JP2983003B2 - Carbon for lithium battery anode material - Google Patents

Carbon for lithium battery anode material

Info

Publication number
JP2983003B2
JP2983003B2 JP8053715A JP5371596A JP2983003B2 JP 2983003 B2 JP2983003 B2 JP 2983003B2 JP 8053715 A JP8053715 A JP 8053715A JP 5371596 A JP5371596 A JP 5371596A JP 2983003 B2 JP2983003 B2 JP 2983003B2
Authority
JP
Japan
Prior art keywords
parts
less
lithium battery
carbon
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8053715A
Other languages
Japanese (ja)
Other versions
JPH09231974A (en
Inventor
宏 市川
昭 横山
河井隆伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP8053715A priority Critical patent/JP2983003B2/en
Publication of JPH09231974A publication Critical patent/JPH09231974A/en
Application granted granted Critical
Publication of JP2983003B2 publication Critical patent/JP2983003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特にリチウム2次電池
用負極材料として有用で、特定の原料、工程により得ら
れるカーボン材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon material which is particularly useful as a negative electrode material for a lithium secondary battery and is obtained by specific raw materials and processes.

【0002】[0002]

【従来の技術】従来よりリチウム2次電池用負極材料と
して、各種のカーボン材料が使用されている。このカー
ボン材料としては、天然黒鉛、ガラス状炭素、コーク
ス、メソカーボンマイクロビーズがあるが、次に述べる
ような問題がある。
2. Description of the Related Art Conventionally, various carbon materials have been used as negative electrode materials for lithium secondary batteries. Examples of the carbon material include natural graphite, glassy carbon, coke, and mesocarbon microbeads, but have the following problems.

【0003】まず天然黒鉛は、結晶性が高く導電性にす
ぐれているが、天然物であるため灰分含有率が高く、同
一産地であっても、鉱床によって性状のバラツキが大き
い。このため粒度を合わせただけでは、そのまま使用で
きず、酸、アルカリ洗浄処理や、高温下での純化処理に
よる精製が必要になる。かかる精製処理のため、素原料
が安価でも、全体的にはコスト高になるのは避けられな
い。
[0003] First, natural graphite has high crystallinity and excellent conductivity, but since it is a natural product, its ash content is high, and even in the same production area, its properties vary greatly depending on the ore deposit. For this reason, simply adjusting the particle size cannot be used as it is, and requires purification by an acid and alkali washing treatment and a purification treatment at a high temperature. Due to such a purification treatment, even if the raw material is inexpensive, it is inevitable that the cost as a whole will increase.

【0004】また形状が偏平であるため、取り扱いが難
しく、ペースト調整後の極板(銅箔)へのコーティング
性にも問題が残る。さらにコーティングされた面に平行
に黒鉛粒子の層が配向し、異方性となり、電池化した後
の充放電による電池の体積変化が大きく、安全性に問題
が生じる。
[0004] In addition, since the shape is flat, handling is difficult, and there is still a problem in the coating property of the electrode plate (copper foil) after the paste adjustment. Furthermore, the layer of graphite particles is oriented parallel to the coated surface, becomes anisotropic, and the volume change of the battery due to charging and discharging after the battery is formed is large, which causes a problem in safety.

【0005】次にガラス状炭素は電解質は特に選ばない
が、一般に容量が小さく、製造コストも高い。
Next, glassy carbon is not particularly limited in electrolyte, but generally has a small capacity and a high production cost.

【0006】コークスは、電池に使用した場合、容量が
小さく最大でも250mAh/g 程度しか期待できない。
When coke is used for a battery, its capacity is small and only about 250 mAh / g can be expected at the maximum.

【0007】メソカーボンマイクロビーズは、現在、主
に使用されており、球状で充填性にすぐれ、導電性も高
いが、製造プロセス的にコスト高を解決することが困難
である。例えば特開平1−219010号、特開平1−
212208号記載のように、ピッチマトリックスから
メソカーボンマイクロビーズを分離する際に大量の溶剤
を必要とし、熱処理を全て粉体の形態で行うためコスト
高となる。
[0007] Mesocarbon microbeads are currently mainly used, are spherical, have excellent filling properties, and have high conductivity, but it is difficult to solve the high cost in the manufacturing process. For example, Japanese Unexamined Patent Publication No.
As described in 212208, a large amount of solvent is required when separating mesocarbon microbeads from a pitch matrix, and all heat treatments are performed in the form of powder, resulting in high costs.

【0008】[0008]

【発明の課題】上記のような従来の材料の問題点を解決
するために、本発明者は、球状に近く充填性にすぐれ、
リチウム電池のペースト調製も容易で安定した性状であ
り、電池容量も大きく、特にリチウム2次電池負極用材
料として好適なカーボン材料を安価な製造法で提供する
ものである。
In order to solve the problems of the conventional materials as described above, the present inventor has a shape close to a sphere and has excellent filling properties.
It is intended to provide a carbon material suitable for a lithium secondary battery negative electrode material by an inexpensive manufacturing method, which is easy and stable in preparing a paste for a lithium battery and has a large battery capacity.

【0009】[0009]

【課題解決の手段】上記の課題を解決するために、本発
明者が提案するのは、熱膨張率が1〜6×10 −6
−1であるコークスを平均粒径10μm以下にした粉末
100重量部に対して光学的に等方性を示すバインダー
ピッチが20〜50重量部となるように配合・混捏した
組成物を、型込め成形または冷間静水圧成形法により成
形体を得、これを最終的に黒鉛化処理して得た人造黒鉛
ブロックを、粉砕、整粒した平均粒子径5〜30μmで
かつBET比表面積が8m/g以下であるリチウム電
池負極材料用カーボンである。
In order to solve the above-mentioned problems, the present inventors propose that the coefficient of thermal expansion is 1 to 6 × 10 −6 ° C.
-1 is mixed and kneaded so that the binder pitch showing optically isotropicity becomes 20 to 50 parts by weight with respect to 100 parts by weight of a powder having an average particle diameter of 10 μm or less. A molded body was obtained by molding or cold isostatic pressing, and the artificial graphite block obtained by final graphitization was pulverized and sized to obtain an average particle diameter of 5 to 30 μm and a BET specific surface area of 8 m 2. / G or less for a lithium battery negative electrode material.

【0010】以下に本発明のカーボン材料およびその製
造法につき詳細に説明する。まず、本発明のカーボン材
料の原料としては、熱膨張率が1〜6×10 −6 −1
であるコークスを平均粒径10μm以下にした粉末を使
用する。原料のコークスの熱膨張率は、上記の範囲であ
ることが必要で1×10 −6 −1以下であると、相対
的にニードル状の部分の割合(以下N率という)が高く
なり、50%を越えてしまい、黒鉛化処理した後も、天
然黒鉛と同様偏平な形状となり、嵩比重が低くなる。
Hereinafter, the carbon material of the present invention and a method for producing the same will be described in detail. First, as a raw material of the carbon material of the present invention, a coefficient of thermal expansion is 1 to 6 × 10 −6 ° C. −1.
A powder having a coke having an average particle diameter of 10 μm or less is used. Thermal expansion coefficient of the coke raw material, when it is 1 × 10 -6 -1 or less is required in the range of the proportion of relatively needle-like portion (hereinafter referred N ratio) is high, It exceeds 50%, and after the graphitization treatment, it has a flat shape like natural graphite, and its bulk specific gravity is low.

【0011】このため充填性が悪くなり、限られた電池
容積の中へ、充填できる量が少なくなり、電池1個あた
りの容量を低下させる不都合が生じる。また熱膨張率が
6×10 −6 −1を越えると、形状的には球状に近く
なり充填性の面では問題がないが、1グラムあたりの容
量が小さくなり好ましくない。また原料コークスは偏光
顕微鏡下での観察で非晶質の部分が全体の20%以下で
あることが必要で、20%を越えると1グラムあたりの
容量が小さくなるという問題がある。また晶質部分のN
率が50%以下であることが必要で50%を越えると黒
鉛化後の粉砕で偏平な形状の粒子が多くなるので好まし
くない。
[0011] For this reason, the filling property is deteriorated, the amount that can be filled into a limited battery capacity is reduced, and there is a disadvantage that the capacity per battery is reduced. On the other hand, if the coefficient of thermal expansion exceeds 6 × 10 −6 ° C. −1 , the shape becomes almost spherical and there is no problem in terms of filling properties, but the capacity per gram is small, which is not preferable. In addition, the raw coke must have an amorphous portion of 20% or less of the whole when observed under a polarizing microscope, and if it exceeds 20%, there is a problem that the capacity per gram is reduced. The N of the crystalline part
It is necessary that the ratio be 50% or less, and if it exceeds 50%, undesirably, particles having a flat shape increase in pulverization after graphitization.

【0012】上記のような原料コークス100重量部に
結合剤として、光学的に等方性を示すバインダーピッチ
を20〜50重量部加え、配合・混捏するが、バインダ
ーピッチの量が20重量%以下では原料の割合が多くな
りすぎ、良好な成形体を得るのは困難で、仮に得られた
としても、熱処理中に崩壊してしまう問題があり、50
重量部以上では、得られた負極用材料において、非晶質
部分の割合が多くなり、容量の低下を生じ好ましくな
い。
As a binder, 20 to 50 parts by weight of an optically isotropic binder pitch is added to 100 parts by weight of the raw coke as described above, and the mixture is blended and kneaded. In such a case, the ratio of the raw materials becomes too large, and it is difficult to obtain a good molded body. Even if it is obtained, there is a problem that it collapses during the heat treatment.
When the amount is more than the weight part, the ratio of the amorphous portion in the obtained negative electrode material is increased, and the capacity is unfavorably reduced.

【0013】かかる原料コークスとバインダーピッチを
配合、混捏した後、成形をするが、この際の成形法は型
込成形、冷間静水圧成形法であることが必要である。
After mixing and kneading the raw material coke and the binder pitch, molding is performed, and the molding method at this time needs to be die-molding or cold isostatic molding.

【0014】このことは、最終的に得られるカーボンの
長径aと短径bの比a/bが1≦a/b≦3である略球
状であるようにするために必要で、もしも横押し成形な
ど異方性の強い方法を用いると、偏平で充填性の悪いも
のしか得られない。その場合、電池製造時のハンドリン
グ性、ペースト化後のコーティング性に問題が生じ得る
とともに、コーティング後、粉体がX−Y平面方向に異
方性のある配列をしてしまうので、充放電時に電池の膨
張収縮が顕著で安全上問題がある。
This is necessary in order that the ratio a / b of the major axis a to the minor axis b of the finally obtained carbon is approximately spherical with 1 ≦ a / b ≦ 3. When a method with strong anisotropy such as molding is used, only a flat and poorly filling material can be obtained. In such a case, problems may arise in the handling properties during battery production and the coating properties after the formation of the paste, and after coating, the powders are arranged anisotropically in the XY plane direction. The expansion and contraction of the battery is remarkable, and there is a safety problem.

【0015】上記のように成形した後、熱風循環炉で空
気酸化処理して、さらに最終的に黒鉛化処理して人造黒
鉛ブロックを得、これを粉砕、整粒して長径aと短径b
の比a/bが1≦a/b≦3である略球状のカーボン材
料を得る。黒鉛化の処理温度は2000〜2200℃の
半黒鉛化処理温度では、最終的に得られるカーボンの結
晶性が低く、電池容量が小さくなる問題が生じる。この
粉砕では、粗粉砕、中粉砕については、ジョークラッシ
ャー、ハンマーミル、ローラーミルなどの衝撃力による
粉砕方式を用いてよいが、最終の微粉砕工程で、このよ
うな粉砕法を用いると、BET比表面積が8m2 /g以
下すなわち表面が平滑な材料が得られない。
After being molded as described above, it is subjected to an air oxidation treatment in a hot air circulating furnace, and finally to a graphitization treatment to obtain an artificial graphite block, which is crushed and sized to form a major axis a and a minor axis b.
To obtain a substantially spherical carbon material having a ratio a / b of 1 ≦ a / b ≦ 3. When the graphitization treatment temperature is a semi-graphitization treatment temperature of 2000 to 2200 ° C., the crystallinity of the finally obtained carbon is low, and there is a problem that the battery capacity is reduced. In this pulverization, for coarse pulverization and medium pulverization, a pulverization method using an impact force such as a jaw crusher, a hammer mill, or a roller mill may be used. However, if such a pulverization method is used in the final fine pulverization step, BET A material having a specific surface area of 8 m 2 / g or less, that is, a material having a smooth surface cannot be obtained.

【0016】電池製造時にペースト化するときに加える
バインダーの能力を有効に発現させ、更に流動性がよ
く、むらなく、均質にコーティングできるようにするた
め、粉砕の最終工程では、粒子同士を衝突させたり、粉
砕機内部の側壁に添わせるような運動をしながら、粒子
の角をこそぎ取っていく様なメカニズムを有する粉砕方
式が好ましい。
In the final step of pulverization, the particles are collided with each other in order to effectively express the ability of the binder to be added when forming a paste during battery production, and to further improve the fluidity, to provide uniform coating. It is preferable to use a pulverization method having a mechanism for scraping off the corners of the particles while moving the particles along the side wall inside the pulverizer.

【0017】具体的には、ボールミルやジェットミルの
ような方法や、更に低比表面積化するために、これらの
粉砕を行った後、引き続いて、金属やセラミックのビー
ズ(粉砕用媒体)を含む,高周速撹拌機の中に投入し
て、短時間撹拌処理を行うことが挙げられる。但し、粉
体銘柄により粉砕法がかわるので、上記の方法に限定す
るものではない。
[0017] Specifically, a method such as a ball mill or a jet mill, or pulverization of these in order to further reduce the specific surface area, subsequently includes metal or ceramic beads (a pulverizing medium). , Into a high peripheral speed stirrer for short-time stirring. However, the method is not limited to the above method since the pulverization method varies depending on the powder brand.

【0018】上記のような製造工程で得られたカーボン
材料は表面に微少な凹凸のない平滑なものでBET比表
面積が8m2 /g以下である。負極材料はバインダー
(例えばポリフッ化ビニリデン、ポリテトラフルオロエ
チレン、ポリエチレン等)と練り合わせてペースト状に
した後、極板(集電材)である銅箔に塗工するが、この
際、比表面積が大きいと粉体が吸収してしまうバインダ
ー量が多くなりコーティング性に難がでる。
The carbon material obtained by the above-mentioned production process is smooth without fine irregularities on the surface and has a BET specific surface area of 8 m 2 / g or less. The negative electrode material is kneaded with a binder (for example, polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, or the like) to form a paste, and then applied to a copper foil as an electrode plate (current collector). In this case, the specific surface area is large. In addition, the amount of binder absorbed by the powder increases, and the coating property becomes difficult.

【0019】また、バインダーを増量して流動性を調整
しても、今度は電極の電気抵抗が大きくなり、電池性能
を低下させたりするので問題がある。また比表面積は電
解液との反応性を考えたとき、大きいと、反応表面が大
きくなりガス発生量などが増加し、安全性の点で好まし
くないので極力小さい方が好ましい。
Further, even if the flowability is adjusted by increasing the amount of the binder, there is a problem in that the electric resistance of the electrode is increased and the battery performance is lowered. When the specific surface area is large in consideration of the reactivity with the electrolytic solution, if the specific surface area is large, the reaction surface becomes large and the amount of generated gas is increased, which is not preferable from the viewpoint of safety.

【0020】また材料の形状は略球状であり、粒子の長
径と短径の比a/bは、1≦a/b≦3であることが望
ましいが、更に好ましくは1≦a/b≦2、もっと望ま
しくは1≦a/b≦1.2である。a/bが1に近けれ
ば近いほど、球状に近くなり、充填性(嵩密度)も良く
なり、ペースト化した後のコーテイング性もよくなる。
The shape of the material is substantially spherical, and the ratio a / b of the major axis to the minor axis of the particles is preferably 1 ≦ a / b ≦ 3, more preferably 1 ≦ a / b ≦ 2. , More preferably 1 ≦ a / b ≦ 1.2. The closer a / b is to 1, the closer to a sphere, the better the filling properties (bulk density), and the better the coating properties after forming into a paste.

【0021】[0021]

【発明の効果】【The invention's effect】

【0022】本発明によると球状に近い形状で、表面が
平滑なカーボン材が得られ、リチウム電池用負極材に用
いた場合、充填性にすぐれ、ペースト調製も容易で安定
性状のものが得られ、きわめて好適である。また本発明
のカーボン材料は大量の溶剤を使用したりすることな
く、安価に得られるもので、この点でも産業上有用であ
る。
According to the present invention, a carbon material having a nearly spherical shape and a smooth surface can be obtained. When used for a negative electrode material for a lithium battery, a material having excellent filling properties, easy preparation of a paste, and a stable state can be obtained. It is very suitable. In addition, the carbon material of the present invention can be obtained at low cost without using a large amount of solvent, and is industrially useful in this respect as well.

【0023】[0023]

【実施例】【Example】

実施例1 熱膨張率が2.3×10-6-1、偏光顕微鏡下での観察
における非晶質部分15%、N率45%の石炭系コーク
スを粗粉砕、中粉砕をジョークラッシャー及びローラミ
ルにより行い平均粒子径10μmとした粉末100重量
部と、軟化点と110℃の光学的に等方性(非晶質)を
示す石炭系バインダーピッチ50重量部の割合で配合
し、加熱しながらニーダーで混捏を行って、コークス粉
末の周囲にバインダーピッチを充分にコーティングし
た。
Example 1 Coal-based coke having a thermal expansion coefficient of 2.3 × 10 -6 ° C. -1 , an amorphous portion of 15% as observed under a polarizing microscope, and an N ratio of 45% was coarsely pulverized. 100 parts by weight of a powder having an average particle diameter of 10 μm performed by a roller mill and 50 parts by weight of a coal-based binder pitch having an optically isotropic (amorphous) having a softening point and 110 ° C. are mixed and heated. Kneading was performed with a kneader to sufficiently coat the binder pitch around the coke powder.

【0024】これを金型に仕込み、プレス成形機にて型
込み成形を行って成形体を得た。この成形体を240時
間かけて自己雰囲気下で形状が崩れないように、ゆっく
り1000℃まで昇温し、放冷後、黒鉛化炉に詰め換え
て最終的に黒鉛化処理して人造黒鉛ブロックとした。こ
の人造黒鉛ブロックをジョークラッシャー、ローラーミ
ルにより粗粉砕、中粉砕を行い、100〜300μmと
した。これをさらに、ジェットミルにより平均粒子径1
2μmとし微粉化を行った。
This was charged into a mold and molded by a press molding machine to obtain a molded body. This molded body is heated slowly to 1000 ° C. so that its shape does not collapse under its own atmosphere over 240 hours, and after standing to cool, it is refilled in a graphitization furnace and finally graphitized to form an artificial graphite block. did. This artificial graphite block was roughly pulverized and medium pulverized by a jaw crusher and a roller mill to have a thickness of 100 to 300 μm. This was further subjected to jet milling to obtain an average particle size of 1
It was set to 2 μm and pulverized.

【0025】次いでこの粉体を直径2mmφのアルミナビ
ーズを有効容積の20%仕込んだヘンシェルミキサーに
投入し、粉砕媒体のアルミナビーズと併せて全体の有効
容積の50%を占めるようにした。これを1000rpm
で30分間アルミナビーズと混合した状態で、撹拌処理
を行った後、人造黒鉛粉体とアルミナビーズと分別、乾
式分級機によって整粒し、平均粒子径7μmの粉体を得
た。
Next, this powder was charged into a Henschel mixer containing alumina beads having a diameter of 2 mmφ and 20% of the effective volume, and occupied 50% of the total effective volume together with the alumina beads as a grinding medium. 1000 rpm
After stirring for 30 minutes while mixing with alumina beads, artificial graphite powder and alumina beads were separated and sized by a dry classifier to obtain a powder having an average particle diameter of 7 μm.

【0026】実施例2 熱膨張率が5.8×10-6-1、偏光顕微鏡観察下での
非晶質部20%,N率2%の石炭系コークス100重量
部と軟化点250℃のバインダーピッチを20重量部加
え、擂潰機に投入し、2時間メカノケミカル処理(機械
的混合磨砕処理)を行った後、実施例1と同様な方法で
成形して、熱風循環炉中で空気酸化処理し、最終的に黒
鉛化処理をした後粉砕を行い、ジェットミルにより平均
粒子径11μmの粉体を得た。
Example 2 100 parts by weight of coal-based coke having a coefficient of thermal expansion of 5.8 × 10 -6 ° C. -1 , an amorphous portion of 20% and an N ratio of 2% under a polarizing microscope, and a softening point of 250 ° C. After adding 20 parts by weight of the binder pitch of the above, the mixture was put into a crusher, and subjected to a mechanochemical treatment (mechanical mixing and grinding treatment) for 2 hours. And finally pulverized after graphitization, and a powder having an average particle diameter of 11 μm was obtained by a jet mill.

【0027】実施例3 熱膨張率が1.3×10-6-1、偏光顕微鏡観察下での
非晶質部20%、N率50%の石炭系コークスを粉砕し
て平均粒子径3μmとした粉体100重量部と軟化点1
25℃の石炭系バインダーピッチ40重量部を配合し、
メカノケミカル処理を行った後、ゴム型に投入し、冷間
静水圧成形を行った他は、実施例1と同様な方法で処理
し、最終的に平均粒子径25μmの人造黒鉛粉体を得
た。
Example 3 Coal-based coke having a coefficient of thermal expansion of 1.3 × 10 -6 ° C. -1 , an amorphous part of 20% under a polarizing microscope and an N ratio of 50% was pulverized to an average particle diameter of 3 μm. 100 parts by weight of powder and softening point 1
Compounding 40 parts by weight of coal-based binder pitch at 25 ° C,
After the mechanochemical treatment, the mixture was put into a rubber mold and subjected to cold isostatic pressing, followed by the same method as in Example 1 to finally obtain an artificial graphite powder having an average particle diameter of 25 μm. Was.

【0028】[0028]

【比較例】[Comparative example]

比較例1 実施例1における成形体の最終処理温度が2000℃で
あることだけが異なる人造黒鉛粉体である平均粒子径8
μmの材料を得た。
Comparative Example 1 An artificial graphite powder having an average particle size of 8 which is different only in that the final treatment temperature of the molded body in Example 1 is 2000 ° C.
μm of material was obtained.

【0029】比較例2 熱膨張率が0.6×10-6-1、偏光顕微鏡観察下での
非晶質部分25%,N率80%の石油系コークスを粉砕
した平均粒子径10μmの粉末100重量物と実施例1
で用いたバインダーピッチ50重量部とを配合し混捏し
た後横押し成形によって成形体を得た他は、実施例1と
同様の方法で熱処理、粉砕処理を行い平均粒子径10μ
mの人造黒鉛粉末を得た。
Comparative Example 2 A petroleum-based coke having a coefficient of thermal expansion of 0.6 × 10 −6 ° C. −1 , an amorphous portion of 25% under a polarizing microscope, and an N ratio of 80% was pulverized to an average particle diameter of 10 μm. Example 1 with 100 weights of powder
The mixture was heat-treated and pulverized in the same manner as in Example 1 except that the mixture was kneaded and kneaded with 50 parts by weight of the binder pitch used in Example 1 to obtain a molded product by lateral extrusion.
m of artificial graphite powder was obtained.

【0030】比較例3 熱膨張率が6.5×10-6-1、偏光顕微鏡観察下での
非晶質部分20%,N率0%の石炭系コークスを粉砕し
た平均粒子径5μmの粉末100重量と実施例1で用い
たバインダーピッチ100重量部とを配合、混捏した組
成物を実施例1と同様の方法で処理して平均粒子16μ
mの人造黒鉛粉末を得た。
Comparative Example 3 Coal-based coke having a thermal expansion coefficient of 6.5 × 10 -6 ° C. -1 , an amorphous portion of 20% under a polarizing microscope and an N ratio of 0% was pulverized, and had an average particle diameter of 5 μm. A composition obtained by mixing and kneading 100 parts by weight of the powder and 100 parts by weight of the binder pitch used in Example 1 was treated in the same manner as in Example 1 to obtain an average particle size of 16 μm.
m of artificial graphite powder was obtained.

【0031】比較例4 実施例3で用いたコークス塊を微粉砕せずにそのまま3
000℃で熱処理して人造黒鉛を得た。これを実施例1
と同様な方法で微粉化し、平均粒子径6μmの粉体を得
た。
Comparative Example 4 The coke mass used in Example 3 was
Heat treatment was performed at 000 ° C. to obtain artificial graphite. Example 1
The powder was pulverized in the same manner as described above to obtain a powder having an average particle diameter of 6 μm.

【0032】以上の実施例および比較例において調整さ
れた材料を負極材料に用いて、以下のようにして電池を
作成して特性を表1のように評価した。
Using the materials prepared in the above Examples and Comparative Examples as negative electrode materials, batteries were prepared as follows, and the characteristics were evaluated as shown in Table 1.

【表1】 本来は、炭素材料は、負極として用いるが、本試験では
対極にリチウム金属を用いたために、Li金属を負極と
し、炭素材料は正極として評価した。電極の製造は、調
整された炭素材料90重量部と、ポリフッ化ビニリデン
10重量部にN−メチル−2−ピロリドンを併せて三本
ロールにて練り、ペースト化し、これをコーターを用い
て銅箔上に塗工し、乾燥させた。まずここまでの段階
で、ペースト状物質の銅箔への塗工性について、外観検
査、密着性を確認した。その結果を表2に示す。
[Table 1] Originally, the carbon material was used as the negative electrode. However, in this test, since lithium metal was used for the counter electrode, Li metal was used as the negative electrode, and the carbon material was evaluated as the positive electrode. The electrode is manufactured by kneading 90 parts by weight of the prepared carbon material and 10 parts by weight of polyvinylidene fluoride with N-methyl-2-pyrrolidone with a three-roll mill, forming a paste, and using a coater to form a copper foil. Coated on top and dried. First, at the stage up to this point, the appearance inspection and the adhesion were confirmed for the coatability of the paste-like substance to the copper foil. Table 2 shows the results.

【表2】 [Table 2]

【0033】乾燥後、銅箔より剥離させ、3cmの面
積になるように円形に打ち抜き、SUS綱と共に加圧成
形して正極とした。対極としてLi金属を用いて電解液
として1MLiC10 −EC/DEC(体積比1:
1)を用いて、二極式試験セルを構成して、定電流で充
放電サイクル試験を行った。測定条件は電圧範囲0〜
1.5V,電流密度0.1mA/cm、温度30℃で
ある。試験結果を表3にまとめて示す。
After drying, it was peeled off from the copper foil, punched out in a circular shape so as to have an area of 3 cm 2 , and pressed together with a SUS rope to form a positive electrode. 1MLi C10 4 -EC / DEC (volume ratio as the electrolyte using Li metal as a counter electrode 1:
Using 1), a bipolar test cell was constructed, and a charge / discharge cycle test was performed at a constant current. The measurement conditions are 0 to 0
1.5 V, current density 0.1 mA / cm 2 , temperature 30 ° C. The test results are summarized in Table 3.

【表3】 [Table 3]

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱膨張率が1〜6×10 −6 −1である
コークスを平均粒径10μm以下にした粉末100重量
部に対して光学的に等方性を示すバインダーピッチが2
0〜50重量部となるように配合・混捏した組成物を、
型込め成形または冷間静水圧成形法により成形体を得、
熱風循環炉で空気酸化処理を行い、これを最終的に黒鉛
化処理して得た人造黒鉛ブロックを、粉砕、整粒した平
均粒子径5〜30μmでかつBET比表面積が8m
g以下であるリチウム電池負極材料用カーボン。
1. A binder pitch having optical isotropy of 100 parts by weight of a coke having a coefficient of thermal expansion of 1 to 6 × 10 −6 ° C. -1 having an average particle diameter of 10 μm or less has a binder pitch of 2 parts.
The composition blended and kneaded so as to be 0 to 50 parts by weight,
A molded body is obtained by embedding molding or cold isostatic pressing,
An artificial graphite block obtained by performing an air oxidation treatment in a hot air circulating furnace and finally graphitizing the resulting mixture is pulverized and sized, and has an average particle diameter of 5 to 30 μm and a BET specific surface area of 8 m 2 /
g or less for a lithium battery negative electrode material.
【請求項2】粒子の長径aと短径bの比a/bが1≦a
/b≦3であることを特徴とする請求項1記載のリチウ
ム電池負極材料用カーボン。
2. The ratio a / b of the major axis a to the minor axis b of the particles is 1 ≦ a.
2. The carbon for a negative electrode material of a lithium battery according to claim 1, wherein / b ≦ 3.
【請求項3】偏光顕微鏡下での観察で、非晶質部分が全
体の20%以下で、かつ晶質部分のニードル状の部分の
割合(以下N率という)が50%以下であるコークスを
用いた請求項1記載のリチウム電池負極材料用カ−ボ
ン。
3. A coke having an amorphous portion of 20% or less and a crystalline portion having a needle-like portion (hereinafter referred to as N ratio) of 50% or less, as observed under a polarizing microscope. The carbon for a negative electrode material of a lithium battery according to claim 1 used.
JP8053715A 1996-02-19 1996-02-19 Carbon for lithium battery anode material Expired - Fee Related JP2983003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8053715A JP2983003B2 (en) 1996-02-19 1996-02-19 Carbon for lithium battery anode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8053715A JP2983003B2 (en) 1996-02-19 1996-02-19 Carbon for lithium battery anode material

Publications (2)

Publication Number Publication Date
JPH09231974A JPH09231974A (en) 1997-09-05
JP2983003B2 true JP2983003B2 (en) 1999-11-29

Family

ID=12950536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8053715A Expired - Fee Related JP2983003B2 (en) 1996-02-19 1996-02-19 Carbon for lithium battery anode material

Country Status (1)

Country Link
JP (1) JP2983003B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141905A1 (en) 2006-06-02 2007-12-13 Nippon Carbon Co., Ltd. Negative electrode active material for lithium ion rechargeable battery, and negative electrode
WO2008010312A1 (en) 2006-07-19 2008-01-24 Nippon Carbon Co., Ltd. Negative electrode active material and negative electrode for lithium ion rechargeable battery
WO2019186831A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Method for manufacturing negative electrode material for lithium-ion secondary battery, and method for manufacturing lithium-ion secondary battery
US11881584B2 (en) 2019-04-02 2024-01-23 Lg Energy Solution, Ltd. Negative electrode active material, preparation method thereof, negative electrode and secondary battery both including same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160215A1 (en) 2002-01-31 2003-08-28 Zhenhua Mao Coated carbonaceous particles particularly useful as electrode materials in electrical storage cells, and methods of making the same
US7563543B2 (en) 2003-07-16 2009-07-21 The Kansai Coke And Chemicals Co., Ltd. Negative electrode of lithium ion secondary battery obtained by isostatically pressing a spherical graphite to eliminate voids therein
US7785661B2 (en) 2003-12-19 2010-08-31 Conocophillips Company Methods of preparing composite carbon-graphite-silicon particles and using same
US7618678B2 (en) 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
JP5596254B2 (en) * 2006-08-31 2014-09-24 東洋炭素株式会社 Carbon material for negative electrode of lithium ion secondary battery, carbon material for negative electrode of low crystalline carbon impregnated lithium ion secondary battery, negative electrode plate, and lithium ion secondary battery
JP2012216545A (en) * 2011-03-30 2012-11-08 Mitsubishi Chemicals Corp Graphite particle for nonaqueous secondary battery and method for producing the same, negative electrode and nonaqueous secondary battery
EP2527773B1 (en) * 2011-05-27 2017-05-24 SGL Carbon SE Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising C and Si.
JP6274390B2 (en) * 2012-10-24 2018-02-07 東海カーボン株式会社 Method for producing graphite powder for negative electrode material of lithium secondary battery
JP2016136451A (en) * 2013-04-09 2016-07-28 株式会社クレハ Manufacturing method of negative electrode material for nonaqueous electrolyte secondary battery
KR20150065041A (en) * 2013-12-04 2015-06-12 (주)포스코켐텍 Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery using the same
CN107930830B (en) * 2017-12-16 2023-05-02 江西正拓新能源科技股份有限公司 Artificial graphite negative electrode material production system
US20230216052A1 (en) * 2020-06-18 2023-07-06 Eneos Corporation Artificial graphite material for lithium ion secondary battery negative electrode, and production method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007141905A1 (en) 2006-06-02 2007-12-13 Nippon Carbon Co., Ltd. Negative electrode active material for lithium ion rechargeable battery, and negative electrode
WO2008010312A1 (en) 2006-07-19 2008-01-24 Nippon Carbon Co., Ltd. Negative electrode active material and negative electrode for lithium ion rechargeable battery
US10283775B2 (en) 2006-07-19 2019-05-07 Nippon Carbon Co., Ltd. Negative electrode active material for lithum ion rechargeable battery and negative electrode using the same
US11276858B2 (en) 2006-07-19 2022-03-15 Nippon Carbon Co., Ltd. Negative electrode active material for lithium ion rechargeable battery and negative electrode using the same
WO2019186831A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Method for manufacturing negative electrode material for lithium-ion secondary battery, and method for manufacturing lithium-ion secondary battery
JPWO2019186831A1 (en) * 2018-03-28 2021-03-18 昭和電工マテリアルズ株式会社 Manufacturing method of negative electrode material for lithium ion secondary battery and manufacturing method of lithium ion secondary battery
JP7238885B2 (en) 2018-03-28 2023-03-14 株式会社レゾナック Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
US11881584B2 (en) 2019-04-02 2024-01-23 Lg Energy Solution, Ltd. Negative electrode active material, preparation method thereof, negative electrode and secondary battery both including same

Also Published As

Publication number Publication date
JPH09231974A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP2983003B2 (en) Carbon for lithium battery anode material
CN111164803B (en) Silicon-based negative electrode material for secondary battery, preparation method of silicon-based negative electrode material and secondary battery
US9666863B2 (en) Nano silicon-carbon composite material and preparation method thereof
JP7028354B2 (en) All-solid-state lithium-ion secondary battery
JP4915687B2 (en) Method for producing negative electrode material for lithium ion secondary battery
KR20190019430A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP7471303B2 (en) Negative electrode active material for lithium secondary battery and method for producing same
CN105280894B (en) The preparation method of carbon-silicon composite material
JP3718072B2 (en) Secondary battery electrode material and method for producing coated body using the same
CN110649264B (en) Silicon-based negative electrode material and preparation method thereof
EP3718968A1 (en) Method of manufacturing composite anode material
KR20190054045A (en) Method for manufacturing negative electrode active material for rechargeable lithium battery, and rechargeable lithium battery including the same
JP2013505547A (en) New silicon-based electrode formulations for lithium ion batteries and methods for obtaining the formulations
CN113206249B (en) Lithium battery silicon-oxygen composite anode material with good electrochemical performance and preparation method thereof
KR20200076504A (en) Method for manufacturing negative electrode material for rechargeable lithium battery
KR102176343B1 (en) Method for manufacturing negative electrode material for rechargeable lithium battery
JP2014139926A (en) Method for manufacturing positive electrode for lithium secondary battery
JP2016115418A (en) Method for using silicon graphite complex particles, material for improvement of discharge capacity of graphite negative electrode for nonaqueous secondary battery, mix particle, electrode and nonaqueous electrolyte secondary battery
JP3597099B2 (en) Consolidated graphite particles, method for producing the same, and negative electrode material for lithium secondary battery
JP6170795B2 (en) Electrode active material, method for producing electrode active material, electrode material, electrode paste, electrode and battery
JP2019186129A (en) Manufacturing method of sulfide solid electrolyte particle
JP2015219989A (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
WO2000022687A1 (en) Carbonaceous material for cell and cell containing the carbonaceous material
JP3567055B2 (en) Lithium cobaltate-based positive electrode active material for lithium secondary batteries
CN112397680A (en) Lithium titanate composite material, preparation method thereof, battery pole piece and lithium ion battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees