JP12171394A JP12171394A JP2984542B2 JP 2984542 B2 JP2984542 B2 JP 2984542B2 JP 12171394 A JP12171394 A JP 12171394A JP 12171394 A JP12171394 A JP 12171394A JP 2984542 B2 JP2984542 B2 JP 2984542B2
Authority
JP
Japan
Prior art keywords
component
heat
ethylene
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12171394A
Other languages
Japanese (ja)
Other versions
JPH07305232A (en
Inventor
庸輔 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Original Assignee
Daiwa Boseki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Boseki KK filed Critical Daiwa Boseki KK
Priority to JP12171394A priority Critical patent/JP2984542B2/en
Publication of JPH07305232A publication Critical patent/JPH07305232A/en
Application granted granted Critical
Publication of JP2984542B2 publication Critical patent/JP2984542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱接着性を有する熱収
縮性複合繊維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-shrinkable conjugate fiber having heat bonding property.

【0002】[0002]

【従来の技術】一般に、熱接着性繊維に関しては、特開
昭62−69822号、特開平5−9809号公報に記
載されている通り、熱処理による接着の際に不織布に皺
が生じるのを防ぐべく、それ自体は収縮しにくいもの、
つまり熱収縮率の小さな繊維が主に提案されている。
2. Description of the Related Art Generally, as for heat-bondable fibers, as described in JP-A-62-69822 and JP-A-5-9809, wrinkles are prevented from being formed on a nonwoven fabric during bonding by heat treatment. The thing which is hard to shrink itself,
That is, fibers having a small heat shrinkage are mainly proposed.

【0003】また、最近、オレフィン系共重合体や、エ
ステル系共重合体等の熱収縮率の大きなポリマーを利用
した繊維が種々開発されており、本出願人も、特開平5
−44108号公報においてエチレン−プロピレン共重
合体からなる熱収縮性繊維を提案している。
Recently, various fibers utilizing polymers having a large heat shrinkage, such as olefin copolymers and ester copolymers, have been developed.
JP-A-44108 proposes a heat-shrinkable fiber comprising an ethylene-propylene copolymer.

【0004】これら熱収縮性繊維のみからなる、もしく
は熱収縮性繊維とその他の繊維とが混合されてなる不織
布に熱処理を施し、熱収縮性繊維を収縮させることによ
って高密度な不織布を得ることができる。また、その収
縮特性を利用して、不織布表面にクレープ状の凹凸を発
生させた嵩高な不織布も多く提案されており、その殆ど
は、非収縮性繊維層と収縮性繊維層を一体化させた後、
熱処理により収縮性繊維層を収縮させると同時に非収縮
性繊維層に皺を発生させることによって得られるもので
ある。
[0004] It is possible to obtain a high-density non-woven fabric by subjecting a non-woven fabric composed of only these heat-shrinkable fibers or a mixture of the heat-shrinkable fibers and other fibers to heat treatment and shrinking the heat-shrinkable fibers. it can. In addition, many bulky nonwoven fabrics having crepe-like irregularities on the surface of the nonwoven fabric have been proposed by utilizing the shrinkage property, and most of them have integrated a non-shrinkable fiber layer and a shrinkable fiber layer. rear,
It is obtained by shrinking the shrinkable fiber layer by heat treatment and simultaneously wrinkling the non-shrinkable fiber layer.

【0005】上記、高密度不織布および嵩高不織布いず
れの場合も、不織布の形態を維持せしめ、ある程度強力
を有するものにしようとするならば、構成繊維間もしく
は各繊維層間が何らかの形で結合していなければならな
い。結合は、一般的には、例えば、ニードルパンチング
や高圧水流噴射処理によって繊維間を交絡させる方法、
あるいは何らかの接着成分によって繊維間もしくは層間
を接合させる方法を適用することによって達成される。
繊維間あるいは層間を接合させる場合に一般に使用され
る接着成分は、熱処理によって溶融・軟化する熱接着成
分である。
In both the high-density non-woven fabric and the bulky non-woven fabric, if the non-woven fabric is to be maintained in a certain form and to have a certain degree of strength, it must be connected in some way between the constituent fibers or between the respective fiber layers. Must. Bonding is generally, for example, a method of entanglement between fibers by needle punching or high-pressure water jet treatment,
Alternatively, it is achieved by applying a method of bonding between fibers or between layers with some adhesive component.
An adhesive component generally used for bonding between fibers or between layers is a thermal adhesive component that is melted and softened by heat treatment.

【0006】[0006]

【発明が解決しようとする課題】本出願人が先に提案し
た繊維は、それ自身熱接着性を持たないため、熱処理に
よって繊維間もしく繊維層間を結合させたい場合には、
熱接着成分として熱接着性繊維を混合する必要がある。
しかし、2種類以上の繊維を混合する工程、いわゆる混
綿工程は、コスト面で好ましいことではない。その上、
2種類以上の繊維が均一に混合されていなければ、得ら
れる不織布の均質性が損なわれ、品質上の問題が生じる
場合もある。そこで、本発明者は、熱接着性と熱収縮性
を併有する繊維があれば、これらの問題は生じないと考
え、熱収縮成分と熱接着成分とからなり、二段階の熱処
理によって熱接着と熱収縮が行われる複合繊維を得るべ
く鋭意検討した結果、本発明に至った。
The fiber proposed by the present applicant does not have thermal adhesiveness itself, and therefore, when it is desired to bond between fibers or between fiber layers by heat treatment,
It is necessary to mix thermoadhesive fibers as thermoadhesive components.
However, the step of mixing two or more fibers, a so-called cotton blending step, is not preferable in terms of cost. Moreover,
If two or more types of fibers are not uniformly mixed, the homogeneity of the obtained nonwoven fabric may be impaired, and quality problems may occur. Therefore, the present inventor believes that if there is a fiber having both heat bonding property and heat shrinking property, these problems do not occur, and it is composed of a heat shrinking component and a heat bonding component. As a result of intensive studies to obtain a composite fiber that undergoes heat shrinkage, the present invention has been achieved.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、融解ピ
ーク温度(Tm℃)が130<Tm<145のエチレン
−プロピレンランダム共重合体及び/又はエチレン−ブ
テン−1 −プロピレン三元共重合体を70重量%以上含
むポリマーを第一成分に、ビニル系カルボン酸のモノマ
ー及び/又はビニル系カルボン酸エステルのモノマー5
〜30重量%とエチレン95〜70重量%からなるエチ
レン共重合体を第二成分とすることを特徴とする熱接着
性と熱収縮性を併有する複合繊維である。
That is, the present invention provides an ethylene-propylene random copolymer and / or ethylene-butene-1-propylene terpolymer having a melting peak temperature (Tm ° C) of 130 <Tm <145. A polymer containing 70% by weight or more of the union as a first component, a vinyl carboxylic acid monomer and / or a vinyl carboxylic acid ester monomer 5
A composite fiber having both heat adhesion and heat shrinkage, characterized in that an ethylene copolymer consisting of -30% by weight and 95-70% by weight of ethylene is used as a second component.

【0008】本発明の複合繊維において、熱収縮成分た
る第一成分は融解ピーク温度(Tm℃)が130<Tm
<145のエチレン−プロピレンランダム共重合体及び
/又はエチレン−ブテン−1 −プロピレン三元共重合体
を70重量%以上含むポリマーで構成される。ここで融
解ピーク温度とは、示差走査熱量計(DSC)によりポ
リマーの融解熱測定を行ったときにDSC曲線が最高値
を示す温度をいう。第一成分に用いられるエチレン−プ
ロピレンランダム共重合体およびエチレン−ブテン−1
−プロピレン三元共重合体の融解ピーク温度が130℃
未満であると、後述する第二成分たる熱接着成分の選択
範囲が狭くなり、145℃を超えると繊維の乾熱収縮性
が通常のポリプロピレン繊維程度になってしまうので好
ましくない。
In the conjugate fiber of the present invention, the first component, which is a heat-shrinkable component, has a melting peak temperature (Tm ° C.) of 130 <Tm.
<145: a polymer containing 70% by weight or more of the ethylene-propylene random copolymer and / or the ethylene-butene-1-propylene terpolymer. Here, the melting peak temperature means a temperature at which a DSC curve shows a maximum value when a heat of fusion of a polymer is measured by a differential scanning calorimeter (DSC). Ethylene-propylene random copolymer and ethylene-butene-1 used for the first component
-Peak temperature of melting of propylene terpolymer of 130 ° C
If it is less than 1, the selection range of the heat bonding component as the second component described later becomes narrow, and if it exceeds 145 ° C., the dry heat shrinkage of the fiber becomes undesirably about that of a normal polypropylene fiber.

【0009】エチレンープロピレンランダム共重合体お
よびエチレン−ブテン−1 −プロピレン三元共重合体
は、熱収縮率が非常に大きい。例えば、エチレン−プロ
ピレンランダム共重合体のみからなる3倍程度に延伸さ
れた繊維は、融点直下の135℃で1分以内に93%の
熱収縮率を示す。同様に、エチレン−ブテン−1 −プロ
ピレン三元共重合体のみからなる3倍程度に延伸された
繊維は、融点直下の135℃で80%の熱収縮率を示
す。よって、熱収縮性を制御するために他のポリマーを
混合することができるが、本願発明においては第一成分
中に含まれるエチレン−プロピレンランダム共重合体及
び/又はエチレン−ブテン−1 −プロピレン三元共重合
体の割合は70重量%以上であることが好ましい。70
重量%未満であると、得られる複合繊維の最大熱収縮率
が50%未満となり、熱収縮が不十分となるからであ
る。ここで最大熱収縮率とは、145℃の雰囲気下に1
分間置いた場合に示す収縮率であり、以下、特に断りの
ない限り「熱収縮率」というときはこの条件下の最大熱
収縮率を指すものとする。
The ethylene-propylene random copolymer and the ethylene-butene-1-propylene terpolymer have extremely high heat shrinkage. For example, a fiber drawn only about 3 times and composed of only an ethylene-propylene random copolymer shows a heat shrinkage of 93% within 1 minute at 135 ° C. just below the melting point. Similarly, a three-fold stretched fiber composed of only the ethylene-butene-1-propylene terpolymer exhibits a heat shrinkage of 80% at 135 ° C. just below the melting point. Therefore, other polymers can be mixed in order to control the heat shrinkability, but in the present invention, the ethylene-propylene random copolymer and / or ethylene-butene-1-propylene terpolymer contained in the first component is used. The proportion of the original copolymer is preferably at least 70% by weight. 70
If the amount is less than 10% by weight, the maximum heat shrinkage of the obtained composite fiber is less than 50%, and the heat shrinkage becomes insufficient. Here, the maximum heat shrinkage rate is 1 at an atmosphere of 145 ° C.
This is the shrinkage rate when the sample is left for one minute. Hereinafter, unless otherwise specified, the term “heat shrinkage rate” refers to the maximum heat shrinkage rate under this condition.

【0010】エチレン−プロピレン共重合体及び/又は
エチレン−ブテン−1 −プロピレン三元共重合体と混合
するポリマーは特に限定されず、これらのポリマーより
も熱収縮性の劣るポリプロピレン等のポリオレフィン系
ポリマーを用いることができる。
The polymer to be mixed with the ethylene-propylene copolymer and / or the ethylene-butene-1-propylene terpolymer is not particularly limited, and a polyolefin-based polymer such as polypropylene which is inferior in heat shrinkage to these polymers. Can be used.

【0011】本発明の複合繊維の第二成分は熱接着成分
で構成される。この熱接着成分は、その融点がエチレン
−プロピレンランダム共重合体の収縮開始温度よりも低
いポリマーで構成されなければならない。但し、エチレ
ン−プロピレンランダム共重合体の熱収縮は、90℃程
度の雰囲気下でも僅かではあるが開始するので、ここで
いう収縮開始温度を厳密に解する必要はなく、その熱収
縮率が10%以内であるような温度であれば収縮開始温
度よりも低い温度であるとみなせる。第二成分に適用し
うるポリマーとしては、ビニル系カルボン酸のモノマー
及び/又はビニル系カルボン酸エステルのモノマー5〜
30重量%とエチレン95〜70重量%からなる融点が
80〜100℃のエチレン共重合体が挙げられる。ここ
でビニル系カルボン酸には、アクリル酸やメタクリル酸
等のモノカルボン酸や、マレイン酸等のジカルボン酸が
含まれ、そのエステルにはアクリル酸メチルや、アクリ
ル酸エチルが含まれる。具体的にはエチレン−アクリル
酸共重合体、エチレン−アクリル酸メチル共重合体、エ
チレン−アクリル酸エチル共重合体、エチレン−メタク
リル酸メチル共重合体、エチレン−メタクリル酸エチル
共重合体、エチレン−アクリル酸メチル−アクリル酸共
重合体等を使用することができる。中でもエチレン−ア
クリル酸メチル共重合体は、融点が低く、アクリル繊維
等の非オレフィン系繊維への熱接着性も良好であること
から最も好ましく適用できる。
The second component of the conjugate fiber of the present invention is composed of a heat bonding component. This heat bonding component must be composed of a polymer whose melting point is lower than the shrinkage onset temperature of the ethylene-propylene random copolymer. However, since the thermal shrinkage of the ethylene-propylene random copolymer starts slightly even under an atmosphere of about 90 ° C., it is not necessary to exactly understand the shrinkage onset temperature here, and the thermal shrinkage rate is 10%. % Can be regarded as a temperature lower than the shrinkage starting temperature. Examples of the polymer applicable to the second component include a vinyl carboxylic acid monomer and / or a vinyl carboxylic acid ester monomer 5
An ethylene copolymer having a melting point of 80 to 100 ° C., which is composed of 30% by weight and 95 to 70% by weight of ethylene, may be used. Here, the vinyl carboxylic acids include monocarboxylic acids such as acrylic acid and methacrylic acid, and dicarboxylic acids such as maleic acid, and the esters thereof include methyl acrylate and ethyl acrylate. Specifically, ethylene-acrylic acid copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene- A methyl acrylate-acrylic acid copolymer or the like can be used. Among them, the ethylene-methyl acrylate copolymer is most preferably applied because it has a low melting point and good thermal adhesion to non-olefin fibers such as acrylic fibers.

【0012】本発明の複合繊維は、第二成分が少なくと
も繊維表面の一部を占めているような構造であれば良
い。例えば、その繊維断面において第一成分と第二成分
が交互に平行に配列された並列型や、第一成分と第二成
分が交互に菊花状に配列されたもの、あるいは第一成分
を芯成分、第二成分を鞘成分とした芯鞘型等から任意に
選択することができる。中でも、芯鞘型とすることが、
接着性の点から最も望ましい。また、両成分の複合比は
容積比で、第一成分/第二成分が3/7〜7/3の範囲
内にあることが、溶融紡糸性および得られる繊維の接着
力、収縮効果、強力の点から望ましい。
The composite fiber of the present invention may have a structure in which the second component occupies at least a part of the fiber surface. For example, in the fiber cross section, the first component and the second component are alternately arranged in parallel in a parallel type, the first component and the second component are alternately arranged in a chrysanthemum shape, or the first component is a core component And a core-sheath type in which the second component is a sheath component. Among them, the core-sheath type,
Most desirable in terms of adhesiveness. In addition, the composite ratio of the two components is a volume ratio, and the ratio of the first component / the second component is in the range of 3/7 to 7/3. It is desirable from the point of view.

【0013】本発明の複合繊維は、紡糸温度190〜3
00℃の範囲で溶融複合紡糸することにより得られる。
また、この温度範囲内において両成分のメルトフローレ
ート値(MFR)が13以上100未満であることが望
ましい。紡糸温度が190℃未満であると溶融紡糸性が
悪くなるため好ましくなく、300℃を超えるとポリマ
ー中に添加されている熱安定剤が分解するため好ましく
ない。また、溶融紡糸の際の両成分のMFRが13未満
では流動性が不十分であり、100を超えると流動性が
大きくなりすぎるため紡糸性が悪くなる。従って、本発
明の複合繊維を紡糸する際には、MFRが13〜100
となるような温度を190〜300℃の範囲で選定し、
その温度で溶融紡糸すればよい。
The conjugate fiber of the present invention has a spinning temperature of 190-3.
It is obtained by melt-compound spinning in the range of 00 ° C.
Further, it is desirable that the melt flow rate value (MFR) of both components is 13 or more and less than 100 within this temperature range. If the spinning temperature is lower than 190 ° C., the melt spinnability deteriorates, which is not preferable. If the spinning temperature is higher than 300 ° C., the heat stabilizer added to the polymer is undesirably decomposed. If the MFR of both components during melt spinning is less than 13, the fluidity is insufficient, and if it exceeds 100, the fluidity becomes too large and the spinnability deteriorates. Therefore, when spinning the conjugate fiber of the present invention, the MFR is 13 to 100.
Is selected within the range of 190 to 300 ° C.
What is necessary is just to melt-spin at that temperature.

【0014】このようにして得られた本発明の複合繊維
は、熱接着及び熱収縮という二つの機能を併有するもの
である。この二つの機能は、二段階の熱処理を経ること
によってそれぞれ個々に発揮される。即ち、まず熱接着
成分の融点より高くかつ熱収縮成分の収縮開始温度より
も低い温度で熱処理することによって、熱接着成分を溶
融して繊維間を接着する。この温度では、熱収縮成分の
熱収縮は10%以内に抑えられているので、熱接着時の
繊維の熱収縮によって発生する種々の問題、例えば不織
布中のクモの巣状の密度ムラ等が生じることもなく、本
発明の複合繊維は専ら熱接着性繊維として働き、均質な
熱接着が可能となる。熱接着の際の具体的に望ましい加
熱温度は90〜100℃である。100℃を超えると熱
収縮成分の収縮が開始するためである。
The conjugate fiber of the present invention thus obtained has both functions of heat bonding and heat shrinkage. These two functions are exerted individually by two-stage heat treatment. That is, first, heat treatment is performed at a temperature higher than the melting point of the heat bonding component and lower than the shrinkage start temperature of the heat shrinking component, thereby melting the heat bonding component and bonding the fibers. At this temperature, since the heat shrinkage of the heat shrinkage component is suppressed to within 10%, various problems caused by the heat shrinkage of the fiber at the time of heat bonding, for example, a spider web-like density unevenness in the nonwoven fabric may occur. Instead, the conjugate fiber of the present invention functions exclusively as a heat-adhesive fiber, and enables uniform heat bonding. A specific desirable heating temperature at the time of thermal bonding is 90 to 100 ° C. This is because the heat shrinkage component starts to shrink when the temperature exceeds 100 ° C.

【0015】続いて、熱収縮成分の収縮開始温度よりも
高い温度で熱処理を施し、積極的に熱収縮させる。この
熱収縮は、すでに熱接着が完了された状態で行われるた
め、もはや熱収縮により発生する密度ムラ等を考慮する
必要がなく、均一な状態で達成される。熱収縮の際の具
体的に望ましい加熱温度(T℃)は、100<T<=T
m+30の範囲内である。100℃未満では、熱収縮が
不十分であり、Tm+30℃を超えると繊維が完全に溶
融し収縮応力が著しく低下するためである。
Subsequently, a heat treatment is performed at a temperature higher than the shrinkage starting temperature of the heat shrinkage component, so that the heat shrinkage is positively caused. Since the heat shrinkage is performed in a state where the heat bonding is already completed, it is no longer necessary to consider density unevenness or the like caused by the heat shrinkage, and the heat shrinkage is achieved in a uniform state. A specific desirable heating temperature (T ° C.) at the time of heat shrinkage is 100 <T <= T
m + 30. If the temperature is lower than 100 ° C., the heat shrinkage is insufficient, and if it exceeds Tm + 30 ° C., the fiber is completely melted and the shrinkage stress is significantly reduced.

【0016】本発明の複合繊維は、種々の態様で使用す
ることができ、他の繊維と混綿して使用してもよい。例
えば、他の合成繊維と本発明の複合繊維を混綿してウェ
ブとした後に熱処理を施せば、高密度な熱接着不織布を
得ることができ、レーヨンやパルプ等と混綿して湿式抄
造し、この抄造シートに熱処理を施せば、嵩高な湿式不
織布もしくは紙を得ることができる。また、本発明の複
合繊維を含む繊維層と非収縮性繊維からなる繊維層を積
層し、これを熱接着により一体化した後、本発明の繊維
を熱収縮させれば、非収縮性繊維層の表面に多数の皺が
形成された多皺不織布となすことができる。
The conjugate fiber of the present invention can be used in various modes, and may be used by mixing with other fibers. For example, if another synthetic fiber and the composite fiber of the present invention are mixed and made into a web and then subjected to heat treatment, a high-density heat-bonded nonwoven fabric can be obtained. By subjecting the sheet to heat treatment, a bulky wet nonwoven fabric or paper can be obtained. In addition, a fiber layer containing the conjugate fiber of the present invention and a fiber layer made of non-shrinkable fiber are laminated and integrated by heat bonding, and then the fiber of the present invention is heat-shrinked to obtain a non-shrinkable fiber layer. Can be formed into a multi-wrinkled nonwoven fabric having a large number of wrinkles formed on the surface thereof.

【0017】[0017]

【作用】本発明において、第一成分は熱収縮成分として
作用し、第二成分は熱接着成分として作用する。よって
この繊維を使用して不織布を構成した場合、第二成分
は、熱処理によって繊維間を熱接着し、不織布の強力を
決定する要素となり、第一成分は、収縮して不織布の密
度を高める働きをする。また、本発明の複合繊維を含む
繊維層と、非収縮性繊維からなる繊維層を積層して不織
布とする場合にあっては、第二成分は、繊維間および繊
維層間の熱接着に専ら寄与し、第一成分は熱収縮して非
収縮性繊維層の表面に多数の皺や凹凸を形成せしめ、不
織布全体を嵩高にする役割を果たすものとなる。
In the present invention, the first component acts as a heat shrink component and the second component acts as a heat bonding component. Therefore, when a non-woven fabric is formed using these fibers, the second component is a heat bonding between the fibers by heat treatment and becomes an element that determines the strength of the non-woven fabric, and the first component shrinks to increase the density of the non-woven fabric. do. In the case where the fiber layer containing the conjugate fiber of the present invention and the fiber layer made of the non-shrinkable fiber are laminated to form a nonwoven fabric, the second component exclusively contributes to the thermal bonding between the fibers and between the fiber layers. However, the first component thermally shrinks to form a large number of wrinkles and irregularities on the surface of the non-shrinkable fiber layer, and plays a role in increasing the bulk of the nonwoven fabric.

【0018】[0018]

【実施例】以下、本発明を実施例を挙げて説明するが、
もとより本発明はこの実施例に限定されるものではな
い。
The present invention will be described below with reference to examples.
Of course, the present invention is not limited to this embodiment.

【0019】[実施例1〜3]融点が133℃、136
℃、140℃のエチレン−プロピレンランダム共重合体
(EP)をそれぞれ第一成分とし、融点92℃のエチレ
ン−アクリル酸メチル共重合体(EMA)を第二成分と
して、第一成分(芯成分)/第二成分(鞘成分)の容積
比が5/5になるように芯鞘型複合繊維を紡糸温度26
0℃で溶融紡糸した。これを50℃の温水中で3.4倍
に延伸し、続いて常温の帯電防止用繊維処理剤を付与し
た。さらにスタッファボックスで機械捲縮加工した後、
60℃のネットコンベヤー式熱風貫通型乾燥機で乾燥
し、51mmの長さに切断してステープル繊維となし
た。ここではエチレン−プロピレンランダム共重合体の
融点が133℃のものを実施例1、136℃のものを実
施例2、140℃のものを実施例3とする。
Examples 1-3: Melting point: 133 ° C., 136
The first component (core component) is composed of an ethylene-propylene random copolymer (EP) at 140 ° C and 140 ° C as a first component, and an ethylene-methyl acrylate copolymer (EMA) having a melting point of 92 ° C as a second component. The core-in-sheath type composite fiber is spun at a spinning temperature of 26 so that the volume ratio of the second component (sheath component) becomes 5/5.
It was melt spun at 0 ° C. This was stretched 3.4 times in warm water at 50 ° C., and subsequently a room temperature antistatic fiber treating agent was applied. After further machine crimping in the staffer box,
It was dried with a 60 ° C. net conveyor hot air penetration dryer and cut into 51 mm lengths to form staple fibers. Here, the ethylene-propylene random copolymer having a melting point of 133 ° C. is referred to as Example 1, the one having a melting point of 136 ° C. is referred to as Example 2, and the one having a melting point of 140 ° C. is referred to as Example 3.

【0020】[実施例4]融点が136℃のエチレン−
プロピレンランダム共重合体を第一成分、融点82℃の
エチレン−アクリル酸メチル共重合体(EMA)を第二
成分として、第一成分(芯成分)/第二成分(鞘成分)
の容積比が5/5となるように芯鞘型複合繊維を紡糸温
度260℃で溶融紡糸した。これを上記実施例1〜3と
同様の用法で後処理を施し、51mmのステープル繊維
となし、実施例4とした。
Example 4 Ethylene having a melting point of 136 ° C.
A first component (core component) / a second component (sheath component) using a propylene random copolymer as a first component and an ethylene-methyl acrylate copolymer (EMA) having a melting point of 82 ° C. as a second component.
The core-sheath type conjugate fiber was melt-spun at a spinning temperature of 260 ° C. so that the volume ratio of the composite fiber became 5/5. This was subjected to a post-treatment in the same manner as in Examples 1 to 3 above to form a staple fiber of 51 mm.

【0021】[実施例5〜7]融点が136℃のエチレ
ン−プロピレンランダム共重合体を第一成分とし、エチ
レン−アクリル酸共重合体(EAA)、エチレン−アク
リル酸エチル共重合体(EEA)、エチレン−アクリル
酸メチル−アクリル酸共重合体(EMAA)、から選ん
だ一種のポリマーを第二成分として、第一成分(芯成
分)/第二成分(鞘成分)の容積比が5/5になるよう
に、芯鞘型複合繊維を紡糸温度260℃で溶融紡糸し
た。これに上記実施例1〜3と同様の方法で後処理を施
し、51mmの長さに切断してステープル繊維となし
た。ここでは、第二成分がエチレン−アクリル酸共重合
体であるものを実施例5、エチレン−アクリル酸エチル
共重合体であるものを実施例6、エチレン−アクリル酸
メチル−アクリル酸共重合体であるものを実施例7とす
る。
Examples 5 to 7 Ethylene-acrylic acid copolymer (EAA), ethylene-ethyl acrylate copolymer (EEA) containing ethylene-propylene random copolymer having a melting point of 136 ° C. as a first component. , A polymer selected from ethylene-methyl acrylate-acrylic acid copolymer (EMAA) as a second component, and the volume ratio of the first component (core component) / the second component (sheath component) is 5/5. Was melt-spun at a spinning temperature of 260 ° C. This was subjected to post-treatment in the same manner as in Examples 1 to 3, and cut into a length of 51 mm to form staple fibers. Here, the second component was an ethylene-acrylic acid copolymer in Example 5, and the ethylene-ethyl acrylate copolymer in Example 6, an ethylene-methyl acrylate-acrylic acid copolymer. An example is referred to as a seventh embodiment.

【0022】[実施例8]エチレン−プロピレンランダ
ム共重合体(EP)70重量%とポリプロピレン(P
P)30重量%とを混合したポリマーを第一成分とし、
エチレン−アクリル酸メチル(EMA)を第二成分とし
て、第一成分(芯成分)/第二成分(鞘成分)が5/5
になるように芯鞘型複合繊維を紡糸温度260℃で溶融
紡糸した。これを上記実施例1〜3と同様の方法で後処
理し、51mmのステープル繊維となした。これを実施
例8とする。
Example 8 70% by weight of an ethylene-propylene random copolymer (EP) and polypropylene (P
P) a polymer mixed with 30% by weight as a first component,
The first component (core component) / the second component (sheath component) is 5/5 with ethylene-methyl acrylate (EMA) as the second component.
The core-sheath type composite fiber was melt-spun at a spinning temperature of 260 ° C. This was post-processed in the same manner as in Examples 1 to 3 above to obtain 51 mm staple fibers. This is Example 8.

【0023】[実施例9]エチレン−ブテン−1 −プロ
ピレン三元共重合体(EBP)を第一成分とし、エチレ
ン−アクリル酸メチル共重合体(EMA)を第二成分と
して、第一成分(芯成分)/第二成分(鞘成分)が5/
5になるように芯鞘型複合繊維を紡糸温度260℃で溶
融紡糸した。これを上記実施例1〜3と同様の方法で後
処理し、51mmのステープル繊維となした。これを実
施例9とする。
Example 9 An ethylene-butene-1-propylene terpolymer (EBP) was used as a first component, and an ethylene-methyl acrylate copolymer (EMA) was used as a second component. The core component) / the second component (sheath component) is 5 /
The core-sheath type composite fiber was melt-spun at a spinning temperature of 260 ° C. so as to obtain a composite fiber of No. 5. This was post-processed in the same manner as in Examples 1 to 3 above to obtain 51 mm staple fibers. This is Example 9.

【0024】[比較例1〜2]高結晶ポリプロピレン
(HCPP)、ポリプロピレン(PP)をそれぞれ第一
成分とし、エチレン−アクリル酸メチル共重合体(EM
A)を第二成分として、第一成分(芯成分)/第二成分
(鞘成分)が5/5になるように芯鞘型複合繊維を紡糸
温度260℃で溶融紡糸した。これを上記実施例1〜3
と同様の方法で後処理し、51mmのステープル繊維と
なした。ここで、高結晶ポリプロピレンを第一成分とし
たものを比較例1、ポリプロピレンを第一成分としたも
のを比較例2とする。
COMPARATIVE EXAMPLES 1-2 High crystalline polypropylene (HCPP) and polypropylene (PP) were used as first components, respectively, and ethylene-methyl acrylate copolymer (EM
Using A) as the second component, the core-in-sheath type composite fiber was melt-spun at a spinning temperature of 260 ° C. such that the ratio of the first component (core component) / second component (sheath component) was 5/5. This was applied to Examples 1 to 3 above.
The post-treatment was carried out in the same manner as described above to obtain 51 mm staple fibers. Here, Comparative Example 1 uses high-crystalline polypropylene as the first component, and Comparative Example 2 uses polypropylene as the first component.

【0025】[比較例3]エチレン−プロピレンランダ
ム共重合体(EP)を第一成分、高結晶ポリエチレン
(HDPE)を第二成分として、第一成分(芯成分)/
第二成分(鞘成分)が5/5になるように芯鞘型複合繊
維を紡糸温度260℃で溶融紡糸した。これを上記実施
例1〜3と同様の方法で後処理し、51mmのステープ
ル繊維となした。これを比較例3とする。
Comparative Example 3 The first component (core component) was prepared by using ethylene-propylene random copolymer (EP) as a first component and high-crystalline polyethylene (HDPE) as a second component.
The core-sheath type conjugate fiber was melt-spun at a spinning temperature of 260 ° C. so that the second component (sheath component) became 5/5. This was post-processed in the same manner as in Examples 1 to 3 above to obtain 51 mm staple fibers. This is referred to as Comparative Example 3.

【0026】ここで上記実施例1〜9および比較例1〜
3の繊維の繊維性能を表1および表2に示す。ここで参
考例として、エチレン−プロピレンランダム共重合体の
みからなる繊維の繊維性能を併せて表2中に示す。ま
た、表中の熱収縮率はいずれもその温度の雰囲気下に繊
維を1分間置いたときの値である。
Here, the above Examples 1 to 9 and Comparative Examples 1 to
Table 1 and Table 2 show the fiber performance of the fiber No. 3. Here, as a reference example, Table 2 also shows the fiber performance of the fiber composed of only the ethylene-propylene random copolymer. The heat shrinkage in the table is a value when the fiber is placed in an atmosphere at that temperature for 1 minute.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[実施例10]実施例1の繊維のみを用い
て、パラレルカードでウェブを作成し、95℃、線圧
0.1kg/cmの熱ロール間にウェブを供給すること
により複合繊維の熱接着成分を溶融させて繊維間を接着
し、目付40g/m2 の不織布を得た。得られた不織布
の強力は2.5kg/cmであった。さらに、この不織布を
熱風貫通型熱加工機を用いて140℃で1分間処理した
ところ、面積が60%収縮すると同時に密度が40%増
加しており、高密度な不織布を得ることができた。
[Example 10] A web was prepared with a parallel card using only the fiber of Example 1, and the web was fed between hot rolls at 95 ° C and a linear pressure of 0.1 kg / cm to form a composite fiber. The heat bonding component was melted to bond the fibers together to obtain a nonwoven fabric having a basis weight of 40 g / m 2 . The strength of the obtained nonwoven fabric was 2.5 kg / cm. Furthermore, when this nonwoven fabric was treated at 140 ° C. for 1 minute using a hot air penetration type thermal processing machine, the area shrank by 60% and the density increased by 40%, so that a high-density nonwoven fabric could be obtained.

【0030】[実施例11]実施例1の繊維のみを用い
て、パラレルカードで目付30g/m2 のウェブを形成
した。これをポリプロピレンからなる目付40g/m2
のスパンボンド不織布と重ね合わせて、95℃、線圧
0.1kg/cmの熱ロール間に供給することにより、
ウェブ中の繊維間およびウェブとスパンボンド不織布間
を熱接着させて両者が一体化した不織布となした。さら
にこの不織布を熱風貫通型熱加工機を用いて140℃で
1分間処理したところ、実施例1の繊維が熱収縮し、そ
の収縮力によりスパンボンド不織布とウェブ間に部分的
な剥離が生じたために、スパンボンド不織布に多数の皺
が形成された多皺不織布を得ることができた。
Example 11 A web having a basis weight of 30 g / m 2 was formed with a parallel card using only the fibers of Example 1. This is a basis weight of 40 g / m 2 made of polypropylene.
By superimposing with a spunbonded non-woven fabric of 95 ° C. and supplying between hot rolls at a linear pressure of 0.1 kg / cm,
Thermal bonding was performed between the fibers in the web and between the web and the spunbonded nonwoven fabric to form a nonwoven fabric in which both were integrated. Furthermore, when this nonwoven fabric was treated at 140 ° C. for 1 minute using a hot air penetration type thermal processing machine, the fibers of Example 1 were thermally contracted, and the contraction force caused partial separation between the spunbonded nonwoven fabric and the web. Furthermore, a multi-wrinkled non-woven fabric having a large number of wrinkles formed on the spun-bonded non-woven fabric was obtained.

【0031】[実施例12]実施例1および表2中の参
考例と同一の繊維を溶融紡糸し、延伸した後、紙用分散
性改良繊維処理剤を付与し、6mm長に切断してそれぞ
れ紙用原料とした。この実施例1の繊維からなる紙用原
料15部と、参考例の繊維からなる紙用原料15部、お
よびパルプ70部を水中に入れ、さらにサイジング剤と
表面張力低下剤を添加してよく攪拌した後、抄造した。
この抄造シートを100℃のヤンキードライヤーで乾燥
した後、135℃の熱風貫通型熱加工機中で処理したと
ころ、厚みが熱処理前の1.5倍となり、嵩高な紙を得
ることができた。
Example 12 The same fibers as those in Example 1 and Reference Example in Table 2 were melt-spun and stretched, and then a dispersibility improving fiber treating agent for paper was applied. Raw material for paper. 15 parts of the paper raw material composed of the fiber of Example 1, 15 parts of the paper raw material composed of the fiber of the reference example, and 70 parts of pulp were put into water, and a sizing agent and a surface tension reducing agent were further added thereto and mixed well. After that, papermaking was performed.
The papermaking sheet was dried with a 100 ° C. Yankee dryer and then processed in a 135 ° C. hot air penetration type thermal processing machine. As a result, the thickness became 1.5 times that before the heat treatment, and bulky paper could be obtained.

【0032】[0032]

【発明の効果】本発明は、熱接着性および熱収縮性を併
有する複合繊維であり、熱接着成分の融点で熱処理をし
た後に熱収縮成分の収縮温度で熱処理をする、つまり二
段階の熱処理を施すことによって、熱接着処理と熱収縮
処理を分離して行うことができるという特徴を有する。
従って、これを用いて不織布を形成する場合、熱接着性
繊維を混綿する必要がなく、また、熱接着の際に熱収縮
の影響を受けないので、均質な熱接着不織布を得ること
ができる。そして、熱接着後は、熱収縮繊維として利用
することができ、従来より知られている方法でもって、
高密度不織布や嵩高紙、多皺不織布となすことができる
のである。
The present invention relates to a conjugate fiber having both heat bonding property and heat shrinkability, wherein heat treatment is performed at the melting point of the heat bonding component and then heat treatment at the shrinking temperature of the heat shrinking component. Is characterized in that the heat bonding process and the heat shrinking process can be performed separately.
Therefore, when a nonwoven fabric is formed using this, it is not necessary to mix the heat-adhesive fibers, and since there is no influence of heat shrinkage during the heat bonding, a uniform heat-bonded nonwoven fabric can be obtained. And after heat bonding, it can be used as a heat-shrinkable fiber, and by a conventionally known method,
High-density nonwoven fabric, bulky paper, and multi-wrinkled nonwoven fabric can be formed.

【0033】このように本発明の複合繊維は、熱収縮性
繊維の熱接着不織布への汎用を可能にしたものである。
そしてその熱収縮特性を利用することにより、例えば、
濾過材、クッション材、ワイパー、おしぼり、壁材、包
装資材などに適した高密度不織布や多皺不織布、あるい
は嵩高紙を得ることができる。
As described above, the conjugate fiber of the present invention enables the heat-shrinkable fiber to be widely used for a heat-bonded nonwoven fabric.
And by utilizing its heat shrinkage properties, for example,
A high-density nonwoven fabric, multi-wrinkled nonwoven fabric, or bulky paper suitable for a filter material, a cushion material, a wiper, a towel, a wall material, a packaging material, and the like can be obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 融解ピーク温度(Tm℃)が130<T
m<145のエチレン−プロピレンランダム共重合体及
び/又はエチレン−ブテン−1 −プロピレン三元共重合
体を70重量%以上含むポリマーを第一成分、アクリル
酸やメタクリル酸もしくはマレイン酸等のビニル系カル
ボン酸のモノマー及び/又はビニル系カルボン酸エステ
ルのモノマー5〜30重量%とエチレン95〜70重量
%からなるエチレン共重合体を第二成分とし、第一成分
および第二成分が共に繊維の長さ方向に連続し、第二成
分が少なくとも繊維表面の一部を占めることを特徴とす
る熱収縮性複合繊維。
1. A melting peak temperature (Tm ° C.) of 130 <T
a first component containing a polymer containing 70% by weight or more of an ethylene-propylene random copolymer and / or an ethylene-butene-1-propylene terpolymer having m <145, and a vinyl-based polymer such as acrylic acid, methacrylic acid, or maleic acid; An ethylene copolymer comprising 5 to 30% by weight of a monomer of a carboxylic acid and / or a monomer of a vinyl carboxylic acid ester and 95 to 70% by weight of ethylene is used as a second component. A heat-shrinkable conjugate fiber, characterized in that the second component occupies at least a part of the fiber surface.
【請求項2】 第一成分が芯成分、第二成分が鞘成分で
ある芯鞘型複合繊維であることを特徴とする請求項1の
熱収縮性複合繊維。
2. The heat-shrinkable conjugate fiber according to claim 1, wherein the first component is a core-sheath conjugate fiber in which the second component is a sheath component.
JP12171394A 1994-05-10 1994-05-10 Heat-shrinkable conjugate fiber with thermal adhesion Expired - Lifetime JP2984542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12171394A JP2984542B2 (en) 1994-05-10 1994-05-10 Heat-shrinkable conjugate fiber with thermal adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12171394A JP2984542B2 (en) 1994-05-10 1994-05-10 Heat-shrinkable conjugate fiber with thermal adhesion

Publications (2)

Publication Number Publication Date
JPH07305232A JPH07305232A (en) 1995-11-21
JP2984542B2 true JP2984542B2 (en) 1999-11-29

Family

ID=14818043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12171394A Expired - Lifetime JP2984542B2 (en) 1994-05-10 1994-05-10 Heat-shrinkable conjugate fiber with thermal adhesion

Country Status (1)

Country Link
JP (1) JP2984542B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1478510A4 (en) * 2002-01-30 2007-10-10 Spunfab Ltd Adhesive materials and articles containing the same
JP4785700B2 (en) * 2006-10-17 2011-10-05 花王株式会社 Nonwoven manufacturing method

Also Published As

Publication number Publication date
JPH07305232A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
US8105654B2 (en) Thermoadhesive conjugate fibers and nonwoven fabric employing them
KR101187219B1 (en) Fiber for wetlaid non-woven fabric
US5302447A (en) Hotmelt-adhesive fiber sheet and process for producing the same
JP3351266B2 (en) Low temperature adhesive fiber and nonwoven fabric using the same
JP2001502388A (en) Thermal adhesive composite fiber and nonwoven fabric using the same
EP0311860B1 (en) Nonwoven fabric made of heat bondable fibers
JP3815517B2 (en) Tow
JP2984542B2 (en) Heat-shrinkable conjugate fiber with thermal adhesion
JP2002220740A (en) Splittable conjugated fiber, method for producing the same and nonwoven fabric using ultrafine fiber obtained from the same
JP2564713B2 (en) Thermoadhesive conjugate fiber and fiber assembly thereof
JP4748560B2 (en) Thermally adhesive composite fiber and fiber product using the same
JP3525536B2 (en) Modified polyolefin fiber and nonwoven fabric using the same
JP2918988B2 (en) Modified polyolefin ultrafine fiber generating composite fiber and woven or non-woven fabric
JP3025550B2 (en) Heat-separable composite fiber and its fiber aggregate
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP2006124903A (en) Tow
JP3025606B2 (en) Non-woven and bonded non-woven
JP2545248B2 (en) Stretchable non-woven fabric
JP5831840B2 (en) Stretchable nonwoven fabric and method for producing the same
JP2534256B2 (en) Method for producing heat-fusible composite fiber
KR100244623B1 (en) Hotmelt-adhesive fiber sheet and process for producing the same
JPH02169720A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
JP3002383B2 (en) Wet bulky nonwoven fabric and method for producing the same
JP2835457B2 (en) Thermal adhesive composite fiber
JPH06108310A (en) Production of conjugate fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100924

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100924

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110924

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110924

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110924

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120924

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130924

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term