JP2014139926A - Method for manufacturing positive electrode for lithium secondary battery - Google Patents

Method for manufacturing positive electrode for lithium secondary battery Download PDF

Info

Publication number
JP2014139926A
JP2014139926A JP2013251750A JP2013251750A JP2014139926A JP 2014139926 A JP2014139926 A JP 2014139926A JP 2013251750 A JP2013251750 A JP 2013251750A JP 2013251750 A JP2013251750 A JP 2013251750A JP 2014139926 A JP2014139926 A JP 2014139926A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary particles
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013251750A
Other languages
Japanese (ja)
Other versions
JP6096101B2 (en
Inventor
Kazuki Maeda
一樹 前田
Shuichi Ozawa
修一 小澤
Nobuyuki Kobayashi
伸行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2013251750A priority Critical patent/JP6096101B2/en
Publication of JP2014139926A publication Critical patent/JP2014139926A/en
Application granted granted Critical
Publication of JP6096101B2 publication Critical patent/JP6096101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a positive electrode for a lithium secondary battery, by which both high energy density and high output characteristics can be achieved.SOLUTION: The method for manufacturing a positive electrode for a lithium secondary battery includes the steps of: preparing positive electrode active material powder that comprises a plurality of primary particles comprising a positive electrode active material having a layered rock salt structure, and includes oriented secondary particles comprising the plurality of primary particles having been oriented; mixing the positive electrode active material powder with a conductive assistant, a binder and a solvent to obtain a positive electrode mixture paste; coating the positive electrode mixture paste on a collector to form a positive electrode layer; and subjecting the positive electrode layer to a press work against the collector, the press-working being performed such that D/D, a ratio of a packing density Dof the positive electrode active material powder in the positive electrode layer relative to a tap density Dof the positive electrode active material powder after the press-working, is 1.15 or more.

Description

本発明は、リチウム二次電池用正極の製造方法に関するものである。   The present invention relates to a method for producing a positive electrode for a lithium secondary battery.

携帯電話やパソコン等の小型化及び軽量化に伴い、これらに使用されるリチウムイオン電池における高エネルギー密度化及び高出力化への要求が高まっている。これらの要求を満たすべく様々な正極が提案されている。   With the reduction in size and weight of mobile phones and personal computers, there are increasing demands for higher energy density and higher output in lithium ion batteries used for these. Various positive electrodes have been proposed to satisfy these requirements.

例えば、特許文献1(特開2011−70994号公報)には、平均粒径が0.05μm以上1μm以下の粒子から構成されるタップ密度が0.8〜3.0g/cmの正極活物質粉末を含み、さらに該正極活物質粉末100重量部に対して、導電剤0.5〜20重量部、バインダー0.5〜10重量部および溶剤10〜120重量部を含む非水電解質二次電池用正極合剤が開示されている。このように微粒を正極活物質粉末として用いることで、電解液との反応面積に相当する比表面積を大きくして出力特性を向上できる。しかしながら、比表面積に比例して導電助剤を多く添加して導電性を確保する必要があるため、それだけエネルギー密度が低下するものと考えられる。 For example, Patent Document 1 (Japanese Unexamined Patent Application Publication No. 2011-70994) discloses a positive electrode active material having a tap density of 0.8 to 3.0 g / cm 3 composed of particles having an average particle diameter of 0.05 μm or more and 1 μm or less. A non-aqueous electrolyte secondary battery containing a powder and further containing 0.5 to 20 parts by weight of a conductive agent, 0.5 to 10 parts by weight of a binder, and 10 to 120 parts by weight of a solvent with respect to 100 parts by weight of the positive electrode active material powder A positive electrode mixture is disclosed. Thus, by using the fine particles as the positive electrode active material powder, the specific surface area corresponding to the reaction area with the electrolytic solution can be increased to improve the output characteristics. However, since it is necessary to add a conductive additive in proportion to the specific surface area to ensure conductivity, it is considered that the energy density decreases accordingly.

また、特許文献2(特開2012−146590号公報)には、平均粒子径(D50)18〜25μmの微粒と平均粒子径(D50)3〜7μmの粗粒とを9:1〜6:4の配合比率で含有する正極活物質を使用した正極が開示されている。この正極では、微粒と粗粒を混合して高エネルギー密度化を実現している。しかしながら、正極材中における粗粒比率が高いため比表面積が小さくなり、それだけ出力特性が低下するものと考えられる。 Further, Patent Document 2 in the (JP 2012-146590 JP), the average particle diameter (D 50) fine and average particle diameter of 18~25μm (D 50) 3~7μm of coarse and a 9: 1 to 6 A positive electrode using a positive electrode active material contained in a mixing ratio of 4: 4 is disclosed. In this positive electrode, high energy density is realized by mixing fine particles and coarse particles. However, it is considered that since the ratio of coarse particles in the positive electrode material is high, the specific surface area is reduced, and the output characteristics are reduced accordingly.

ところで、配向した複数の一次粒子で構成される二次粒子からなるリチウムイオン電池用正極活物質も知られている。例えば、特許文献3(国際公開第2012/137534号公報)には、層状岩塩構造を有する正極活物質で構成される複数の一次粒子からなり、該複数の一次粒子が配向されてなる二次粒子を含んでなる正極活物質粉末が開示されている。   By the way, a positive electrode active material for a lithium ion battery comprising secondary particles composed of a plurality of oriented primary particles is also known. For example, Patent Document 3 (International Publication No. 2012/137534) includes a plurality of primary particles composed of a positive electrode active material having a layered rock salt structure, and the plurality of primary particles are oriented. A positive electrode active material powder comprising is disclosed.

特開2011−70994号公報JP 2011-70994 A 特開2012−146590号公報JP 2012-146590 A 国際公開第2012/137534号公報International Publication No. 2012/137534

本発明者らは、今般、層状岩塩構造を有する複数の一次粒子が配向されてなる配向二次粒子を含む正極活物質粉末を用い、かつ、正極層形成後、プレス工程により粒子が割れる又は潰れるまで電極を高密度化させることにより、高エネルギー密度と高出力特性を両立させた電極を製造できるとの知見を得た。   The present inventors have recently used a positive electrode active material powder containing oriented secondary particles in which a plurality of primary particles having a layered rock salt structure are oriented, and after forming the positive electrode layer, the particles are cracked or crushed by a pressing process. It has been found that by increasing the density of the electrode, an electrode having both high energy density and high output characteristics can be produced.

したがって、本発明の目的は、高エネルギー密度と高出力特性を両立させた、リチウム二次電池用正極電極の製造方法を提供することにある。   Accordingly, it is an object of the present invention to provide a method for producing a positive electrode for a lithium secondary battery that achieves both high energy density and high output characteristics.

本発明の一態様によれば、層状岩塩構造を有する正極活物質で構成される複数の一次粒子からなり、該複数の一次粒子が配向されてなる配向二次粒子を含む正極活物質粉末を用意する工程と、
前記正極活物質粉末を、導電助剤、バインダー及び溶媒と混合して正極合剤ペーストを得る工程と、
前記正極合剤ペーストを集電体上に塗布して正極層を形成する工程と、
前記正極層を前記集電体に向かってプレス加工し、その際、プレス加工後の正極層における正極活物質粉末の充填密度Dの、前記正極活物質粉末のタップ密度Dに対する比D/Dが1.15以上になるように前記プレス加工が行われる工程と、
を含む、リチウム二次電池用正極の製造方法が提供される。
According to one aspect of the present invention, a positive electrode active material powder comprising a plurality of primary particles composed of a positive electrode active material having a layered rock salt structure and including oriented secondary particles in which the plurality of primary particles are oriented is prepared. And a process of
Mixing the positive electrode active material powder with a conductive additive, a binder and a solvent to obtain a positive electrode mixture paste;
Applying the positive electrode mixture paste on a current collector to form a positive electrode layer;
The positive electrode layer is pressed toward the current collector, and at this time, the ratio D 2 of the packing density D 2 of the positive electrode active material powder in the positive electrode layer after the pressing to the tap density D 1 of the positive electrode active material powder. / a step D 1 is made the press working so as to at least 1.15,
The manufacturing method of the positive electrode for lithium secondary batteries containing is provided.

本発明において正極活物質粉末として用いられる配向二次粒子を説明するための概念図である。It is a conceptual diagram for demonstrating the orientation secondary particle used as a positive electrode active material powder in this invention. 例1(比較)において得られた電極の断面を撮影したSEM画像である。It is a SEM image which image | photographed the cross section of the electrode obtained in Example 1 (comparison). 例4において得られた電極の断面を撮影したSEM画像である。6 is a SEM image obtained by photographing a cross section of an electrode obtained in Example 4. 例4において得られた電極の断面を撮影したSEM画像の拡大図である。10 is an enlarged view of an SEM image obtained by photographing a cross section of an electrode obtained in Example 4. FIG. 例1〜19において測定された抵抗値と配向二次粒子の比率との関係を示すグラフである。It is a graph which shows the relationship between the resistance value measured in Examples 1-19, and the ratio of an orientation secondary particle. 従来技術において正極活物質粉末として用いられる無配向二次粒子を説明するための概念図である。It is a conceptual diagram for demonstrating the non-oriented secondary particle used as a positive electrode active material powder in a prior art.

リチウム二次電池用正極の製造方法
本発明は、リチウム二次電池用正極の製造方法に関するものである。本明細書において、リチウム二次電池は、リチウムイオン二次電池、金属リチウム二次電池等の、リチウムイオンの挿入/脱離による充放電が可能な各種二次電池を包含する用語であるが、典型的にはリチウムイオン二次電池である。
TECHNICAL FIELD The present invention of a positive electrode for a lithium secondary battery, a process for producing a positive electrode for a lithium secondary battery. In this specification, the lithium secondary battery is a term including various secondary batteries that can be charged and discharged by insertion / extraction of lithium ions, such as a lithium ion secondary battery and a metal lithium secondary battery. Typically, it is a lithium ion secondary battery.

本発明の方法においては、まず、層状岩塩構造を有する正極活物質で構成される複数の一次粒子からなり、該複数の一次粒子が配向されてなる配向二次粒子を含む正極活物質粉末を用意する。このような正極活物質粉末の構成が図1に概念的に示される。図1に示されるように、正極活物質粉末10は、複数の一次粒子12から構成される配向二次粒子14を含んでなり、一次粒子12は層状岩塩構造を有する単結晶粒子である。一次粒子12には、層状岩塩構造に起因して、リチウムイオン及び電子が出入りしにくい結晶面である(003)面と、リチウムイオン及び電子が出入りしやすい面(すなわち(003)面以外の面)とが存在する。このため、図1において矢印で示されるように、複数の一次粒子12が、それらのリチウムイオンが出入りしやすい面が略一軸方向に揃うように配向していることで、隣接する一次粒子12,12間でリチウムイオン及び電子が出入りしやすい面(すなわち(003)面以外の面)同士の接触を十分に確保して、リチウムイオン伝導性及び電子伝導性が良好に確保される構成となっている。このような配向二次粒子を含んでなる正極活物質は特許文献3に開示されるように公知の物質である。   In the method of the present invention, firstly, a positive electrode active material powder comprising a plurality of primary particles composed of a positive electrode active material having a layered rock salt structure and including oriented secondary particles in which the plurality of primary particles are oriented is prepared. To do. The structure of such a positive electrode active material powder is conceptually shown in FIG. As shown in FIG. 1, the positive electrode active material powder 10 includes oriented secondary particles 14 composed of a plurality of primary particles 12, and the primary particles 12 are single crystal particles having a layered rock salt structure. Due to the layered rock salt structure, the primary particles 12 have a (003) plane that is difficult for lithium ions and electrons to enter and exit, and a plane that is easy for lithium ions and electrons to enter and exit (that is, a plane other than the (003) plane. ) And exist. For this reason, as indicated by arrows in FIG. 1, the plurality of primary particles 12 are oriented so that the surfaces on which lithium ions easily enter and exit are aligned in a substantially uniaxial direction. The contact between the surfaces where lithium ions and electrons are likely to enter and exit between 12 (that is, surfaces other than the (003) surface) is sufficiently ensured, and lithium ion conductivity and electron conductivity are ensured satisfactorily. Yes. The positive electrode active material comprising such oriented secondary particles is a known material as disclosed in Patent Document 3.

そして、この正極活物質粉末を含む正極合剤ペーストを集電体上に塗布して正極層を形成した後、正極層を集電体に向かってプレス加工する。正極合剤層をローラ等でプレスして高密度化することは、特許文献2にも記述されるように従来より行われている手法ではあるが、本発明者らの知るかぎり、正極活物質二次粒子が割れる又は潰れるほどに強くプレスすることは避けるべきと信じられてきた。これは、特許文献2にも明記されるように、正極活物質粒子を高密度化するために、正極合剤の圧延時に無理に高い圧力で正極合剤層を圧延しようとした場合には、正極活物質粒子に粒子割れが生じて導電性が低下してしまい、サイクル特性ないし出力特性が低下するとの懸念があったためである。これは、図6に示されるような、無数の一次粒子22が無配向に凝集してなる二次粒子24(以下、無配向二次粒子と呼ぶことがある)からなる従来から広く使用される正極活物質粉末20に特に当てはまる。というのも、かかる無配向二次粒子24においては、隣接する一次粒子22,22間でリチウムイオン及び電子の出入りしやすい面が異なる方向を向いているため、接触点における電子伝導がもともと遅く、その上、その接触点を経由する電子伝導パスが、粒界クラックCによって分断されて電子伝導が阻害されるからである。   And after apply | coating the positive mix paste containing this positive electrode active material powder on a collector and forming a positive electrode layer, a positive electrode layer is pressed toward a collector. Pressing the positive electrode mixture layer with a roller or the like to increase the density is a conventional method as described in Patent Document 2, but as far as the present inventors know, the positive electrode active material It has been believed that pressing so hard that the secondary particles break or collapse should be avoided. As specified in Patent Document 2, in order to increase the density of the positive electrode active material particles, when trying to roll the positive electrode mixture layer at a high pressure when rolling the positive electrode mixture, This is because there is a concern that the positive electrode active material particles are cracked, the conductivity is lowered, and the cycle characteristics or output characteristics are lowered. This is widely used in the past, as shown in FIG. 6, which is made up of secondary particles 24 (hereinafter sometimes referred to as non-oriented secondary particles) in which innumerable primary particles 22 are aggregated non-oriented. This is especially true for the positive electrode active material powder 20. This is because, in such non-oriented secondary particles 24, the surfaces where lithium ions and electrons easily enter and exit between the adjacent primary particles 22 and 22 are directed in different directions, so that the electron conduction at the contact point is originally slow, In addition, the electron conduction path passing through the contact point is divided by the grain boundary crack C, and the electron conduction is inhibited.

これに対して、配向二次粒子という極めて特殊な形態の正極活物質粉末を用いる本発明の方法においては、プレス加工が、プレス加工後の正極層における正極活物質粉末の充填密度Dの、正極活物質粉末のタップ密度Dに対する比D/Dが1.15以上になるように行われる。この比率は、配向二次粒子の少なくとも一部が割れる又は潰れる程度にまで敢えて強くプレス加工することを意味するものであり、そうすることで、高エネルギー密度と高出力特性を両立させた正極電極を製造することができる。すなわち、高エネルギー密度は、プレス工程で粒子が割れる又は潰れるほど圧密化することで、正極中に活物質を極めて高密度に充填できることにより実現される。特に、本発明の方法では、プレス工程で粒子を割る又は潰すことで正極活物質の比表面積を増大できるため、大粒径の正極活物質を使用でき、それにより高いエネルギー密度を特に実現しやすい。一方、高出力特性は、プレス工程で配向二次粒子が割れる又は潰れることによる比表面積の増大(すなわち電解液との反応面積の増大)と、プレスによる変形後であっても十分な電子伝導性が確保される配向二次粒子特有の性質とにより実現される。特に、後者は、配向二次粒子を正極活物質として用いたことによる予想外の特性であり、無配向二次粒子には見られない特性である。すなわち、図1に示されるように、無数の一次粒子12が配向してなる二次粒子14からなる正極活物質10においては、隣接する一次粒子12,12間でリチウムイオン及び電子が出入りしやすい面が(好ましくは略一軸方向に)配向しているため、接触点における電子伝導がもともと速い。そして、接触点の一部が粒界クラックCによって分断されたとしても、もともと(好ましくは略一軸方向に)配向しているため、割れた又は潰れた後に残存する接触点及び/又は新たに隣接する一次粒子間で形成される接触点を介して十分な電子伝導性をもたらす電子伝導パスが確保されるためと考えられる。これは、層状岩塩構造を有する配向二次粒子におけるリチウムイオン及び電子が出入りしやすい面が、リチウムイオン及び電子が出入りしにくい面に対して電子伝導度が3桁も大きいという特異な性質を有するため、一次粒子同士の接触が十分でなくとも辛うじて確保さえされていれば十分な電子伝導性が実現できるためと考えられる。 On the other hand, in the method of the present invention using the positive active material powder of a very special form called oriented secondary particles, the press working has a packing density D 2 of the positive active material powder in the positive electrode layer after the press working, The ratio D 2 / D 1 to the tap density D 1 of the positive electrode active material powder is 1.15 or more. This ratio means that the at least part of the oriented secondary particles is intensively pressed to such an extent that it is broken or crushed, and by doing so, a positive electrode that achieves both high energy density and high output characteristics. Can be manufactured. That is, the high energy density is realized by being able to fill the active material in the positive electrode at a very high density by compacting the particles so that the particles are broken or crushed in the pressing process. In particular, in the method of the present invention, since the specific surface area of the positive electrode active material can be increased by cracking or crushing the particles in the pressing step, it is possible to use a positive electrode active material having a large particle size, thereby easily realizing a high energy density. . On the other hand, the high output characteristics include an increase in specific surface area (ie, an increase in the reaction area with the electrolyte) due to cracking or crushing of the oriented secondary particles in the pressing process, and sufficient electron conductivity even after deformation by pressing. This is realized by the properties unique to the oriented secondary particles. In particular, the latter is an unexpected property due to the use of oriented secondary particles as a positive electrode active material, and is a property that is not found in non-oriented secondary particles. That is, as shown in FIG. 1, in the positive electrode active material 10 composed of secondary particles 14 in which innumerable primary particles 12 are aligned, lithium ions and electrons easily enter and exit between adjacent primary particles 12 and 12. Since the plane is oriented (preferably in a substantially uniaxial direction), electron conduction at the contact point is inherently fast. And even if a part of the contact point is divided by the grain boundary crack C, it is originally oriented (preferably in a substantially uniaxial direction), so the contact point remaining after being broken or crushed and / or newly adjacent This is considered to be because an electron conduction path that provides sufficient electron conductivity is secured through contact points formed between the primary particles. This has the unique property that the surface where lithium ions and electrons easily enter and exit the oriented secondary particles having a layered rock salt structure has an electron conductivity that is three orders of magnitude greater than the surface where lithium ions and electrons do not easily enter and exit. Therefore, it is considered that sufficient electronic conductivity can be realized as long as contact between primary particles is not sufficiently ensured.

以下、本発明の方法の各工程について具体的に説明する。   Hereafter, each process of the method of this invention is demonstrated concretely.

(1)正極活物質粉末の準備
層状岩塩構造を有する正極活物質で構成される複数の一次粒子からなり、該複数の一次粒子が配向されてなる配向二次粒子を含む正極活物質粉末を用意する。ここで、「層状岩塩構造」とは、リチウム以外の遷移金属層とリチウム層とが酸素原子の層を挟んで交互に積層された結晶構造、すなわち、リチウム以外の遷移金属のイオン層とリチウムイオン層とが酸化物イオンを挟んで交互に積層された結晶構造(典型的にはα−NaFeO型構造:立方晶岩塩型構造の[111]軸方向に遷移金属とリチウムとが規則配列した構造)をいう。
(1) Preparation of positive electrode active material powder A positive electrode active material powder comprising a plurality of primary particles composed of a positive electrode active material having a layered rock salt structure and including oriented secondary particles in which the plurality of primary particles are oriented is prepared. To do. Here, the “layered rock salt structure” means a crystal structure in which transition metal layers other than lithium and lithium layers are alternately stacked with an oxygen atom layer interposed therebetween, that is, an ion layer of transition metal other than lithium and lithium ions. Crystal structure in which layers are alternately stacked with oxide ions in between (typically α-NaFeO 2 type structure: structure in which transition metal and lithium are regularly arranged in the [111] axis direction of cubic rock salt type structure ).

層状岩塩構造を有するリチウム複合酸化物としては、典型的には、コバルト酸リチウム(LiCoO)を用いることができる。もっとも、コバルトの他にニッケルやマンガン等を含有した固溶体を、正極活物質を構成するリチウム複合酸化物として用いることも可能である。具体的には、ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン酸リチウム、ニッケル・コバルト酸リチウム、コバルト・ニッケル・マンガン酸リチウム、コバルト・マンガン酸リチウム等を、正極活物質を構成するリチウム複合酸化物として用いることが可能である。さらに、これらの材料に、Mg,Al,Si,Ca,Ti,V,Cr,Fe,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ag,Sn,Sb,Te,Ba,Bi等の元素が1種以上含まれていてもよい。 Typically, lithium cobalt oxide (LiCoO 2 ) can be used as the lithium composite oxide having a layered rock salt structure. However, it is also possible to use a solid solution containing nickel, manganese or the like in addition to cobalt as a lithium composite oxide constituting the positive electrode active material. Specifically, lithium nickel oxide, lithium manganate, nickel / lithium manganate, nickel / lithium cobaltate, cobalt / nickel / lithium manganate, cobalt / lithium manganate, etc. It can be used as a product. Further, these materials include Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba. One or more elements such as Bi and Bi may be contained.

好ましい正極活物質は、下記組成式(1):
LiMeO (1)
(式中、0.9≦p≦1.3である。Meは、Mn、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Mg、Zr、B、及びMoからなる群から選択される少なくとも1種類の金属元素である)又は下記組成式(2):
xLiMO−(1−x)LiMeO (2)
(式中、0<x<1及び0.9≦p≦1.3であり、M及びMeは、それぞれ独立して、Mn、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Mg、Zr、B、及びMoからなる群から選択される少なくとも1種類の金属元素である)で表される組成を有する。
A preferred positive electrode active material is the following composition formula (1):
Li p MeO 2 (1)
(Wherein 0.9 ≦ p ≦ 1.3. Me is selected from the group consisting of Mn, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Mg, Zr, B, and Mo. At least one metal element) or the following compositional formula (2):
xLi 2 MO 3 - (1- x) Li p MeO 2 (2)
(Where 0 <x <1 and 0.9 ≦ p ≦ 1.3, and M and Me are each independently Mn, Ti, V, Cr, Fe, Co, Ni, Cu, Al, It is a composition represented by at least one metal element selected from the group consisting of Mg, Zr, B, and Mo.

上記の組成式(1)及び(2)における“Me”は、平均酸化状態が“+3”である少なくとも1種類の金属元素であればよく、Mn、Ni、Co及びFeからなる群から選択された少なくとも1種類の金属元素であることが好ましい。また、上記の組成式(2)における“M”は、平均酸化状態が“+4”である少なくとも1種類の金属元素であればよく、Mn、Zr及びTiからなる群から選択された少なくとも1種類の金属元素であることが好ましい。   “Me” in the above composition formulas (1) and (2) may be at least one metal element having an average oxidation state of “+3”, and is selected from the group consisting of Mn, Ni, Co, and Fe. It is preferable that the metal element is at least one kind. Further, “M” in the above composition formula (2) may be at least one metal element having an average oxidation state of “+4”, and is at least one selected from the group consisting of Mn, Zr and Ti. It is preferable that the metal element.

特に好ましい正極活物質が、下記組成式(3):
Li(Ni,Co,Al)O (3)
(式中、0.9≦p≦1.3、0.6<x≦0.9、0.05≦y≦0.25、0≦z≦0.2、及びx+y+z=1である)で表される組成を有するニッケル−コバルト−アルミニウム系のものである。
Particularly preferred positive electrode active material is the following composition formula (3):
Li p (Ni x, Co y , Al z) O 2 (3)
(Where 0.9 ≦ p ≦ 1.3, 0.6 <x ≦ 0.9, 0.05 ≦ y ≦ 0.25, 0 ≦ z ≦ 0.2, and x + y + z = 1). It is a nickel-cobalt-aluminum system having the composition shown.

上記一般式(3)中、pの好ましい範囲は0.9≦p≦1.3であり、より好ましい範囲は1.0≦p≦1.1であり、このような範囲内であると、高い放電容量を確保しながら、充電時の電池内部のガス発生を抑制することができる。xの好ましい範囲は0.6<x≦0.9であり、より好ましくは0.7〜0.85であり、このような範囲内であると、高い放電容量及び高い安定性を確保することができる。yの好ましい範囲は0.05≦y≦0.25であり、より好ましくは0.10〜0.20であり、このような範囲内であると、結晶構造が安定になるとともに、高い放電容量を確保できる。zの好ましい範囲は0≦z≦0.2であり、より好ましくは0.02〜0.1であり、このような範囲内であると高い放電容量を確保することができる。   In the general formula (3), a preferable range of p is 0.9 ≦ p ≦ 1.3, and a more preferable range is 1.0 ≦ p ≦ 1.1. While ensuring a high discharge capacity, gas generation inside the battery during charging can be suppressed. The preferable range of x is 0.6 <x ≦ 0.9, more preferably 0.7 to 0.85, and within such a range, a high discharge capacity and high stability are ensured. Can do. A preferable range of y is 0.05 ≦ y ≦ 0.25, more preferably 0.10 to 0.20. Within such a range, the crystal structure becomes stable and a high discharge capacity is obtained. Can be secured. A preferable range of z is 0 ≦ z ≦ 0.2, and more preferably 0.02 to 0.1. A high discharge capacity can be ensured within such a range.

正極活物質粉末10に含まれる配向二次粒子14は、(003)面の高い一軸配向性を有しているのが好ましい。「(003)面の配向率」とは、二次粒子内の(003)面の配向割合を百分率で表示したものをいう。すなわち、二次粒子における(003)面の配向率が60%であるということは、当該二次粒子内に含まれる多数の(003)面(層状岩塩構造における(003)面)のうちの6割が互いに平行であることに相当する。よって、この値が高いほど、二次粒子における(003)面の配向度が高い(具体的には、当該二次粒子を構成する多数の単結晶の一次粒子が、それぞれの(003)面が可能な限り互いに平行になるように設けられている)ということができる。一方、この値が低いほど、二次粒子における(003)面の配向度が低い(具体的には、当該二次粒子を構成する多数の単結晶の一次粒子が、それぞれの(003)面が「ばらばら」な方向を向くように設けられている)ということができる。なお、二次粒子には、上述のように多数の一次粒子が含まれている。そして、一次粒子は、単結晶であるので、これ自体についての配向率は問題とならない。そこで、二次粒子内の多数の一次粒子の配向状態を、当該二次粒子全体としての(003)面の配向状態として捉える、という観点から、二次粒子における(003)面の配向率は、「二次粒子における一次粒子の(003)面の配向率」と言い換えることも可能である。(003)面の配向率は、例えば、二次粒子の板面あるいは断面(クロスセクションポリッシャや集束イオンビーム等により加工したもの)について、電子後方散乱回折像法(EBSD)や透過電子顕微鏡(TEM)等を用いて当該二次粒子内の各一次粒子における(003)面の方位を特定し、方位の揃った(±10度以内にある)一次粒子数の、全一次粒子数に対する割合を算出することで、求めることができる。   The oriented secondary particles 14 contained in the positive electrode active material powder 10 preferably have a high (003) plane uniaxial orientation. “Orientation ratio of (003) plane” refers to the percentage of orientation ratio of (003) plane in secondary particles. That is, the orientation ratio of the (003) plane in the secondary particles is 60%, which means that among the many (003) planes ((003) plane in the layered rock salt structure) included in the secondary particles. This corresponds to the fact that the splits are parallel to each other. Therefore, the higher this value, the higher the degree of orientation of the (003) plane in the secondary particles (specifically, the primary particles of a large number of single crystals constituting the secondary particles have their (003) planes It is said that they are provided in parallel to each other as much as possible. On the other hand, the lower this value, the lower the degree of orientation of the (003) plane in the secondary particles (specifically, the primary particles of a large number of single crystals constituting the secondary particles have their (003) planes It is said that it is provided so as to face in a “separate” direction. The secondary particles contain a large number of primary particles as described above. Since the primary particles are single crystals, the orientation rate of the primary particles is not a problem. Therefore, from the viewpoint of capturing the orientation state of a large number of primary particles in the secondary particles as the orientation state of the (003) plane as the whole secondary particles, the orientation ratio of the (003) plane in the secondary particles is In other words, “the orientation ratio of the (003) plane of the primary particles in the secondary particles”. The orientation ratio of the (003) plane is determined by, for example, electron backscatter diffraction imaging (EBSD) or transmission electron microscope (TEM) on the plate surface or cross section of secondary particles (processed by a cross section polisher, a focused ion beam, or the like). ) Etc. are used to specify the orientation of the (003) plane of each primary particle in the secondary particle, and the ratio of the number of primary particles with the same orientation (within ± 10 degrees) to the total number of primary particles is calculated. It can be obtained by doing.

配向二次粒子14においては、これを構成する多数の一次粒子12が、それぞれの(003)面の方位が互いに揃うように(それぞれの(003)面が可能な限り互いに平行になるように)設けられているのが好ましい。具体的には、(003)面の配向率が50%以上となるように(正極活物質粉末10中に含まれる複数の一次粒子12の全数に対して、(003)面の配向性が同一の一次粒子12の割合が、50%以上となるように)、正極活物質粒子10が形成されている。(003)面の配向率は、70%以上であることがより好ましく、90%であることが特に好ましい。配向率が高いほど、正極活物質粉末10内に含まれる多数の一次粒子12において、リチウムイオンの拡散、電子伝導が良好に行われる方向である(003)面の面内方向が互いに平行となる割合が高まるといえる。このため、配向率が高いほど、リチウムイオンの拡散、電子伝導距離が短縮されるとともに上述のようにリチウムイオンの拡散抵抗および電子抵抗が低減され、以てリチウム二次電池の充放電特性がより顕著に向上する。したがって、例えば、液体型のリチウム二次電池の正極材料として正極活物質粉末10を用いた場合であって、耐久性の向上及び高容量化、さらには安全性の向上を目的として、正極活物質粉末10の平均粒子径を大きくしたときであっても、配向率を高くすることによって高いレート特性を維持することが可能になる。   In the oriented secondary particles 14, the numerous primary particles 12 constituting the same are aligned so that the orientations of the (003) planes are aligned with each other (so that the (003) planes are as parallel as possible). Preferably it is provided. Specifically, the orientation of the (003) plane is the same as the total number of the plurality of primary particles 12 contained in the positive electrode active material powder 10 so that the orientation ratio of the (003) plane is 50% or more. Positive electrode active material particles 10 are formed so that the ratio of primary particles 12 to 50% or more. The orientation ratio of the (003) plane is more preferably 70% or more, and particularly preferably 90%. The higher the orientation ratio, the more in-plane directions of the (003) plane are parallel to each other in the primary ion 12 contained in the positive electrode active material powder 10 in which lithium ion diffusion and electron conduction are favorably performed. It can be said that the ratio will increase. For this reason, the higher the orientation ratio, the shorter the lithium ion diffusion and electron conduction distance and the lower the lithium ion diffusion resistance and electronic resistance as described above. Remarkably improved. Therefore, for example, when the positive electrode active material powder 10 is used as a positive electrode material of a liquid lithium secondary battery, the positive electrode active material is used for the purpose of improving durability, increasing capacity, and improving safety. Even when the average particle diameter of the powder 10 is increased, it is possible to maintain high rate characteristics by increasing the orientation ratio.

一次粒子12の平均粒子径は、0.01μm以上5μm以下であるのが好ましく、0.01μm以上3μm以下であることがより好ましく、0.01μm以上1.5μm以下であることがさらに好ましい。ここで、「平均粒子径」は、粒子の直径の平均値である。かかる「直径」は、典型的には、当該粒子を同体積あるいは同断面積を有する球形と仮定した場合の、当該球形における直径である。なお、「平均値」は、個数基準で算出されたものが適している。一次粒子の平均粒子径は、例えば、二次粒子の表面あるいは断面を走査電子顕微鏡(SEM)で観察することで求めることが可能である。一次粒子12の平均粒子径を上記の範囲内とすることで、一次粒子12の結晶性が確保される。この点、一次粒子12の平均粒子径が0.1μm未満であると、一次粒子12の結晶性が低下し、リチウム二次電池の出力特性やレート特性が低下する場合がある。しかしながら、配向二次粒子14からなる正極活物質粉末10においては、一次粒子12の平均粒子径が0.1〜0.01μmであっても、出力特性やレート特性の大きな低下は見られない。   The average particle diameter of the primary particles 12 is preferably from 0.01 μm to 5 μm, more preferably from 0.01 μm to 3 μm, and still more preferably from 0.01 μm to 1.5 μm. Here, the “average particle diameter” is an average value of particle diameters. The “diameter” is typically a diameter of the sphere when the particle is assumed to be a sphere having the same volume or the same cross-sectional area. The “average value” is preferably calculated on the basis of the number. The average particle diameter of the primary particles can be determined, for example, by observing the surface or cross section of the secondary particles with a scanning electron microscope (SEM). By setting the average particle diameter of the primary particles 12 within the above range, the crystallinity of the primary particles 12 is ensured. In this regard, if the average particle diameter of the primary particles 12 is less than 0.1 μm, the crystallinity of the primary particles 12 may be reduced, and the output characteristics and rate characteristics of the lithium secondary battery may be deteriorated. However, in the positive electrode active material powder 10 composed of the oriented secondary particles 14, even if the average particle diameter of the primary particles 12 is 0.1 to 0.01 μm, no significant reduction in output characteristics or rate characteristics is observed.

配向二次粒子14の平均粒子径は、1μm以上100μm以下であり、2μm以上70μm以下であることが好ましく、3μm以上50μm以下であることがさらに好ましい。二次粒子の平均粒子径は、市販のレーザ回折/散乱式粒度分布測定装置を用いて、水を分散媒として測定される体積基準D50平均粒子径(メディアン径)によって評価される。配向二次粒子14の平均粒子径をこの範囲内とすることで、電極内における正極活物質の充填性が確保される(充填率が向上する)。また、リチウム二次電池の出力特性やレート特性を維持しつつ、平坦な電極表面を形成することができる。一方、配向二次粒子14の平均粒子径が上記範囲内であると、正極活物質の充填率を高くすることができるとともに、リチウム二次電池の出力特性やレート特性の低下や電極表面の平坦性の低下を防止することができる。配向二次粒子14の平均粒子径の分布は、シャープであってもよく、ブロードであってもよく、ピークを複数有していてもよい。例えば、配向二次粒子14の平均粒子径の分布がシャープでない場合は、正極活物質層内の正極活物質の充填密度を高めたり、正極活物質層と正極集電体との密着力を高めたりすることができる。これにより、充放電特性をさらに改善することができる。   The average particle diameter of the oriented secondary particles 14 is 1 μm or more and 100 μm or less, preferably 2 μm or more and 70 μm or less, and more preferably 3 μm or more and 50 μm or less. The average particle diameter of the secondary particles is evaluated by a volume-based D50 average particle diameter (median diameter) measured using water as a dispersion medium using a commercially available laser diffraction / scattering particle size distribution analyzer. By setting the average particle diameter of the oriented secondary particles 14 within this range, the filling property of the positive electrode active material in the electrode is ensured (the filling rate is improved). In addition, a flat electrode surface can be formed while maintaining the output characteristics and rate characteristics of the lithium secondary battery. On the other hand, when the average particle diameter of the oriented secondary particles 14 is within the above range, the filling rate of the positive electrode active material can be increased, the output characteristics and rate characteristics of the lithium secondary battery are deteriorated, and the electrode surface is flat. The fall of property can be prevented. The distribution of the average particle diameter of the oriented secondary particles 14 may be sharp, broad, or have a plurality of peaks. For example, when the distribution of the average particle size of the oriented secondary particles 14 is not sharp, the packing density of the positive electrode active material in the positive electrode active material layer is increased, or the adhesion between the positive electrode active material layer and the positive electrode current collector is increased. Can be. Thereby, charge / discharge characteristics can be further improved.

配向二次粒子14のアスペクト比は、1.0以上3.0未満であるのが好ましく、より好ましくは1.0以上2.0未満であり、さらに好ましくは1.1以上1.5未満である。この範囲内のアスペクト比とすることで、正極層内の正極活物質の充填密度を高めた場合であっても、正極層内に含浸された電解液中のリチウムイオンが正極層の厚み方向に拡散する経路を確保することができる程度の適度な隙間を正極活物質粒子間に形成することが可能になる。これにより、リチウム二次電池の出力特性やレート特性をさらに向上させることができる。すなわち、この範囲内のアスペクト比であると、正極層の形成時に、正極活物質粒子が、正極集電体の板面方向と粒子の長軸方向とが平行になるように並んだ状態で充填されにくくなり、正極層内に含浸された電解液中のリチウムイオンの、正極層の厚み方向の拡散経路が長くなるのを回避できる。このため、リチウム二次電池の出力特性やレート特性の低下を抑制できる。また、単結晶一次粒子12のアスペクト比も、1.0以上2.0未満であることが好ましく、1.1以上1.5未満であることがさらに好ましい。一次粒子12のアスペクト比をこの範囲内とすることで、リチウムイオン伝導性及び電子伝導性が良好に確保される。   The aspect ratio of the oriented secondary particles 14 is preferably 1.0 or more and less than 3.0, more preferably 1.0 or more and less than 2.0, and even more preferably 1.1 or more and less than 1.5. is there. By setting the aspect ratio within this range, even when the packing density of the positive electrode active material in the positive electrode layer is increased, lithium ions in the electrolyte impregnated in the positive electrode layer are in the thickness direction of the positive electrode layer. It is possible to form an appropriate gap between the positive electrode active material particles so as to ensure a diffusion path. Thereby, the output characteristics and rate characteristics of the lithium secondary battery can be further improved. That is, when the aspect ratio is within this range, the positive electrode active material particles are filled in a state in which the plate surface direction of the positive electrode current collector and the major axis direction of the particles are parallel when the positive electrode layer is formed. Therefore, it is possible to avoid an increase in the diffusion path in the thickness direction of the positive electrode layer of lithium ions in the electrolyte solution impregnated in the positive electrode layer. For this reason, the fall of the output characteristic and rate characteristic of a lithium secondary battery can be suppressed. The aspect ratio of the single crystal primary particles 12 is also preferably 1.0 or more and less than 2.0, and more preferably 1.1 or more and less than 1.5. By setting the aspect ratio of the primary particles 12 within this range, good lithium ion conductivity and electronic conductivity can be secured.

配向二次粒子14が緻密に(すなわち多数の一次粒子12が隙間なく密集した状態で)形成されている場合、正極層内の正極活物質の充填密度を高めることができ高容量化に有利である。一方、緻密な配向二次粒子内に部分的に空隙を導入することで、かかる空隙内に電解液や導電材を内在させることができ、これにより、高容量を維持しつつ、レート特性を改善することができる。また、充放電時の応力を緩和することもでき、充放電の繰り返しによる容量劣化(サイクル特性)を改善することもできる。   When the oriented secondary particles 14 are densely formed (that is, in a state where a large number of primary particles 12 are densely packed without gaps), the packing density of the positive electrode active material in the positive electrode layer can be increased, which is advantageous for increasing the capacity. is there. On the other hand, by introducing voids partially into densely oriented secondary particles, electrolytes and conductive materials can be contained in the voids, thereby improving rate characteristics while maintaining high capacity. can do. Moreover, the stress at the time of charging / discharging can also be relieved and the capacity deterioration (cycle characteristic) by repetition of charging / discharging can also be improved.

このような配向二次粒子からなる正極活物質粉末は公知の物質であって、特許文献3に記載される方法に基づいて作製可能なものである。例えば、(1)原料粉末を含む原料スラリーを用意する工程と、(2)原料スラリーを成形及び乾燥してシート状成形体を得る工程と、(3)シート状成形体を解砕して解砕粉末を得る工程と、(4)解砕粉末にリチウム化合物を混合してリチウム混合粉末を得る工程と、(5)リチウム混合粉末を焼成して解砕粉末をリチウム化合物と反応させる工程を行うことにより、正極活物質粉末を作製することができる。シート状に成形する方法の好ましい例としては、ドクターブレード法やドラムドライヤーを用いた手法が挙げられる。解砕方法の例としては、メッシュにヘラ等で押し付ける方法;ピンミル等の解砕力の弱い解砕機で解砕する方法;気流の中でシート片を互いに衝突させる方法(具体的には、気流分級機に投入する方法);旋回式ジェットミル;ポット解砕;バレル研磨;等が挙げられる。また、解砕物を球形化するための処理が行われてもよく、球形化処理の例としては、気流中で解砕物粒子同士を衝突させることで解砕物粒子の「角」を取る方法(気流分級やハイブリダイゼーション等);容器中で解砕物粒子同士を衝突させることで解砕物粒子の「角」を取る方法(ハイブリッドミキサーや高速攪拌機・混合機を用いた方法、バレル研磨、等);メカノケミカル法;熱風により解砕物粒子の表面を溶融する方法が挙げられる。球形化処理と解砕とは、別途行われてもよいが、同時にも行われ得る。すなわち、例えば、気流分級機を用いることで、解砕と球形化処理とが同時に行われ得る。なお、解砕や球形化処理を容易にするために、予め成形体を脱脂したり熱処理(焼成あるいは仮焼成)したりしてもよい。   The positive electrode active material powder composed of such oriented secondary particles is a known substance and can be produced based on the method described in Patent Document 3. For example, (1) a step of preparing a raw material slurry containing raw material powder, (2) a step of forming and drying the raw material slurry to obtain a sheet-like formed body, and (3) pulverizing and disassembling the sheet-like formed body. A step of obtaining a crushed powder, a step of (4) mixing a lithium compound with the crushed powder to obtain a lithium mixed powder, and a step of (5) firing the lithium mixed powder and reacting the crushed powder with the lithium compound. Thus, a positive electrode active material powder can be produced. Preferable examples of the method for forming the sheet include a doctor blade method and a technique using a drum dryer. Examples of crushing methods include a method of pressing on a mesh with a spatula; a method of crushing with a crusher with weak crushing force such as a pin mill; a method of causing sheet pieces to collide with each other in an air current (specifically, an air classifier) Slewing jet mill; pot crushing; barrel polishing; and the like. In addition, a process for spheroidizing the crushed material may be performed. As an example of the spheroidizing process, a method of taking an “angle” of the crushed material particles by colliding the crushed material particles with each other in an air current (air current Classification, hybridization, etc.); Method to take “corner” of crushed particles by colliding crushed particles in container (method using hybrid mixer, high-speed stirrer / mixer, barrel polishing, etc.); mechano Chemical method; a method of melting the surface of the crushed particles with hot air. The spheronization treatment and crushing may be performed separately, but may be performed simultaneously. That is, for example, by using an airflow classifier, crushing and spheronization can be performed simultaneously. In order to facilitate crushing and spheronization, the molded body may be degreased or heat treated (fired or temporarily fired) in advance.

あるいは、配向二次粒子からなる正極活物質粉末の作製を水酸化物原料粉末の調製から始めてもよい。例えば、(1)所定の組成(例えば(Ni0.844Co0.156)(OH))を有し、二次粒子がほぼ球状且つ一次粒子の一部が二次粒子の中心から外方向へ放射状に並んだニッケル・コバルト複合水酸化物原料粉末を作製する工程と、(2)得られた水酸化物原料粉末に対し、所定のモル比(例えばNi:Co:Al:Li=81:15:4:20)となるようにAl原料(例えばベーマイト)およびLi原料(例えばLiOH・HO粉末)を加えた後、分散媒(例えば純水)と共にビーズミルで軽く粉砕混合して、減圧下での撹拌(脱泡)及び純水の添加を経て所望の粘度(例えば0.5Pa・s)且つ所望の固形分濃度(例えば20質量%)のスラリーを調製する工程と、(3)得られたスラリーをドラムドライヤーで乾燥後、ピンミルで解砕して板状の二次粒造粒粉末を作製する工程と、(4)得られた粉末とLiOH・HO粉末とを所定のmol比率(例えばLi/(Ni0.81Co0.15Al0.04)=1.04)で混合する工程と、(5)この混合粉末を高純度アルミナ製のるつぼ内に投入して、酸素雰囲気中(例えば0.1MPa)にて所定の昇温速度(例えば50℃/h)で昇温し、所定温度で所定時間(例えば765℃で24時間)加熱処理する焼成工程(リチウム導入工程)とを行うことにより、正極活物質粉末(例えばLi(Ni0.81Co0.15Al0.04)O粉末)を作製することができる。なお、上記工程(1)におけるニッケル・コバルト複合水酸化物粉末は公知の技術に従って作製可能なものであり、例えば以下のようにして作製することができる。すなわち、純水20Lを入れた反応槽へ、モル比でNi:Co=84.4:15.6である濃度1mol/Lの硫酸ニッケルと硫酸コバルトの混合水溶液を投入速度50ml/minで、また濃度3mol/Lの硫酸アンモニウムを投入速度10ml/minで同時に連続投入する。一方、濃度10mol/Lの水酸化ナトリウム水溶液を、反応槽内のpHが自動的に11.0に維持されるように投入する。反応槽内の温度は50℃に維持し、攪拌機により常に攪拌する。生成したニッケル・コバルト複合水酸化物を、オーバーフロー管からオーバーフローさせて取り出し、水洗、脱水及び乾燥処理する。 Alternatively, the production of the positive electrode active material powder composed of oriented secondary particles may be started from the preparation of the hydroxide raw material powder. For example, (1) having a predetermined composition (for example, (Ni 0.844 Co 0.156 ) (OH) 2 ), the secondary particles are almost spherical, and a part of the primary particles is outward from the center of the secondary particles. (2) A predetermined molar ratio (for example, Ni: Co: Al: Li = 81: to the obtained hydroxide raw material powder) 15: 4: 20) After adding the Al raw material (for example, boehmite) and the Li raw material (for example, LiOH.H 2 O powder), lightly pulverize and mix with a dispersion medium (for example, pure water) in a bead mill, A step of preparing a slurry having a desired viscosity (for example, 0.5 Pa · s) and a desired solid content concentration (for example, 20% by mass) through stirring (defoaming) and addition of pure water, and (3) Use a drum dryer to remove the slurry.燥後, a step and then disintegrated to prepare a plate-like secondary particle granulated powder with a pin mill, (4) the resultant powder and LiOH · H 2 O powder and a predetermined mol ratio (e.g. Li / (Ni 0.81 Co 0.15 Al 0.04 ) = 1.04), (5) The mixed powder is put into a crucible made of high-purity alumina, and in an oxygen atmosphere (for example, 0.1 MPa ) At a predetermined temperature increase rate (for example, 50 ° C./h), and a baking step (lithium introduction step) in which heat treatment is performed at the predetermined temperature for a predetermined time (for example, 765 ° C. for 24 hours). An active material powder (for example, Li (Ni 0.81 Co 0.15 Al 0.04 ) O 2 powder) can be produced. The nickel / cobalt composite hydroxide powder in the step (1) can be produced according to a known technique, and can be produced, for example, as follows. That is, a mixed aqueous solution of nickel sulfate and cobalt sulfate having a molar ratio of Ni: Co = 84.4: 15.6 in a molar ratio of 1 mol / L to a reaction vessel containing 20 L of pure water at a charging rate of 50 ml / min. Ammonium sulfate having a concentration of 3 mol / L is continuously charged at a charging rate of 10 ml / min. On the other hand, an aqueous sodium hydroxide solution having a concentration of 10 mol / L is added so that the pH in the reaction vessel is automatically maintained at 11.0. The temperature in the reaction vessel is maintained at 50 ° C. and is always stirred with a stirrer. The produced nickel-cobalt composite hydroxide is overflowed from the overflow pipe, taken out, washed with water, dehydrated and dried.

また、焼成後、もしくは解砕や分級工程を経た、正極活物質において、100〜400℃で後熱処理を行われても良い。かかる後熱処理工程を行うことで、一次粒子の表面層を改質することができ、以てレート特性及び出力特性が改善される。また、焼成後、もしくは解砕や分級工程を経た、正極活物質に水洗処理が行われてもよい。かかる水洗処理工程を行うことで、正極活物質粉末の表面に残留した未反応のリチウム原料、あるいは大気中の水分及び二酸化炭素が正極活物質粉末表面に吸着して生成する炭酸リチウムを除去することができ、それにより高温保存特性(特にガス発生抑制)が改善される。   In addition, post-heat treatment may be performed at 100 to 400 ° C. in the positive electrode active material after firing or after being crushed or classified. By performing such a post heat treatment step, the surface layer of the primary particles can be modified, thereby improving the rate characteristics and output characteristics. In addition, the positive electrode active material may be subjected to a water washing treatment after firing or after being crushed or classified. By performing this water washing treatment step, the unreacted lithium raw material remaining on the surface of the positive electrode active material powder or the lithium carbonate produced by the adsorption of moisture and carbon dioxide in the atmosphere on the surface of the positive electrode active material powder is removed. Thereby, the high-temperature storage characteristics (especially gas generation suppression) are improved.

また、配向二次粒子内に空隙を形成する場合には、原料に添加剤としての空隙形成材を配合すればよい。このような空隙形成材としては、仮焼成工程において分解(蒸発あるいは炭化)される、粒子状又は繊維状物質が好適に用いられ得る。具体的には、テオブロミン、ナイロン、グラファイト、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレート、発泡性樹脂等の有機合成樹脂の、粒子状又は繊維状物質が、好適に用いられ得る。勿論、このような空隙形成材を使用しなくても、原料粒子の粒径や、仮焼成(熱処理)工程における焼成温度等を適宜調整することによって、上述の所望の空隙を有する配向二次粒子を形成することが可能である。   Moreover, what is necessary is just to mix | blend the space | gap formation material as an additive with a raw material, when forming a space | gap in an orientation secondary particle. As such a void forming material, a particulate or fibrous substance that is decomposed (evaporated or carbonized) in the pre-baking step can be suitably used. Specifically, particulate or fibrous materials of organic synthetic resins such as theobromine, nylon, graphite, phenol resin, polymethyl methacrylate, polyethylene, polyethylene terephthalate, and foamable resin can be suitably used. Of course, without using such a void-forming material, the above-mentioned oriented secondary particles having the desired voids can be appropriately adjusted by adjusting the particle size of the raw material particles, the firing temperature in the temporary firing (heat treatment) step, and the like. Can be formed.

正極活物質の表面(気孔内壁も含む)に、活物質には含まれない金属元素を含む化合物、例えば、W、Mo、Nb、Ta、Re等の高価数をとりうる遷移金属を含有する化合物が存在していてもよい。そのような化合物は、W、Mo、Nb、Ta、Re等の高価数をとることができる遷移金属とLiとの化合物であってもよい。金属元素を含む化合物は、正極活物質内に固溶していてもよいし、第2相として存在していてもよい。こうすることにより、正極活物質と非水電解液との界面が改質され、電荷移動反応が促進されて、出力特性やレート特性が改善されるものと考えられる。   A compound containing a metal element not included in the active material on the surface (including the pore inner wall) of the positive electrode active material, for example, a compound containing a transition metal capable of taking an expensive number such as W, Mo, Nb, Ta, Re, etc. May be present. Such a compound may be a compound of a transition metal capable of taking an expensive number such as W, Mo, Nb, Ta, and Re and Li. The compound containing a metal element may be dissolved in the positive electrode active material or may exist as the second phase. By doing so, it is considered that the interface between the positive electrode active material and the non-aqueous electrolyte is modified, the charge transfer reaction is promoted, and the output characteristics and rate characteristics are improved.

正極活物質粉末は、配向二次粒子を、正極活物質粉末の合計量に対して10〜100質量%含むのが好ましく、より好ましくは15〜100質量%、さらに好ましくは20〜100質量%含む。すなわち、正極活物質粉末は配向二次粒子からなるものであってもよいし、配向二次粒子とそれ以外の粒子を含むものであってもよい。後者の場合、正極活物質粉末は配向二次粒子とそれよりも概ね粒径の小さい無配向二次粒子とからなる混合粉末であるのが好ましい。これは、正極層のプレス加工時に二次粒子径の大きいものに応力が集中して割れやすくなることから、大粒径の配向二次粒子と小粒径の無配向二次粒子が混在した正極活物質粉末において、プレス加工時に割れる又は潰れる二次粒子は主として配向二次粒子となるからである。すなわち、前述のとおり配向二次粒子は割れる又は潰れることで高エネルギー密度と高出力特性に寄与することから、上記混合粉末を用いることによっても高エネルギー密度と高出力特性を両立することができる。したがって、正極活物質粉末は、配向二次粒子と無配向二次粒子とを含み、配向二次粒子の体積基準D50平均粒径が無配向二次粒子の体積基準D50平均粒径よりも大きいのが好ましい。配向二次粒子の体積基準D50平均粒径は、無配向二次粒子の体積基準D50平均粒径の1.5倍以上であるのが好ましく、より好ましくは1.8倍以上であり、さらに好ましくは2.0倍以上である。このような混合粉末を用いる場合には、公知の手法により配向二次粒子よりも概ね小さくなるように無配向二次粒子を調製した後、配向二次粒子と混合すればよい。あるいは、リチウム化合物との混合工程及び焼成工程(リチウム導入工程)に付される前の配向二次粒子前駆体と無配向二次粒子前駆体を混合し、その後リチウム化合物との混合工程及び焼成工程(リチウム導入工程)に付してもよい。なお、無配向二次粒子の諸条件及び好適形態については、配向性が無いこと及び配向二次粒子よりも概して粒径が小さいこと以外は上述した配向二次粒子と同様であり、かかる前提の範囲内で配向二次粒子に関して言及される上述の記載はそのまま無配向二次粒子に適用可能である。   The positive electrode active material powder preferably contains oriented secondary particles in an amount of 10 to 100% by mass, more preferably 15 to 100% by mass, and still more preferably 20 to 100% by mass with respect to the total amount of the positive electrode active material powder. . That is, the positive electrode active material powder may be composed of oriented secondary particles, or may contain oriented secondary particles and other particles. In the latter case, the positive electrode active material powder is preferably a mixed powder composed of oriented secondary particles and non-oriented secondary particles having a substantially smaller particle diameter. This is because positive stress is caused by stress concentration on the large secondary particle during the positive electrode layer press process and is easily cracked. Therefore, the positive electrode is a mixture of large-sized oriented secondary particles and small-sized non-oriented secondary particles. This is because, in the active material powder, secondary particles that are broken or crushed during press processing are mainly oriented secondary particles. That is, as described above, the oriented secondary particles are cracked or crushed and contribute to high energy density and high output characteristics. Therefore, both the high energy density and high output characteristics can be achieved by using the mixed powder. Therefore, the positive electrode active material powder includes oriented secondary particles and non-oriented secondary particles, and the volume-based D50 average particle size of the oriented secondary particles is larger than the volume-based D50 average particle size of the non-oriented secondary particles. Is preferred. The volume-based D50 average particle diameter of the oriented secondary particles is preferably 1.5 times or more, more preferably 1.8 times or more, more preferably the volume-based D50 average particle diameter of the non-oriented secondary particles. Is 2.0 times or more. When such a mixed powder is used, non-oriented secondary particles are prepared by a known method so as to be substantially smaller than the oriented secondary particles, and then mixed with the oriented secondary particles. Alternatively, the mixed secondary particle precursor and the non-oriented secondary particle precursor before being subjected to the mixing step and the baking step (lithium introduction step) with the lithium compound are mixed, and then the mixing step and the baking step with the lithium compound. You may attach | subject (lithium introduction process). The conditions and preferred form of the non-oriented secondary particles are the same as the above-mentioned oriented secondary particles except that there is no orientation and that the particle size is generally smaller than the oriented secondary particles. The above description referring to the oriented secondary particles within the range is directly applicable to the non-oriented secondary particles.

(2)正極合剤ペーストの作製
正極活物質粉末は、導電助剤、バインダー及び溶媒と混合して正極合剤ペーストとされる。これらの成分の溶媒の種類、配合量及び混合手法としては特に限定されず、公知の正極の製造条件を適宜採用すればよい。
(2) Preparation of positive electrode mixture paste The positive electrode active material powder is mixed with a conductive additive, a binder and a solvent to form a positive electrode mixture paste. There are no particular limitations on the type, blending amount, and mixing method of the solvent for these components, and known production conditions for the positive electrode may be employed as appropriate.

好ましい導電助剤は炭素材料であり、より好ましくは黒鉛あるいは非黒鉛炭素材料である。黒鉛の例としては、天然黒鉛、人造黒鉛等の通常用いられている黒鉛が挙げられる。非黒鉛炭素材料の例としては、カーボンブラック、アセチレンブラック等が挙げられる。また、黒鉛化炭素繊維、カーボンナノチューブ等の繊維状炭素材料も使用可能である。   A preferred conductive aid is a carbon material, more preferably a graphite or non-graphite carbon material. Examples of graphite include commonly used graphite such as natural graphite and artificial graphite. Examples of non-graphitic carbon materials include carbon black and acetylene black. Moreover, fibrous carbon materials, such as graphitized carbon fiber and a carbon nanotube, can also be used.

好ましいバインダーは熱可塑性樹脂である。熱可塑性樹脂の例としては、ポリフッ化ビニリデン(PVdFともいう)、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂等が挙げられ、特に好ましくはポリフッ化ビニリデンである。   A preferred binder is a thermoplastic resin. Examples of thermoplastic resins include polyvinylidene fluoride (also referred to as PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / fluoride Fluorine resins such as vinylidene copolymers and tetrafluoroethylene / perfluorovinyl ether copolymers, polyolefin resins such as polyethylene and polypropylene, and the like, particularly preferably polyvinylidene fluoride.

好ましい溶剤の例としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミン、N,N―ジメチルホルムアミド(以下、DMFともいう)等のアミン系溶剤、テトラヒドロフラン)等のエーテル系溶剤、メチルエチルケトン等のケトン系溶剤、酢酸メチル等のエステル系溶剤、ジメチルアセトアミド、1−メチル−2−ピロリドン(以下、NMPともいう)等のアミド系溶剤、ジメチルスルホキシド(以下、DMSO)等が挙げられる。比重が0.935〜1.200g/cmの範囲の溶剤が操作性の観点で好ましく、そのような溶剤の例としては、ジエチレントリアミン(bpは199−209℃、Fpは94℃、dは0.955である)、N,N−ジメチルホルムアミド(bpは153℃、Fpは57℃、dは0.944である)、ジメチルアセトアミド(bpは164.5−166℃、Fpは70℃、dは0.937である)、1−メチル−2−ピロリドン(bpは204℃、Fpは86℃、dは1.028である)、及びジメチルスルホキシド(bpは189℃、Fpは85℃、dは1.101である)等が挙げられる。ここで、bpは沸点、Fpは引火点、dは比重(g/cm)を表す。 Examples of preferred solvents include ether solvents such as N, N-dimethylaminopropylamine, diethylenetriamine, amine solvents such as N, N-dimethylformamide (hereinafter also referred to as DMF), tetrahydrofuran, and ketone solvents such as methyl ethyl ketone. Examples thereof include solvents, ester solvents such as methyl acetate, amide solvents such as dimethylacetamide and 1-methyl-2-pyrrolidone (hereinafter also referred to as NMP), dimethyl sulfoxide (hereinafter referred to as DMSO), and the like. A solvent having a specific gravity in the range of 0.935 to 1.200 g / cm 3 is preferable from the viewpoint of operability. Examples of such a solvent include diethylenetriamine (bp is 199-209 ° C., Fp is 94 ° C., d is 0 N, N-dimethylformamide (bp is 153 ° C., Fp is 57 ° C., d is 0.944), dimethylacetamide (bp is 164.5-166 ° C., Fp is 70 ° C., d Is 0.937), 1-methyl-2-pyrrolidone (bp is 204 ° C., Fp is 86 ° C., d is 1.028), and dimethyl sulfoxide (bp is 189 ° C., Fp is 85 ° C., d Is 1.101). Here, bp represents the boiling point, Fp represents the flash point, and d represents the specific gravity (g / cm 3 ).

正極活物質粉末、導電助剤、及びバインダーの合計量100質量部に占める正極活物質の割合は、85〜98質量部と高くするのが好ましく、より好ましくは90〜96質量部である。これは後続のプレス工程で正極層が過度に圧密化されるため、導電助剤の量を減らしても十分な導電性及びそれによる高出力特性が得られるとともに、エネルギー密度も高められるためである。また、正極活物質粉末、導電助剤、及びバインダーの合計量100質量部に占める導電助剤の割合は1〜10質量部が好ましく、より好ましくは2〜5質量部であり、バインダーの割合は1〜10質量部が好ましく、より好ましくは2〜5質量部である。これらの成分を溶剤と共に任意の手法により混合及び混練することにより、正極合剤ペーストが得られる。   The ratio of the positive electrode active material to the total amount of 100 parts by mass of the positive electrode active material powder, the conductive additive, and the binder is preferably as high as 85 to 98 parts by mass, and more preferably 90 to 96 parts by mass. This is because the positive electrode layer is excessively consolidated in the subsequent pressing step, so that even if the amount of the conductive additive is reduced, sufficient conductivity and resulting high output characteristics can be obtained, and the energy density can be increased. . Further, the proportion of the conductive auxiliary agent in the total amount of 100 parts by mass of the positive electrode active material powder, the conductive auxiliary agent and the binder is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass, and the ratio of the binder is 1-10 mass parts is preferable, More preferably, it is 2-5 mass parts. A positive electrode mixture paste is obtained by mixing and kneading these components together with a solvent by an arbitrary technique.

(3)正極層の形成
正極合剤ペーストを集電体上に塗布して正極層を形成する。集電体の例としては、Al、Ni、ステンレス等の金属が挙げられるが、薄膜に加工しやすく安価な点でAlが好ましい。また、集電体は、板、箔、膜等のいかなる形態であってもよい。正極合剤を集電体に塗布する方法の例としては、ダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等が挙げられる。正極層は後続のプレス加工前に乾燥されるのが望ましい。
(3) Formation of positive electrode layer A positive electrode mixture paste is applied on a current collector to form a positive electrode layer. Examples of the current collector include metals such as Al, Ni, and stainless steel, and Al is preferable because it is easy to process into a thin film and is inexpensive. The current collector may be in any form such as a plate, foil, or film. Examples of the method for applying the positive electrode mixture to the current collector include a die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method. The positive electrode layer is preferably dried before subsequent pressing.

(4)プレス加工
正極層を集電体に向かってプレス加工してリチウム二次電池用正極を得る。このプレス加工は、プレス加工後の正極層における正極活物質粉末の充填密度Dの、正極活物質粉末のタップ密度Dに対する比D/Dが1.15以上、好ましくは1.15〜1.35、より好ましくは1.15〜1.30になるように行われる。このようなプレス加工の圧力値は上記比を実現できるように適宜選択すればよく特に限定されないが、典型的には2000〜10000kgf/cmの範囲内の圧力であり、より典型的には3000〜8000kgf/cmである。プレス加工の手法は特に限定されないが、一軸プレス機による圧縮、ローラを用いた圧延等によるのが好ましい。
(4) Press processing The positive electrode layer is pressed toward the current collector to obtain a positive electrode for a lithium secondary battery. In this pressing, the ratio D 2 / D 1 of the packing density D 2 of the positive electrode active material powder in the positive electrode layer after the pressing to the tap density D 1 of the positive electrode active material powder is 1.15 or more, preferably 1.15. To 1.35, more preferably 1.15 to 1.30. The pressure value of such press working is not particularly limited as long as it is appropriately selected so as to realize the above ratio, but is typically a pressure within a range of 2000 to 10000 kgf / cm 2 , and more typically 3000. ˜8000 kgf / cm 2 . The method of press working is not particularly limited, but it is preferable to use compression using a single-screw press, rolling using a roller, or the like.

正極活物質粉末のタップ密度Dは、正極活物質粒子の粉末試料を入れたメスシリンダを市販のタップ密度測定装置を用いて200回タッピングした後、D=m/V(式中、mは粉末の重量、Vはタップ後の粉末の嵩体積)の式に基づいて算出することができる。この測定は、JIS R 1628(1997)に準拠して行うことができる。正極活物質粉末は2.4〜3.4g/ccのタップ密度を有するのが好ましく、より好ましくは2.6〜3.1g/ccである。 The tap density D 1 of the positive electrode active material powder is determined by D 1 = m / V (in the formula, m) after tapping a measuring cylinder containing a powder sample of the positive electrode active material particles 200 times using a commercially available tap density measuring device. Can be calculated based on the formula of the weight of the powder and V the bulk volume of the powder after tapping. This measurement can be performed according to JIS R 1628 (1997). The positive electrode active material powder preferably has a tap density of 2.4 to 3.4 g / cc, more preferably 2.6 to 3.1 g / cc.

正極層における正極活物質粉末の充填密度Dは、正極層中に占める正極活物質粉末の密度であり、以下の式により算出されるものである。
=[正極層の密度(g/cc)]×[正極活物質粉末の配合比(wt%)]/100
=[正極層の重量(g)]/[正極層の体積(cc)]
×[正極活物質粉末の配合比(wt%)]/100
なお、正極層とは正極における正極合剤が占める部分であるから、上記式は以下の式によっても表現できる。
=([正極重量]−[集電体重量])/{正極面積×([正極厚]−[集電体厚])}
×[正極活物質粉末の配合比(wt%)]/100
Packing density D 2 of the positive electrode active material powder in the positive electrode layer is the density of the positive electrode active material powder occupying the positive electrode layer and is calculated by the following equation.
D 2 = [Positive electrode layer density (g / cc)] × [Positive electrode active material powder blending ratio (wt%)] / 100
= [Weight of positive electrode layer (g)] / [Volume of positive electrode layer (cc)]
× [Composition ratio of positive electrode active material powder (wt%)] / 100
Since the positive electrode layer is a portion occupied by the positive electrode mixture in the positive electrode, the above equation can also be expressed by the following equation.
D 2 = ([positive electrode weight] − [current collector weight]) / {positive electrode area × ([positive electrode thickness] − [current collector thickness])}
× [Composition ratio of positive electrode active material powder (wt%)] / 100

プレス加工後の正極層における正極活物質粉末の充填密度は、2.8〜4.6g/ccであるのが好ましく、より好ましくは3.0〜4.4g/ccである。   The packing density of the positive electrode active material powder in the positive electrode layer after press working is preferably 2.8 to 4.6 g / cc, more preferably 3.0 to 4.4 g / cc.

本発明を以下の例によってさらに具体的に説明する。   The present invention is more specifically described by the following examples.

例1、4及び9:配向二次粒子の単独使用例
(1)配向二次粒子の作製
(1a)原料粒子及びスラリーの調製
最初に、混合物における、Ni、Co及びAlのモル比が80:15:5となるように、Ni(OH)粉末(株式会社高純度化学研究所製)、Co(OH)粉末(株式会社高純度化学研究所製)、及びAl・HO(SASOL社製)を秤量した。次に、かかる秤量物に対して、造孔材(球状、ベルパールR100、エアウォーター株式会社製)を添加した。造孔材は、添加後の粉末総重量に対する割合が2質量%となるように秤量した。そして、造孔材添加後の混合粉末をボールミルにより24時間粉砕及び混合することで、原料粒子の粉末を調製した。
Examples 1, 4 and 9 : Example of single use of oriented secondary particles (1) Preparation of oriented secondary particles (1a) Preparation of raw material particles and slurry First, the molar ratio of Ni, Co and Al in the mixture was 80: 15: so that 5, Ni (OH) (manufactured by Kojundo Chemical Laboratory Co., Ltd.) 2 powder, Co (OH) (manufactured by Kojundo Chemical Laboratory Co., Ltd.) 2 powder, and Al 2 O 3 · H 2 O (manufactured by SASOL) was weighed. Next, a pore former (spherical, Bell Pearl R100, manufactured by Air Water Co., Ltd.) was added to the weighed product. The pore former was weighed so that the ratio to the total powder weight after addition was 2% by mass. And the powder of raw material particle | grains was prepared by grind | pulverizing and mixing the mixed powder after pore former addition for 24 hours with a ball mill.

調製した原料粒子の粉末100質量部と、分散媒としての純水400質量部と、バインダー(ポリビニルアルコール、品番VP−18、日本酢ビ・ポバール株式会社製)1質量部と、分散剤(マリアリムKM−0521、日油株式会社製)1質量部と、消泡剤(1−オクタノール、和光純薬工業株式会社製)0.5質量部とを混合した。さらに、この混合物を、減圧下で撹拌することで脱泡するとともに、粘度を0.5Pa・s(ブルックフィールド社製LVT型粘度計を用いて測定)に調整することで、スラリーを調製した。   100 parts by weight of the powder of the prepared raw material particles, 400 parts by weight of pure water as a dispersion medium, 1 part by weight of a binder (polyvinyl alcohol, product number VP-18, manufactured by Nippon Vinegar Poval Co., Ltd.), and a dispersant (Marialim 1 part by mass of KM-0521 (manufactured by NOF Corporation) and 0.5 part by mass of an antifoaming agent (1-octanol, manufactured by Wako Pure Chemical Industries, Ltd.) were mixed. Further, the mixture was defoamed by stirring under reduced pressure, and a slurry was prepared by adjusting the viscosity to 0.5 Pa · s (measured using a Brookfield LVT viscometer).

(1b)原料粒子の成形及び加熱処理(仮焼成)
上述のようにして調製したスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが25μmとなるようにシート状に成形した。乾燥後にPETフィルムから剥がしたシート状の成形体を、ジルコニア製セッターの中央に載置し、大気中にて200℃/hで昇温し、900℃、3時間加熱処理することで、シート状の(Ni0.8Co0.15Al0.05)Oセラミックスシートを得た。
(1b) Molding of raw material particles and heat treatment (temporary firing)
The slurry prepared as described above was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 25 μm. The sheet-like molded body peeled off from the PET film after drying is placed in the center of a zirconia setter, heated at 200 ° C./h in the atmosphere, and heated at 900 ° C. for 3 hours to form a sheet. (Ni 0.8 Co 0.15 Al 0.05 ) O ceramic sheet was obtained.

(1c)成形体の解砕
加熱処理(仮焼成)によって得られた上述のセラミックスシートを、開口径30μmのふるい(メッシュ)に載せ、ヘラで軽く押し付けながらメッシュを通過させて解砕することで、略球形状の(Ni0.8Co0.15Al0.05)O粉末を得た。
(1c) Crushing the molded body The ceramic sheet obtained by heat treatment (preliminary firing) is placed on a sieve (mesh) having an opening diameter of 30 μm, and is crushed by passing through the mesh while lightly pressing with a spatula. A substantially spherical (Ni 0.8 Co 0.15 Al 0.05 ) O powder was obtained.

(1d)解砕物の球形化処理及び分級
解砕によって得られた(Ni0.8Co0.15Al0.05)O粉末を、気流分級機(ターボクラシファイアTC−15、日清エンジニアリング株式会社製、排風量:1.7m/min、分級ロータ回転数:10000rpm)に、20g/minの速度で投入し、得られた粉末のうちの粗粒側のものを回収した。かかる球形化処理(同時に微粉除去による分級も行われる)を、5回繰り返した。
(1d) Spheronization treatment and classification of pulverized product (Ni 0.8 Co 0.15 Al 0.05 ) O powder obtained by pulverization was converted into an air classifier (Turbo Classifier TC-15, Nisshin Engineering Co., Ltd.) Manufactured, exhausted air volume: 1.7 m 3 / min, classification rotor rotation speed: 10000 rpm) at a speed of 20 g / min, and the coarse powder side of the obtained powder was recovered. This spheronization treatment (at the same time classification by fine powder removal) was repeated 5 times.

(1e)リチウム化合物との混合
微粉除去後の(Ni0.8Co0.15Al0.05)O粉末と、LiOH・HO粉末(和光純薬工業株式会社製)とを、mol比率でLi/(Ni0.8Co0.15Al0.05)=1.05となるように混合した。
(1e) Mixing with lithium compound (Ni 0.8 Co 0.15 Al 0.05 ) O powder after fine powder removal and LiOH.H 2 O powder (manufactured by Wako Pure Chemical Industries, Ltd.) And mixed so that Li / (Ni 0.8 Co 0.15 Al 0.05 ) = 1.05.

(1f)焼成工程(リチウム導入工程)
上述の混合粉末を、高純度アルミナ製のるつぼ内に投入し、酸素雰囲気中(0.1MPa)にて775℃で24時間加熱処理することで、Li(Ni0.8Co0.15Al0.05)O粉末を正極活物質粉末として得た。
(1f) Firing step (lithium introduction step)
The above mixed powder is put into a crucible made of high-purity alumina and heat-treated in an oxygen atmosphere (0.1 MPa) at 775 ° C. for 24 hours, whereby Li (Ni 0.8 Co 0.15 Al 0 .05 ) O 2 powder was obtained as a positive electrode active material powder.

(2)各種測定
得られた正極活物質粉末について各種特性を測定したところ、タップ密度は2.9g/ccであり、一次粒子は0.1μmの平均粒子径を有し、二次粒子は20μmの平均粒子径及び1.0以上1.5未満のアスペクト比を有し、二次粒子における一次粒子の(003)面の配向率が90%以上であった。これらの特性の測定方法は以下のとおりとした。
[タップ密度]
正極活物質粒子の粉末試料を入れたメスシリンダを市販のタップ密度測定装置を用いて200回タッピングした後、D=m/V(式中、mは粉末の重量、Vはタップ後の粉末の嵩体積)の式に基づいてタップ密度Dを算出した。この測定は、JIS R 1628(1997)に準拠したものである。
[二次粒子径(μm)]
レーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製 型番「LA−750」)を用いて、水を分散媒として、二次粒子のメディアン径(D50)を測定し、この値を二次粒子径とした。
[一次粒子径(μm)]
FE−SEM(電界放射型走査型電子顕微鏡:日本電子株式会社製 製品名「JSM−7000F」)を用いて、一次粒子が視野内に10個以上入る倍率を選択して、SEM画像を撮影した。このSEM画像において、10個の一次粒子のそれぞれについて、内接円を描いたときの当該内接円の直径を求めた。そして、得られた10個の直径の平均値を一次粒子径とした。
[アスペクト比]
上述のFE−SEMを用いて、二次粒子が視野内に10個以上入る倍率を選択して、SEM画像を撮影した。このSEM画像において、10個の二次粒子のそれぞれについて、長軸径及び短軸径を求めた後、長軸径を短軸径で除した値を求めた。そして、得られた10個の値の平均値をアスペクト比とした。一次粒子のアスペクト比についても同様に求めた。
[配向率(%)]
二次粒子同士ができるだけ重ならないように、ガラス基板上に二次粒子粉末を配置した。この粉末を粘着テープに写し取って合成樹脂に埋めたものを、二次粒子の板面あるいは断面研磨面が観察できるように研磨することで、観察用のサンプルを作製した。なお、板面観察の場合は、仕上げ研磨として、コロイダルシリカ(0.05μm)を研磨剤として振動型回転研磨機にて研磨を行った。一方、断面観察の場合は、クロスセクションポリッシャ(CP)により研磨を行った。このようにして作製したサンプルに対し、一個の二次粒子中に一次粒子が10個以上見られる視野において、EBSD(電子後方散乱回折像法:測定ソフト「OIM Data Collection」及び解析ソフト「OIM Analysis」は株式会社TSLソリューションズ製)を用いて、測定のピクセル分解能を0.1μmとして、各二次粒子の結晶方位解析を行った。これにより、各一次粒子の(003)面について、測定面(研磨面)に対する傾き角度を求めた。角度に対する粒子数のヒストグラム(角度分布)を出力し、一次粒子数が最大(ピーク値)となる角度を、この二次粒子の測定面に対する(003)面傾斜角θとした。この傾斜角θに対し、測定した二次粒子について(003)面がθ±10度以内にある一次粒子数を算出した。求めた一次粒子数を全一次粒子数で除することで、測定した二次粒子における(003)面の配向率を算出した。これを異なる10個の二次粒子について行い、その平均値を、(003)面の配向率とした。
(2) Various measurements Various characteristics of the obtained positive electrode active material powder were measured. The tap density was 2.9 g / cc, the primary particles had an average particle diameter of 0.1 μm, and the secondary particles were 20 μm. And the orientation ratio of the (003) plane of the primary particles in the secondary particles was 90% or more. The measuring method of these characteristics was as follows.
[Tap density]
After tapping a graduated cylinder containing a powder sample of positive electrode active material particles 200 times using a commercially available tap density measuring device, D 1 = m / V (where m is the weight of the powder and V is the powder after tapping. It was calculated tap density D 1 on the basis of the equation of the bulk volume). This measurement is based on JIS R 1628 (1997).
[Secondary particle size (μm)]
Using a laser diffraction / scattering type particle size distribution analyzer (model number “LA-750” manufactured by Horiba, Ltd.), the median diameter (D50) of secondary particles is measured using water as a dispersion medium, and this value is determined as a secondary value. The particle diameter was taken.
[Primary particle size (μm)]
Using a FE-SEM (field emission scanning electron microscope: product name “JSM-7000F” manufactured by JEOL Ltd.), a magnification at which 10 or more primary particles enter the field of view was selected, and an SEM image was taken. . In this SEM image, for each of the ten primary particles, the diameter of the inscribed circle when the inscribed circle was drawn was determined. And the average value of the obtained 10 diameter was made into the primary particle diameter.
[aspect ratio]
Using the above-mentioned FE-SEM, SEM images were taken by selecting a magnification at which 10 or more secondary particles were in the field of view. In this SEM image, the major axis diameter and the minor axis diameter were determined for each of the ten secondary particles, and then the value obtained by dividing the major axis diameter by the minor axis diameter was determined. The average value of the 10 values obtained was taken as the aspect ratio. The aspect ratio of primary particles was determined in the same manner.
[Orientation rate (%)]
Secondary particle powder was arranged on a glass substrate so that secondary particles might not overlap as much as possible. A sample for observation was prepared by polishing a powder obtained by copying this powder onto an adhesive tape and embedding it in a synthetic resin so that the plate surface or cross-section polished surface of the secondary particles can be observed. In the case of plate surface observation, as a final polishing, polishing was performed with a vibration type rotary polishing machine using colloidal silica (0.05 μm) as an abrasive. On the other hand, in the case of cross-sectional observation, polishing was performed with a cross section polisher (CP). With respect to the sample thus prepared, in a field where 10 or more primary particles are seen in one secondary particle, EBSD (Electron Backscattering Diffraction Image Method: Measurement Software “OIM Data Collection”) and Analysis Software “OIM Analysis” "" Was made by TSL Solutions Co., Ltd.), and the crystal orientation analysis of each secondary particle was performed with a pixel resolution of measurement of 0.1 μm. Thereby, the inclination angle with respect to the measurement surface (polished surface) was determined for the (003) surface of each primary particle. A histogram (angle distribution) of the number of particles with respect to the angle is output, and the angle at which the number of primary particles is maximum (peak value) is defined as the (003) plane inclination angle θ with respect to the measurement surface of the secondary particles. With respect to the tilt angle θ, the number of primary particles having a (003) plane within θ ± 10 degrees was calculated for the measured secondary particles. By dividing the determined number of primary particles by the total number of primary particles, the orientation ratio of the (003) plane in the measured secondary particles was calculated. This was performed for 10 different secondary particles, and the average value was defined as the orientation ratio of the (003) plane.

(3)電極及びコインセルの作製
上記工程により得られたタップ密度2.9g/ccのLiNi0.8Co0.15Al0.05配向二次粒子粉末、アセチレンブラック(デンカブラックHS100、電気化学工業株式会社製)、及びポリフッ化ビニリデン(PVDF)(KFポリマー#1120、株式会社クレハ製)を、質量比で94:3:3となるように混合し、N−メチル−2−ピロリドン(和光純薬工業株式会社製)に分散させることで、正極活物質ペーストを作製した。このペーストを正極集電体としての厚さ20μmのアルミニウム箔上に均一な厚さ(乾燥後の厚さ90μm)となるように塗布して乾燥した。得られた乾燥後のシートから直径14mmの円板状に打ち抜いたものを、プレス加工後の正極層における正極活物質粉末の充填密度(以下、正極充填密度という)Dの、前記正極活物質粉末のタップ密度Dに対する比(以下、D/D比という)が1.15以上になるように一軸プレス機を用いて6600kgf/cmでプレスすることで正極を得た。なお、電極密度、正極充填密度D及びD/D比は表1に示されるとおりであった。
(3) Production of electrode and coin cell LiNi 0.8 Co 0.15 Al 0.05 O 2 oriented secondary particle powder having a tap density of 2.9 g / cc obtained by the above process, acetylene black (DENKA BLACK HS100, Electric Chemical Industry Co., Ltd.) and polyvinylidene fluoride (PVDF) (KF Polymer # 1120, Kureha Co., Ltd.) were mixed so that the mass ratio was 94: 3: 3, and N-methyl-2-pyrrolidone ( A positive electrode active material paste was prepared by dispersing in Wako Pure Chemical Industries, Ltd.). This paste was applied on a 20 μm-thick aluminum foil as a positive electrode current collector so as to have a uniform thickness (thickness after drying: 90 μm) and dried. The positive electrode active material having a packing density (hereinafter referred to as positive electrode packing density) D 2 of the positive electrode active material powder in the positive electrode layer after press working is obtained by punching the obtained dried sheet into a disk shape having a diameter of 14 mm. A positive electrode was obtained by pressing at 6600 kgf / cm 2 using a uniaxial press so that the ratio of the powder to the tap density D 1 (hereinafter referred to as D 2 / D 1 ratio) was 1.15 or more. The electrode density, positive electrode packing density D 2 and D 2 / D 1 ratio were as shown in Table 1.

こうして得た正極板を用いてコインセルを作製した。なお、電解液は、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)を等体積比で混合した有機溶媒に、LiPFを1mol/Lの濃度となるように溶解することにより調製した。また、負極としては、金属リチウム箔を用いた。 A coin cell was produced using the positive electrode plate thus obtained. The electrolytic solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in an organic solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at an equal volume ratio. Moreover, a metal lithium foil was used as the negative electrode.

(4)電気化学測定
上述のように作製した特性評価用電池(コインセル)を用いて、以下のように充放電操作を行うことで、放電容量および内部抵抗の評価を行った。具体的には、0.1Cレートの電流値で電池電圧が4.3Vとなるまで定電流充電した。その後、電池電圧を4.3Vに維持する電流条件で、その電流値が1/20に低下するまで定電圧充電した。10分間休止した後、5Cレートの電流値で電池電圧が2.5Vになるまで定電流放電し、その後10分間休止した。これらの充放電操作を1サイクルとし、25℃の条件下で合計2サイクル繰り返し、得られた放電容量と合剤密度からエネルギー密度を算出した。また2サイクル目の放電容量を100%とした際の50%(SOC50%:SOCは「State Of Charge」の略であって、充電状態を意味する)まで充電を行い、そのときの開回路電圧(OCV:「Open−CircuitVoltage」の略であって、電流が流れないときの電池電圧を意味する)を読み取った。その後0.5C相当で放電させてから10秒後の電圧降下を読み取った。さらに、放電電流を1C、2C相当と変えて放電を行い、各放電電流における電圧降下を読み取った。これらの放電電流と電圧降下をプロットし、その傾きから算出した内部抵抗の数値を出力特性の指標とした。この数値が低いほど出力特性が高い。評価結果は表1に示されるとおりであり、得られた電池はエネルギー密度が高く、かつ、内部抵抗が低いものであった。
(4) Electrochemical measurement Using the battery for characteristic evaluation (coin cell) produced as described above, the discharge capacity and the internal resistance were evaluated by performing a charge / discharge operation as follows. Specifically, constant current charging was performed until the battery voltage reached 4.3 V at a current value of 0.1 C rate. Thereafter, constant voltage charging was performed until the current value decreased to 1/20 under the current condition of maintaining the battery voltage at 4.3V. After resting for 10 minutes, the battery was discharged at a constant current at a current value of 5C until the battery voltage reached 2.5 V, and then rested for 10 minutes. These charging / discharging operations were defined as one cycle, and a total of two cycles were repeated under the condition of 25 ° C., and the energy density was calculated from the obtained discharge capacity and mixture density. In addition, the battery is charged up to 50% (SOC 50%: SOC is an abbreviation of “State of Charge”, meaning a charged state) when the discharge capacity at the second cycle is 100%, and the open circuit voltage at that time (OCV: an abbreviation of “Open-CircuitVoltage”, which means the battery voltage when no current flows). Thereafter, the voltage drop 10 seconds after the discharge at 0.5 C equivalent was read. Further, discharging was performed while changing the discharge current to 1C or 2C, and the voltage drop at each discharge current was read. These discharge currents and voltage drops were plotted, and the value of the internal resistance calculated from the slope was used as an index of output characteristics. The lower this value, the higher the output characteristics. The evaluation results are as shown in Table 1. The obtained battery had high energy density and low internal resistance.

(5)電極構造評価(断面観察)
上記の方法で得られた例1の電極について、クロスセクションポリッシャ(CP)により電極の断面研磨面が観察できるように研磨し、走査型子顕微鏡(日本電子製JSM−6390)を用いて、図2に示される断面画像を得た。また、例4で得られた電極の断面を上記同様に走査型子顕微鏡(日本電子製JSM−6390)を用いて観察したところ、図3及び4に示される断面画像を得た。図4は図3の拡大図である。
(5) Electrode structure evaluation (cross-sectional observation)
About the electrode of Example 1 obtained by said method, it grind | polished so that the cross-section grinding | polishing surface of an electrode can be observed with a cross section polisher (CP), and using a scanning type | mold microscope (JEOL JSM-6390), FIG. The cross-sectional image shown in 2 was obtained. Moreover, when the cross section of the electrode obtained in Example 4 was observed using a scanning child microscope (JSM-6390, manufactured by JEOL) in the same manner as described above, the cross-sectional images shown in FIGS. 3 and 4 were obtained. FIG. 4 is an enlarged view of FIG.

例2、5〜7及び10〜12:配向二次粒子と小粒径無配向二次粒子の併用例
例1の(1a)と同様にして調製したスラリーをスプレードライヤー(大川原化工機株式会社製、型式「OC−16」、熱風入り口温度120℃、ツインジェットノズルにて0.15MPaにて噴霧)で乾燥・造粒することにより、略球状の(Ni0.8Co0.15Al0.05)O粉末を小粒径無配向二次粒子として得た。略球状の小粒径無配向二次粒子の乾燥後のD50粒径は12μmであった。こうして得られた略球状の小粒径無配向二次粒子と、例1の(1d)で得られた配向二次粒子とを、表1に示される配合比で混合した後、例1の(1e)リチウム化合物との混合工程及び(1f)焼成工程(リチウム導入工程)と同様の工程を施して正極活物質を作製した。こうして得られた正極活物質は配向二次粒子及び小粒径無配向二次粒子の両方を含んでおり、例1(2)〜(4)と同様にして且つ表1に示される諸条件に従って各種測定を行ったところ、表1に示される結果が得られた。
Examples 2, 5 to 7 and 10 to 12 : Combined example of oriented secondary particles and small particle size non-oriented secondary particles A slurry prepared in the same manner as in Example 1 (1a) was spray-dried (Okawara Kako Co., Ltd.) , Model “OC-16”, hot air inlet temperature 120 ° C., sprayed at 0.15 MPa with a twin jet nozzle) and granulated to obtain a substantially spherical shape (Ni 0.8 Co 0.15 Al 0. 05 ) O powder was obtained as non-oriented secondary particles with small particle size. The D50 particle size after drying of the substantially spherical small particle size non-oriented secondary particles was 12 μm. The substantially spherical small particle size non-oriented secondary particles obtained in this way and the oriented secondary particles obtained in (1d) of Example 1 were mixed at the blending ratio shown in Table 1, and then ( 1e) A step of mixing with a lithium compound and (1f) a step similar to the firing step (lithium introduction step) were performed to prepare a positive electrode active material. The positive electrode active material thus obtained contains both oriented secondary particles and small-size non-oriented secondary particles, and is the same as in Examples 1 (2) to (4) and according to the conditions shown in Table 1. When various measurements were performed, the results shown in Table 1 were obtained.

例3、8及び13:小粒径無配向二次粒子の単独使用例
例1の(1a)と同様にして調製したスラリーをスプレードライヤー(大川原化工機株式会社製、型式「OC−16」、熱風入り口温度120℃、ツインジェットノズルにて0.15MPaにて噴霧)で乾燥・造粒することにより、略球状の(Ni0.8Co0.15Al0.05)O粉末を小粒径無配向二次粒子として得た。略球状の小粒径無配向二次粒子の乾燥後のD50粒径は12μmであった。こうして得られた略球状の小粒径無配向二次粒子に、例1の(1e)リチウム化合物との混合工程及び(1f)焼成工程(リチウム導入工程)と同様の工程を施して正極活物質を作製した。焼成工程後に得られた正極活物質粉末のD50粒径は9μm、タップ密度は2.4g/ccであった。こうして得られた正極活物質は小粒径無配向二次粒子を単独で含んでおり(すなわち配向二次粒子を含んでおらず)、例1(2)〜(4)と同様にして且つ表1に示される諸条件に従って各種測定を行ったところ、表1に示される結果が得られた。
Examples 3, 8 and 13 : Example of single use of non-oriented secondary particles having small particle diameters A slurry prepared in the same manner as in (1a) of Example 1 was spray-dried (Okawara Chemical Co., Ltd., model “OC-16”, Drying and granulating at a hot air inlet temperature of 120 ° C. and spraying at 0.15 MPa with a twin jet nozzle) yields a substantially spherical (Ni 0.8 Co 0.15 Al 0.05 ) O powder with a small particle size Obtained as non-oriented secondary particles. The D50 particle size after drying of the substantially spherical small particle size non-oriented secondary particles was 12 μm. The substantially spherical small particle size non-oriented secondary particles thus obtained were subjected to the same steps as the mixing step (1e) with the lithium compound and the (1f) firing step (lithium introduction step) in Example 1 to obtain a positive electrode active material Was made. The positive electrode active material powder obtained after the firing step had a D50 particle size of 9 μm and a tap density of 2.4 g / cc. The positive electrode active material thus obtained contains small non-oriented secondary particles alone (that is, does not contain oriented secondary particles), and is the same as in Examples 1 (2) to (4). When various measurements were performed according to the various conditions shown in Table 1, the results shown in Table 1 were obtained.

例14〜16:配合二次粒子と大粒径無配向二次粒子の併用例
例1の(1a)と同様にして調製したスラリーをスプレードライヤー(大川原化工機株式会社製、型式「FOC−16」、熱風入り口温度120℃、アトマイザ回転数20000rpm)で乾燥・造粒することにより、略球状の(Ni0.8Co0.15Al0.05)O粉末を略球状の大粒径無配向二次粒子として得た。乾燥後のD50粒径は25μmであった。こうして得られた略球状の大粒径無配向二次粒子と、例1の(1d)で得られた配向二次粒子とを、表1に示される配合比で混合した後、例1の(1e)リチウム化合物との混合工程及び(1f)焼成工程(リチウム導入工程)と同様の工程を施して正極活物質を作製した。こうして得られた正極活物質は配向二次粒子及び大粒径無配向二次粒子の両方を含んでおり、例1(2)〜(4)と同様にして且つ表1に示される諸条件に従って各種測定を行ったところ、表1に示される結果が得られた。
Examples 14 to 16 : Combination examples of blended secondary particles and non-oriented secondary particles with large particle size Slurry prepared in the same manner as in (1a) of Example 1 was spray-dried (Okawara Koki Co., Ltd., model “FOC-16” ”By drying and granulating at a hot air inlet temperature of 120 ° C. and an atomizer speed of 20000 rpm, a substantially spherical (Ni 0.8 Co 0.15 Al 0.05 ) O powder is non-oriented with a large spherical particle size. Obtained as secondary particles. The D50 particle size after drying was 25 μm. The substantially spherical large-diameter non-oriented secondary particles thus obtained and the oriented secondary particles obtained in (1d) of Example 1 were mixed at the blending ratio shown in Table 1, and then ( 1e) A step of mixing with a lithium compound and (1f) a step similar to the firing step (lithium introduction step) were performed to prepare a positive electrode active material. The positive electrode active material thus obtained contains both oriented secondary particles and large-size non-oriented secondary particles, in the same manner as in Examples 1 (2) to (4) and according to the conditions shown in Table 1. When various measurements were performed, the results shown in Table 1 were obtained.

例17〜19:大粒径無配向二次粒子の単独使用例
例1の(1a)と同様にして調製したスラリーをスプレードライヤー(大川原化工機株式会社製、型式「FOC−16」、熱風入り口温度120℃、アトマイザ回転数20000rpm)で乾燥・造粒することにより、略球状の(Ni0.8Co0.15Al0.05)O粉末を略球状の大粒径無配向二次粒子として得た。乾燥後のD50粒径は25μmであった。こうして得られた略球状の大粒径無配向二次粒子に、例1の(1e)リチウム化合物との混合工程及び(1f)焼成工程(リチウム導入工程)と同様の工程を施して正極活物質を作製した。焼成工程後に得られた粉末の粒径は20μm、タップ密度は2.9g/ccであった。こうして得られた正極活物質は大粒径無配向二次粒子を単独で含んでおり(すなわち配向二次粒子を含んでおらず)、例1(2)〜(4)と同様にして且つ表1に示される諸条件に従って各種測定を行ったところ、表1に示される結果が得られた。
Examples 17 to 19 : Example of single use of non-oriented secondary particles having large particle diameters Slurry prepared in the same manner as in (1a) of Example 1 was spray-dried (Okawara Kako Co., Ltd., model “FOC-16”, hot air inlet By drying and granulating at a temperature of 120 ° C. and an atomizer rotational speed of 20000 rpm, a substantially spherical (Ni 0.8 Co 0.15 Al 0.05 ) O powder is obtained as a substantially spherical large particle size non-oriented secondary particle. Obtained. The D50 particle size after drying was 25 μm. The substantially spherical large particle size non-oriented secondary particles thus obtained were subjected to the same steps as in Example 1 (1e) mixing step with lithium compound and (1f) firing step (lithium introduction step) to obtain a positive electrode active material Was made. The particle size of the powder obtained after the firing step was 20 μm, and the tap density was 2.9 g / cc. The positive electrode active material obtained in this way contains large-size non-oriented secondary particles alone (that is, does not contain oriented secondary particles), and is the same as in Examples 1 (2) to (4). When various measurements were performed according to the various conditions shown in Table 1, the results shown in Table 1 were obtained.

表1の結果から以下のことが分かる。例1〜3は二次粒子が割れない程度にプレス電極に関する比較例であり、粒径の小さい無配向二次粒子を配合してもエネルギー密度は上がらないものの抵抗が低いことが分かる。例4〜8は二次粒子が割れ始める程度にプレスした電極に関する例であり、配向二次粒子を混ぜた電極は抵抗値が悪化しにくいことが分かる。例9〜13は配向二次粒子を割って、さらに電極密度を高めた電極に関する例であり、配向二次粒子を混ぜた電極は抵抗値の悪化幅が小さいことが分かる。例14〜19は粒径が大きい無配向二次粒子を用いた電極に関する例であり、配向二次粒子よりも粒径が小さい無配向二次粒子でないと、配向二次粒子を入れたことによる効果が得られないことが分かる。   From the results in Table 1, the following can be understood. Examples 1 to 3 are comparative examples relating to the press electrode to the extent that the secondary particles do not break, and it can be seen that even when non-oriented secondary particles having a small particle size are blended, the energy density does not increase, but the resistance is low. Examples 4 to 8 are examples relating to electrodes pressed to such an extent that the secondary particles start to crack, and it is understood that the resistance value of the electrodes mixed with the oriented secondary particles is hardly deteriorated. Examples 9 to 13 are examples relating to electrodes in which the oriented secondary particles are broken to further increase the electrode density, and it is understood that the resistance value of the electrode mixed with the oriented secondary particles is small. Examples 14 to 19 are examples relating to electrodes using non-oriented secondary particles having a large particle size, and are not non-oriented secondary particles having a particle size smaller than that of the aligned secondary particles. It turns out that an effect is not acquired.

また、図5に例1〜19において測定された抵抗値と配向二次粒子の比率との関係を示すグラフを示す。図5に示される結果から、正極活物質が配向二次粒子を(正極活物質粉末の合計量に対して)10〜100質量%含むことで抵抗率が有意に低減されることが分かる。   Moreover, the graph which shows the relationship between the resistance value measured in Examples 1-19 and the ratio of the orientation secondary particle in FIG. 5 is shown. From the results shown in FIG. 5, it can be seen that the resistivity is significantly reduced when the positive electrode active material contains 10 to 100 mass% of oriented secondary particles (relative to the total amount of the positive electrode active material powder).

10 正極活物質粉末
12 一次粒子
14 配向二次粒子
20 正極活物質粉末
22 一次粒子
24 無配向二次粒子
DESCRIPTION OF SYMBOLS 10 Positive electrode active material powder 12 Primary particle 14 Oriented secondary particle 20 Positive electrode active material powder 22 Primary particle 24 Unoriented secondary particle

Claims (9)

層状岩塩構造を有する正極活物質で構成される複数の一次粒子からなり、該複数の一次粒子が配向されてなる配向二次粒子を含む正極活物質粉末を用意する工程と、
前記正極活物質粉末を、導電助剤、バインダー及び溶媒と混合して正極合剤ペーストを得る工程と、
前記正極合剤ペーストを集電体上に塗布して正極層を形成する工程と、
前記正極層を前記集電体に向かってプレス加工し、その際、プレス加工後の正極層における正極活物質粉末の充填密度Dの、前記正極活物質粉末のタップ密度Dに対する比D/Dが1.15以上になるように前記プレス加工が行われる工程と、
を含む、リチウム二次電池用正極の製造方法。
A step of preparing a positive electrode active material powder comprising a plurality of primary particles composed of a positive electrode active material having a layered rock salt structure, and comprising oriented secondary particles in which the plurality of primary particles are oriented;
Mixing the positive electrode active material powder with a conductive additive, a binder and a solvent to obtain a positive electrode mixture paste;
Applying the positive electrode mixture paste on a current collector to form a positive electrode layer;
The positive electrode layer is pressed toward the current collector, and at this time, the ratio D 2 of the packing density D 2 of the positive electrode active material powder in the positive electrode layer after the pressing to the tap density D 1 of the positive electrode active material powder. / a step D 1 is made the press working so as to at least 1.15,
The manufacturing method of the positive electrode for lithium secondary batteries containing.
前記プレス加工が、前記配向二次粒子の少なくとも一部が割れる又は潰れるように行われる、請求項1に記載の方法。   The method according to claim 1, wherein the pressing is performed such that at least a part of the oriented secondary particles is cracked or crushed. 前記複数の一次粒子が、略一軸方向に配向されてなる、請求項1又は2に記載の方法。   The method according to claim 1, wherein the plurality of primary particles are oriented in a substantially uniaxial direction. 前記一次粒子が0.01〜5μmの平均粒子径を有し、前記配向二次粒子が1〜100μmの平均粒子径を有し、前記配向二次粒子における前記一次粒子の(003)面の配向率が50%以上である、請求項1〜3のいずれか一項に記載の方法。   The primary particles have an average particle diameter of 0.01 to 5 μm, the oriented secondary particles have an average particle diameter of 1 to 100 μm, and the (003) plane orientation of the primary particles in the oriented secondary particles The method according to any one of claims 1 to 3, wherein the rate is 50% or more. 前記正極活物質が、下記組成式(1):
LiMeO (1)
(式中、0.9≦p≦1.3である。Meは、Mn、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Mg、Zr、B、及びMoからなる群から選択される少なくとも1種類の金属元素である)又は下記組成式(2):
xLiMO−(1−x)LiMeO (2)
(式中、0<x<1及び0.9≦p≦1.3であり、M及びMeは、それぞれ独立して、Mn、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Mg、Zr、B、及びMoからなる群から選択される少なくとも1種類の金属元素である)で表される組成を有する、請求項1〜4のいずれか一項に記載の方法。
The positive electrode active material has the following composition formula (1):
Li p MeO 2 (1)
(Wherein 0.9 ≦ p ≦ 1.3. Me is selected from the group consisting of Mn, Ti, V, Cr, Fe, Co, Ni, Cu, Al, Mg, Zr, B, and Mo. At least one metal element) or the following compositional formula (2):
xLi 2 MO 3 - (1- x) Li p MeO 2 (2)
(Where 0 <x <1 and 0.9 ≦ p ≦ 1.3, and M and Me are each independently Mn, Ti, V, Cr, Fe, Co, Ni, Cu, Al, The method according to claim 1, which has a composition represented by (at least one metal element selected from the group consisting of Mg, Zr, B, and Mo).
前記正極活物質が、下記組成式(3):
Li(Ni,Co,Al)O (3)
(式中、0.9≦p≦1.3、0.6<x≦0.9、0.05≦y≦0.25、0≦z≦0.2、及びx+y+z=1である)で表される組成を有する、請求項1〜5のいずれか一項に記載の方法。
The positive electrode active material has the following composition formula (3):
Li p (Ni x, Co y , Al z) O 2 (3)
(Where 0.9 ≦ p ≦ 1.3, 0.6 <x ≦ 0.9, 0.05 ≦ y ≦ 0.25, 0 ≦ z ≦ 0.2, and x + y + z = 1). 6. A method according to any one of claims 1 to 5 having the composition represented.
前記正極活物質粉末が、前記配向二次粒子を、前記正極活物質粉末の合計量に対して10〜100質量%含む、請求項1〜6のいずれか一項に記載の方法。   The method as described in any one of Claims 1-6 in which the said positive electrode active material powder contains 10-100 mass% of said orientation secondary particles with respect to the total amount of the said positive electrode active material powder. 前記正極活物質粉末が前記配向二次粒子と無配向二次粒子とを含み、前記配向二次粒子の体積基準D50平均粒径が前記無配向二次粒子の体積基準D50平均粒径よりも大きい、請求項1〜7のいずれか一項に記載の方法。   The positive electrode active material powder includes the oriented secondary particles and non-oriented secondary particles, and the volume-based D50 average particle size of the oriented secondary particles is larger than the volume-based D50 average particle size of the non-oriented secondary particles. The method according to any one of claims 1 to 7. 前記配向二次粒子の体積基準D50平均粒径が、前記無配向二次粒子の体積基準D50平均粒径の1.5倍以上である、請求項8に記載の方法。   The method according to claim 8, wherein the volume-based D50 average particle diameter of the oriented secondary particles is 1.5 times or more the volume-based D50 average particle diameter of the non-oriented secondary particles.
JP2013251750A 2012-12-18 2013-12-05 Method for producing positive electrode for lithium secondary battery Active JP6096101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013251750A JP6096101B2 (en) 2012-12-18 2013-12-05 Method for producing positive electrode for lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012275809 2012-12-18
JP2012275809 2012-12-18
JP2013251750A JP6096101B2 (en) 2012-12-18 2013-12-05 Method for producing positive electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2014139926A true JP2014139926A (en) 2014-07-31
JP6096101B2 JP6096101B2 (en) 2017-03-15

Family

ID=51416532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013251750A Active JP6096101B2 (en) 2012-12-18 2013-12-05 Method for producing positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6096101B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143844A1 (en) * 2015-03-10 2016-09-15 日本化学産業株式会社 Positive-electrode active material for nonaqueous electrolyte lithium secondary batteries, and production method for said material
JP2017016793A (en) * 2015-06-29 2017-01-19 トヨタ自動車株式会社 Cathode active material layer, all-solid lithium battery and manufacturing method for cathode active material layer
CN110890525A (en) * 2018-09-11 2020-03-17 艾可普罗 Bm 有限公司 Positive active material for lithium secondary battery and lithium secondary battery including the same
JP2020077611A (en) * 2018-09-11 2020-05-21 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
CN113875042A (en) * 2020-12-24 2021-12-31 东莞新能源科技有限公司 Positive electrode and electrochemical device
JP2022143761A (en) * 2021-03-18 2022-10-03 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and nonaqueous electrolyte secondary battery
WO2023193625A1 (en) * 2022-04-06 2023-10-12 比亚迪股份有限公司 Positive electrode material and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335220A (en) * 1994-06-14 1995-12-22 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolytic secondary battery and its positive electrode active material
JPH0922693A (en) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335220A (en) * 1994-06-14 1995-12-22 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolytic secondary battery and its positive electrode active material
JPH0922693A (en) * 1995-07-04 1997-01-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143844A1 (en) * 2015-03-10 2016-09-15 日本化学産業株式会社 Positive-electrode active material for nonaqueous electrolyte lithium secondary batteries, and production method for said material
JPWO2016143844A1 (en) * 2015-03-10 2018-01-25 日本化学産業株式会社 Cathode active material for non-aqueous electrolyte lithium secondary battery and method for producing the same
JP2017016793A (en) * 2015-06-29 2017-01-19 トヨタ自動車株式会社 Cathode active material layer, all-solid lithium battery and manufacturing method for cathode active material layer
JP2022009746A (en) * 2018-09-11 2022-01-14 エコプロ ビーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2020077611A (en) * 2018-09-11 2020-05-21 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
CN110890525A (en) * 2018-09-11 2020-03-17 艾可普罗 Bm 有限公司 Positive active material for lithium secondary battery and lithium secondary battery including the same
JP7254875B2 (en) 2018-09-11 2023-04-10 エコプロ ビーエム カンパニー リミテッド Positive electrode active material for lithium secondary battery and lithium secondary battery containing the same
CN110890525B (en) * 2018-09-11 2023-08-11 艾可普罗 Bm 有限公司 Positive active material for lithium secondary battery and lithium secondary battery including the same
CN113875042A (en) * 2020-12-24 2021-12-31 东莞新能源科技有限公司 Positive electrode and electrochemical device
WO2022133894A1 (en) * 2020-12-24 2022-06-30 东莞新能源科技有限公司 Positive electrode and electrochemical device
CN113875042B (en) * 2020-12-24 2022-08-05 东莞新能源科技有限公司 Positive electrode and electrochemical device
JP2022143761A (en) * 2021-03-18 2022-10-03 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and nonaqueous electrolyte secondary battery
JP7262500B2 (en) 2021-03-18 2023-04-21 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode and non-aqueous electrolyte secondary battery
WO2023193625A1 (en) * 2022-04-06 2023-10-12 比亚迪股份有限公司 Positive electrode material and application thereof

Also Published As

Publication number Publication date
JP6096101B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5701378B2 (en) Lithium secondary battery and positive electrode active material thereof
CN109874306B (en) Cathode material, preparation method thereof, cathode and lithium ion battery
JP6096101B2 (en) Method for producing positive electrode for lithium secondary battery
WO2012137533A1 (en) Cathode active material precursor particle, method for producing same, and method for producing cathode active material particle for lithium secondary battery
JP5464717B2 (en) Method for producing positive electrode active material
WO2012137535A1 (en) Cathode active material precursor particles, cathode active material particles for lithium secondary battery, and lithium secondary battery
JP5460329B2 (en) Process for producing transition metal compound granule for raw material of positive electrode active material of lithium secondary battery
JP5132360B2 (en) Method for producing lithium cobalt composite oxide for positive electrode active material of lithium ion secondary battery
JP2014067546A (en) Positive electrode active material of lithium secondary battery, and lithium secondary battery
JP4499498B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
US20140087265A1 (en) Cathode active material for a lithium ion secondary battery and a lithium ion secondary battery
JP2018514056A (en) Electrode active material for metal ion battery
JP6088923B2 (en) Method for producing positive electrode active material for lithium secondary battery or precursor thereof
JP6129853B2 (en) Positive electrode active material for lithium secondary battery
JP2008186753A (en) Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2010070427A (en) Method for producing lithium-containing multiple oxide suitable for lithium ion secondary battery
JP2010212261A (en) Positive electrode active material and lithium secondary battery using the same
WO2019131519A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
WO2018003929A1 (en) Lithium titanate powder and active material for power storage device electrode, and electrode sheet and power storage device using same
JP2014049407A (en) Method of manufacturing cathode active material for lithium secondary battery
JP4797332B2 (en) Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery
JP2017073363A (en) Method for producing electrode mixture slurry
KR100793691B1 (en) Material for negative electrode of lithium ion secondary battery, process for manufacturing the same, and negative electrode using the same and lithium ion secondary battery using the negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170215

R150 Certificate of patent or registration of utility model

Ref document number: 6096101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150