JP2981697B2 - Method and apparatus for measuring three-dimensional information of a specimen - Google Patents

Method and apparatus for measuring three-dimensional information of a specimen

Info

Publication number
JP2981697B2
JP2981697B2 JP4205308A JP20530892A JP2981697B2 JP 2981697 B2 JP2981697 B2 JP 2981697B2 JP 4205308 A JP4205308 A JP 4205308A JP 20530892 A JP20530892 A JP 20530892A JP 2981697 B2 JP2981697 B2 JP 2981697B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
sample
specimen
dimensional information
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4205308A
Other languages
Japanese (ja)
Other versions
JPH0650881A (en
Inventor
昌宏 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4205308A priority Critical patent/JP2981697B2/en
Priority to DE69333642T priority patent/DE69333642T2/en
Priority to EP97115633A priority patent/EP0814334B1/en
Priority to EP93112273A priority patent/EP0585620B1/en
Priority to DE69321316T priority patent/DE69321316T2/en
Priority to US08/100,365 priority patent/US5428447A/en
Publication of JPH0650881A publication Critical patent/JPH0650881A/en
Application granted granted Critical
Publication of JP2981697B2 publication Critical patent/JP2981697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は検体の3次元情報計測方
法および装置に関し、さらに詳しくは電磁波が検体を相
対的につるまき螺旋状に走査し、非破壊で検体の断層像
や立体像等の3次元情報を計測する方法および装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring three-dimensional information of a specimen, and more particularly to a method of scanning a specimen spirally by electromagnetic waves, and non-destructively tomographic images and three-dimensional images of the specimen. And a method and apparatus for measuring the three-dimensional information.

【0002】[0002]

【従来の技術】検体の3次元情報、即ち検体の外面のみ
ならず該検体の断層像や立体像等を非破壊で計測する方
法としては、例えばX線CT手法が知られている。
2. Description of the Related Art As a method for non-destructively measuring three-dimensional information of a specimen, that is, not only the outer surface of the specimen but also a tomographic image or a three-dimensional image of the specimen, for example, an X-ray CT method is known.

【0003】このX線CT手法は、1つのX線束を検体
に照射し、このX線束を検体の仮想軸(以下体軸とい
う)を中心とした、該体軸に垂直な面内の円周上を360
°回転させて該検体を透過した透過X線の強度から断層
像を構成し、前記X線束を体軸方向に移動させたのち再
度上述と同様の回転をさせて透過X線の強度から断層像
を構成する操作を繰り返し、前記複数の透過X線の画像
のデータから体軸方向の画像データを補間計算して前記
検体の3次元情報を計測するものである。
In this X-ray CT method, a sample is irradiated with one X-ray flux, and the X-ray flux is applied to a circumference in a plane centered on a virtual axis (hereinafter referred to as a body axis) of the sample and perpendicular to the body axis. 360 up
Rotate to form a tomographic image from the intensity of transmitted X-rays transmitted through the specimen, move the X-ray flux in the body axis direction, and rotate again as described above to obtain a tomographic image from the transmitted X-ray intensity. Is repeated, and three-dimensional information of the specimen is measured by interpolating and calculating image data in the body axis direction from the data of the plurality of transmitted X-ray images.

【0004】このため上記検体の体軸方向の画像データ
は、検体の実際の画像データに対して信頼性に難点があ
る。
Therefore, the image data of the sample in the body axis direction has a problem in reliability with respect to the actual image data of the sample.

【0005】上述の難点を解決する方法として、ヘリカ
ルスキャンX線CT手法が発表されている(「ヘリカル
スキャンの原理と仕様」 INNERVISION (7.6) 1992 )。
As a method for solving the above-mentioned difficulties, a helical scan X-ray CT method has been announced ("Principle and specification of helical scan" INNERVISION (7.6) 1992).

【0006】このヘリカルスキャンX線CT手法は、上
述従来のX線CT手法におけるX線束を、前記体軸を中
心とした回転変位と体軸方向への直線変位とをベクトル
加算されたつるまき螺旋状に変位させる手法であり、こ
のヘリカルスキャンX線CT手法により得られる透過X
線強度データは体軸方向の連続性を有しており、従って
該検体の3次元情報を高精度に計測することができる。
In the helical scan X-ray CT method, the X-ray flux in the above-mentioned conventional X-ray CT method is obtained by converting a rotational displacement about the body axis and a linear displacement in the body axis direction into a vector spiral. The transmission X obtained by this helical scan X-ray CT method
The line intensity data has continuity in the body axis direction, so that three-dimensional information of the specimen can be measured with high accuracy.

【0007】また近年上記方法において、X線の代わり
に近赤外光やレーザ光を照射し、生体における生化学や
生理学的情報を計測する方法が知られている。
In recent years, in the above-mentioned method, a method of irradiating near-infrared light or laser light instead of X-rays and measuring biochemical or physiological information in a living body is known.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、検体の
3次元情報は、特に生物学や医学の分野においてさらに
高精度化が望まれており、上記検体の3次元情報計測方
法もさらなる高精度化が不可欠となっている。
However, it is desired that the three-dimensional information of a specimen is further improved in accuracy, particularly in the fields of biology and medicine. Has become indispensable.

【0009】上記検体の3次元情報計測方法において上
記要望に応えるために、上記X線やレーザ光等を照射す
る照射手段をつるまき螺旋状に走査させるとき、つるま
き螺旋の回転中心軸方向の走査速度を小さくして検体の
前記軸方向に沿った像の分解能を向上させる必要があ
る。この場合、走査速度を小さくすることにより走査に
要する時間が長くなり、計測の効率が低下するという問
題が生じる。
In order to meet the above-mentioned demands in the three-dimensional information measuring method of the specimen, when the irradiating means for irradiating the above-mentioned X-ray or laser beam is scanned in a spiral manner, the spiral means may rotate in the direction of the rotation center axis of the spiral. It is necessary to reduce the scanning speed to improve the resolution of the image of the specimen along the axial direction. In this case, reducing the scanning speed increases the time required for scanning, resulting in a problem that measurement efficiency is reduced.

【0010】本発明の目的は、上記事情に鑑みなされた
もので、走査時間の短縮を実現する検体の3次元情報計
測方法および装置を提供することにある。
It is an object of the present invention to provide a method and an apparatus for measuring three-dimensional information of a specimen, which have been made in view of the above circumstances, and which can reduce the scanning time.

【0011】[0011]

【課題を解決するための手段】本発明にかかる請求項1
記載の検体の3次元情報計測方法は、検体に電磁波を照
射し、該電磁波が前記検体をつるまき螺旋状に走査する
ように該電磁波と前記検体とを相対的に変位させ、前記
検体を透過した電磁波の強度を検出して前記検体の3次
元情報を計測する検体の3次元情報計測方法において、
単一の電磁波出射手段から出射された電磁波を、前記検
体の周囲に等間隔に、少なくとも前記検体の周囲 360度
に亘ってつるまき螺旋状に配設されてなる複数の電磁波
照射手段に入射させ、該電磁波照射手段から前記検体に
前記電磁波を照射し、前記検体を透過した複数の電磁波
の強度を該電磁波毎に検出せしめる位置に配された複数
の電磁波検出手段により検出することを特徴とする。
Means for Solving the Problems Claim 1 according to the present invention.
The method for measuring three-dimensional information of a specimen described above includes irradiating the specimen with an electromagnetic wave, displacing the electromagnetic wave and the specimen relatively so that the electromagnetic wave scans the specimen in a spiral shape, and transmits the specimen. A method for measuring three-dimensional information of the sample by detecting the intensity of the electromagnetic wave obtained,
The electromagnetic waves emitted from the single electromagnetic wave emitting means are made incident on a plurality of electromagnetic wave irradiating means which are arranged at equal intervals around the sample and at least 360 degrees around the sample in a spiral manner. Irradiating the sample with the electromagnetic wave from the electromagnetic wave irradiation unit, and detecting the intensity of the plurality of electromagnetic waves transmitted through the sample by a plurality of electromagnetic wave detection units arranged at positions for detecting each of the electromagnetic waves. .

【0012】[0012]

【0013】また本発明の請求項2記載の検体の3次元
情報計測装置は、上記請求項1記載の検体の3次元情報
計測方法を実施するための装置であり、検体に電磁波を
照射し、該電磁波が前記検体をつるまき螺旋状に走査す
るように該電磁波と前記検体とを相対的に変位させ、前
記検体を透過した電磁波の強度を検出して前記検体の3
次元情報を計測する検体の3次元情報計測装置におい
て、単一の電磁波出射手段と、前記検体の周囲に、等間
隔に少なくとも前記検体の周囲 360度に亘ってつるまき
螺旋状に配設され、前記電磁波出射手段から出射された
電磁波を受け、前記検体に電磁波を照射する複数の電磁
波照射手段と、前記電磁波出射手段から出射された電磁
波の進行方向を前記複数の電磁波照射手段の方向へ順次
切り換える方向切替手段と、前記検体を透過した複数の
電磁波の強度を該電磁波毎に検出する複数の電磁波検出
手段とを備なえてなることを特徴とする。
According to a second aspect of the present invention , there is provided an apparatus for measuring the three-dimensional information of a specimen according to the first aspect of the present invention . The electromagnetic wave and the sample are relatively displaced so that the electromagnetic wave scans the sample in a spiral manner, and the intensity of the electromagnetic wave transmitted through the sample is detected to detect the intensity of the electromagnetic wave.
In a sample three-dimensional information measuring device for measuring dimensional information, a single electromagnetic wave emitting means and a spiral wound around the sample at equal intervals around at least 360 degrees around the sample, A plurality of electromagnetic wave irradiation means for receiving the electromagnetic waves emitted from the electromagnetic wave emission means and irradiating the specimen with electromagnetic waves; and an electromagnetic wave emitted from the electromagnetic wave emission means.
The traveling direction of the wave is sequentially changed in the direction of the plurality of electromagnetic wave irradiation means.
It is characterized by comprising a direction switching means for switching, and a plurality of electromagnetic wave detecting means for detecting the intensity of the plurality of electromagnetic waves transmitted through the sample for each of the electromagnetic waves.

【0014】[0014]

【0015】ここで、上記電磁波とは、狭義の電磁波の
みならず赤外線、可視光線、紫外線、X線およびγ線等
を含む、広義の電磁波を意味する。
Here, the above-mentioned electromagnetic wave means not only an electromagnetic wave in a narrow sense but also an electromagnetic wave in a broad sense including infrared rays, visible rays, ultraviolet rays, X-rays, γ-rays and the like.

【0016】また上記つるまき螺旋とは、検体の任意の
仮想軸(以下、体軸という)を中心とした回転変位と,
前記体軸方向への直線変位とのベクトル和により得られ
た変位の軌跡を意味する。
The helix is defined as a rotational displacement about an arbitrary virtual axis (hereinafter referred to as a body axis) of the specimen,
It means the trajectory of the displacement obtained by the vector sum with the linear displacement in the body axis direction.

【0017】従って、上記電磁波が検体をつるまき螺旋
状に走査するとは、電磁波が上記つるまき螺旋に沿って
変位するとともに、該電磁波が前記検体に電磁波を照射
するすることを意味する。
[0017] Therefore, that the electromagnetic wave scans the sample in a helix spiral means that the electromagnetic wave is displaced along the helix and the electromagnetic wave irradiates the sample with the electromagnetic wave.

【0018】また上記つるまき螺旋状に配設するとは、
上記検体の体軸を回転の中心軸とした上記つるまき螺旋
上に所定の間隔をおいて複数配置することを意味する。
[0018] The above-mentioned arrangement of the spiral helix means that:
This means that a plurality of specimens are arranged at predetermined intervals on the helical spiral with the body axis of the specimen as the center axis of rotation.

【0019】さらに等間隔とは、上記所定の間隔が等し
いことを意味する。
Further, the equal spacing means that the above-mentioned predetermined intervals are equal.

【0020】[0020]

【作用および発明の効果】本発明にかかる検体の3次元
情報計測方法は、検体の周囲につるまき螺旋状に複数の
電磁波照射手段と複数の電磁波検出手段を配設するた
め、前記検体は電磁波によりつるまき螺旋状に走査され
る。
In the method for measuring three-dimensional information of a specimen according to the present invention, a plurality of electromagnetic wave irradiating means and a plurality of electromagnetic wave detecting means are arranged in a spiral shape around the specimen. Helical scanning.

【0021】即ち、単一の電磁波出射手段から出射され
た電磁波が、方向切替手段により、検体の周囲につるま
き螺旋状に配された複数の電磁波照射手段の方向へ順次
進行方向を切り換えられ、これにより複数の電磁波照射
手段から順次電磁波を前記検体に照射し、該検体を透
過した電磁波の強度をそれぞれ前記検出手段により検出
すれば、前記検体はつるまき螺旋状に電磁波を照射され
ることとなり、この照射された複数の電磁波ごとに該電
磁波の強度データが検出される。
That is, the light is emitted from a single electromagnetic wave emitting means.
The electromagnetic waves are suspended around the sample by the direction switching means.
Sequentially in the direction of a plurality of electromagnetic wave irradiation means arranged in a spiral
The traveling direction can be switched, thereby sequentially irradiating the specimen with electromagnetic waves from a plurality of electromagnetic wave irradiation means, and detecting the intensity of the electromagnetic waves transmitted through the specimen by the detection means, respectively, the specimen becomes a spiral spiral. Electromagnetic waves are irradiated, and intensity data of the electromagnetic waves is detected for each of the plurality of irradiated electromagnetic waves.

【0022】上記作用により、検体を透過して得られる
電磁波の強度データは前記検体の体軸方向に連続性を有
し、また電磁波照射手段および電磁波検出手段並びに
体を移動する必要がないため、従来の方法および装置よ
りも走査時間を短縮することができる。さらに、検体の
多方向からこの検体を照射する電磁波は、単一の電磁波
出射手段から出射されたものであるため、その出力を常
に一定に維持することができる。したがって、複数の電
磁波出射手段から各別に電磁波を出射するもので生じや
すい電磁波の出力のばらつきを防止することができる。
By the above operation, the intensity data of the electromagnetic wave obtained by transmitting the sample has continuity in the body axis direction of the sample, and moves the electromagnetic wave irradiation means, the electromagnetic wave detection means , and the sample. Since there is no need, the scanning time can be reduced as compared with the conventional method and apparatus. In addition,
The electromagnetic wave that irradiates this sample from multiple directions is a single electromagnetic wave
Since the light is emitted from the emission means, its output is always
Can be kept constant. Therefore, multiple
The electromagnetic wave is emitted separately from the magnetic wave emitting means.
Variations in the output of pan electromagnetic waves can be prevented.

【0023】[0023]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0024】図1(a) ,(b) および(c) は本発明の検体
の3次元情報計測装置の実施例を示す概念図である。図
1(a) は検体1の仮想軸(以下、体軸という)L1 を回
転の中心軸としたつるまき螺旋L2 上に、7つのレーザ
光照射手段S1 ,S2 ,…,S7 を略等間隔に配置した
状態を示し、図1(b) は図1(a) の上面視を示す。図1
(c) は図1(a) の部分拡大図である。図示の2次元並列
動作型イメージセンサd1 は、レーザ光照射手段S1
ら出射されたレーザ光が検体2を透過し、この透過した
レーザ光の強度を2次元的に検出する手段であり、図1
(a) では図の簡単化のため記載を省略しているが、上記
7つのレーザ光照射手段S1 ,S2 ,…,S7 のそれぞ
れに1つずつ配されている。
FIGS. 1 (a), 1 (b) and 1 (c) are conceptual views showing an embodiment of the apparatus for measuring three-dimensional information of a specimen according to the present invention. FIG. 1A shows seven laser beam irradiation means S 1 , S 2 ,..., S on a spiral helix L 2 having a virtual axis L 1 of the specimen 1 as a center axis of rotation. FIG. 1 (b) shows a state where 7 are arranged at substantially equal intervals, and FIG. 1 (b) shows a top view of FIG. 1 (a). FIG.
(c) is a partially enlarged view of FIG. 1 (a). The illustrated two-dimensional parallel operation type image sensor d 1 is a unit that laser light emitted from the laser light irradiation unit S 1 transmits through the specimen 2 and two-dimensionally detects the intensity of the transmitted laser light. FIG.
In (a), the illustration is omitted for simplification of the drawing, but one is provided for each of the above seven laser beam irradiation means S 1 , S 2 ,..., S 7 .

【0025】次に本実施例の構成を図2に示すブロック
図にしたがって詳細に説明する。
Next, the configuration of this embodiment will be described in detail with reference to the block diagram shown in FIG.

【0026】図示の検体の3次元情報計測装置は、電磁
波出射手段としてのレーザ光源2と、このレーザ光源2
から出射されたレーザ光の強度分布を一定とする強度補
正板3と、レーザ光を偏光面が直交する2つのレーザ光
に分割する1/2波長板4および偏光ビームスプリッタ
5とを備えさらにレーザ光の周波数をわずかに異なる他
の周波数に変換する周波数シフタ6と、波面整合用の偏
光ビームスプリッタ7とを有し、これらによりレーザ光
出射部100 が構成されている。
The three-dimensional information measuring apparatus for a specimen shown in FIG. 1 includes a laser light source 2 as an electromagnetic wave emitting means,
An intensity correction plate 3 for keeping the intensity distribution of the laser light emitted from the laser beam constant, a half-wave plate 4 for splitting the laser light into two laser light beams whose polarization planes are orthogonal to each other, and a polarization beam splitter 5. It has a frequency shifter 6 for converting the frequency of light to another slightly different frequency, and a polarization beam splitter 7 for wavefront matching, and these constitute a laser light emitting section 100.

【0027】また、検体の周囲の前記つるまき螺旋上に
複数の電磁波照射手段としての7つのレーザ光照射手段
1 ,S2 ,…,S7 が配されていて、該レーザ光照射
手段S1 ,S2 ,…,S7 はそれぞれ、レーザ光を円錐
状のビームに形成するレンズ8と、レーザ光を2つのレ
ーザ光に分割しおよび波面整合する偏光ビームスプリッ
タ9と、レーザ光の偏光面を45°回転させる1/4波長
板10と、前記偏光ビームスプリッタ9により分割された
一方のレーザ光を反射させる第1の凹ミラー11と、該凹
ミラーと曲率中心が一致し、該反射されたレーザ光を再
度反射させて前記偏光ビームスプリッタに入射させる第
2の凹ミラー12と、偏光板13とを備えている。
Further, seven laser beam irradiation means as a plurality of electromagnetic wave irradiating means on said helical spiral around the sample S 1, S 2, ..., have S 7 is arranged, the laser beam irradiation means S 1, S 2, ..., respectively S 7, a lens 8 for forming a laser beam to the conical beam, a polarization beam splitter 9 that divides the laser beam into two laser beams and wavefront matching, polarization of the laser beam A quarter-wave plate 10 for rotating the surface by 45 °, a first concave mirror 11 for reflecting one of the laser beams split by the polarizing beam splitter 9, and a concave mirror whose center of curvature coincides with the concave mirror; A second concave mirror 12 for reflecting the laser beam again to be incident on the polarizing beam splitter, and a polarizing plate 13 are provided.

【0028】但し図2においては図の簡単化のため上記
レーザ光照射手段S2 ,S3 ,…,S7 の内部構成の記
載を省略しているが、レーザ光照射手段S1 ,S2
…,S7 は全て同一の大きさかつ同一の構成である。
However, in FIG. 2, for simplification of the drawing, the description of the internal structure of the laser beam irradiation means S 2 , S 3 ,..., S 7 is omitted, but the laser beam irradiation means S 1 , S 2 ,
..., S 7 are all the same size and the same configuration.

【0029】さらに、検体を透過したレーザ光の強度を
2次元的に検出するレーザ光検出手段として、前記レー
ザ光照射手段S1 ,S2 ,…,S7 のそれぞれに対応し
た7つの2次元並列動作型イメージセンサd1 ,d2
…,d7 が配されている。
Furthermore, as the laser beam detecting means for detecting the intensity of the laser beam transmitted through the specimen in two dimensions, the laser beam irradiation means S 1, S 2, ..., 7 two-dimensional corresponding to each S 7 The parallel operation type image sensors d 1 , d 2 ,
..., d 7 are arranged.

【0030】さらにまた、上記イメージセンサd1 ,d
2 ,…,d7 により検出された7つのレーザ光の2次元
強度像から光ヘテロダイン検出法により前記検体の透過
光投影像を分離検出するとともに該分離検出された7つ
の透過光投影像からヘリカルスキャン用CT手法により
して該検体の3次元情報を計測する計測処理手段200
と、該3次元情報から該検体の立体像や任意断面に沿っ
た方向の断層像等を出力する再構成手段300 と、レーザ
光出射部100 から出射されたレーザ光を7つのレーザ光
照射手段S1 ,S2 ,…,S7 へ順次導光する方向切換
手段としての回転自在のミラー400 とを備えている。上
述のように構成された検体の3次元情報計測装置のレー
ザ光照射手段S1 ,S2 ,…,S7 および2次元並列動
作型イメージセンサd1 ,d2 ,…,d7 を、検体の前
記体軸L1 の方向から透視した透視図を図3(a) に示
す。
Further, the image sensors d 1 and d 1
2, ..., helical seven transmitted light projection image that is the separated detected with separate detecting transmitted light projected image of the specimen from the two-dimensional intensity image of seven laser light detected by the optical heterodyne detection method by d 7 Measurement processing means 200 for measuring three-dimensional information of the sample by a scanning CT technique
Reconstructing means 300 for outputting a three-dimensional image of the sample or a tomographic image in a direction along an arbitrary cross section from the three-dimensional information, and seven laser light irradiating means for emitting laser light emitted from the laser light emitting section 100 A rotatable mirror 400 is provided as direction switching means for sequentially guiding light to S 1 , S 2 ,..., S 7 . Laser beam irradiation means S 1 of the three-dimensional information measurement device of the sample that is configured as described above, S 2, ..., S 7 and the two-dimensional parallel operation type image sensor d 1, d 2, ..., a d 7, a specimen a perspective view seen through from the direction of the body axis L 1 shown in FIG. 3 (a) of.

【0031】また、図3(b) ,図3(c) ,図3(d) はそ
れぞれ図3(a) のI-I 線断面、II-II 線断面、III-III
線断面を示す断面図である。
FIGS. 3 (b), 3 (c) and 3 (d) are sectional views taken along line II, II-II and III-III of FIG. 3 (a), respectively.
It is sectional drawing which shows a line cross section.

【0032】次に本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0033】レーザ光源2から発射されたレーザ光は偏
光ビームスプリッタ5により光路を2つに分割され、一
方の光路を進行するレーザ光は周波数シフタ6によりも
との周波数とわずかに異なる他の周波数のレーザ光に変
換され(この周波数変換されたレーザ光を以下局発レー
ザ光という)、この局発レーザ光と他方の光路を進むレ
ーザ光(以下信号レーザ光という)とを偏光ビームスプ
リッタ5により波面整合させてレーザ光出射部100 より
出射する。
The laser light emitted from the laser light source 2 is split into two optical paths by a polarizing beam splitter 5, and the laser light traveling on one optical path is converted into another frequency slightly different from the original frequency by a frequency shifter 6. (The frequency-converted laser light is hereinafter referred to as local laser light), and the local laser light and laser light traveling along the other optical path (hereinafter referred to as signal laser light) are converted by the polarization beam splitter 5. The laser beam is emitted from the laser beam emitting unit 100 after wavefront matching.

【0034】前記レーザ光出射部100 から出射されたレ
ーザ光は光路切替ミラー400 により光路を切替えられて
レーザ光照射手段S1 に入射される。
The laser beam emitted from the laser beam emitting portion 100 is incident is switched to the optical path by the optical path switching mirror 400 in the laser beam irradiation means S 1.

【0035】該レーザ光照射手段S1 に入射されたレー
ザ光はレンズ8により円錐状ビームとされ、偏光ビーム
スプリッタ9により前記信号レーザ光と局発レーザ光に
分割される。この信号レーザ光は検体1を面照射し、再
度偏光ビームスプリッタ9により該検体1を透過した信
号レーザ光と前記局発レーザ光とを波面整合させ、この
波面整合されたレーザ光の2次元強度像を2次元並列動
作型イメージセンサ(以下イメージセンサと略す)d1
により検出する。
The laser beam incident on the laser beam irradiating means S 1 is converted into a conical beam by a lens 8, and split into a signal laser beam and a local laser beam by a polarizing beam splitter 9. This signal laser light irradiates the surface of the specimen 1 and again makes the signal laser light transmitted through the specimen 1 by the polarizing beam splitter 9 and the local laser light wavefront-matched, and the two-dimensional intensity of the wavefront-matched laser light An image sensor for two-dimensional parallel operation (hereinafter abbreviated as image sensor) d 1
Is detected by

【0036】次に前記光路切替ミラー400 を回転させて
レーザ光出射部100 から出射されたレーザ光をレーザ光
照射手段S2 へ入射させる。このときレーザ光は上記レ
ーザ光照射手段S1 へ入射したときと同様の作用により
イメージセンサd2 上に2次元強度像を投影する。
[0036] then allowed to incident laser beam emitted by rotating the optical path switching mirror 400 from the laser light emitting unit 100 to the laser beam irradiation unit S 2. Laser light at this time is to project a two-dimensional intensity image on the image sensor d 2 by the same action as when incident on the laser beam irradiation means S 1.

【0037】さらに前記光路切替ミラー400 が回転して
レーザ光出射部100 から出射されたレーザ光をレーザ光
照射手段S3 へ入射させて上述と同様の作用によりイメ
ージセンサd3 上に2次元強度像を投影する。
Further, the optical path switching mirror 400 rotates and the laser beam emitted from the laser beam emitting unit 100 is made incident on the laser beam irradiating means S 3 , and the two-dimensional intensity is applied to the image sensor d 3 by the same operation as described above. Project the image.

【0038】上記のようにミラー400 を回転させてレー
ザ光を順次レーザ光照射手段S1 ,S2 ,…,S7 へ入
射させ、それぞれに対応する2次元強度像を検出する。
As described above, the mirror 400 is rotated so that the laser light is sequentially incident on the laser light irradiation means S 1 , S 2 ,..., S 7 , and the corresponding two-dimensional intensity images are detected.

【0039】このように各イメージセンサd1 ,d2
…,d7 により検出された7つの2次元強度像は計測処
理手段200 により光ヘテロダイン検出法で計測処理され
て検体1を透過したレーザ光の透過光投影像に変換さ
れ、さらにヘリカルスキャン用CT手法によりて該検体
の3次元情報が計測され、さらに再構成手段300 により
該検体1の立体像や任意断面に沿った方向の断層像等が
出力される。
As described above, each of the image sensors d 1 , d 2 ,
.., D 7 are subjected to measurement processing by the optical heterodyne detection method by the measurement processing means 200 to be converted into a transmitted light projection image of laser light transmitted through the specimen 1, and further to CT for helical scan. The three-dimensional information of the specimen is measured by the technique, and the reconstruction means 300 outputs a three-dimensional image of the specimen 1 or a tomographic image in a direction along an arbitrary cross section.

【0040】本発明の検体の3次元情報計測方法は上述
のとおりレーザ光照射部およびイメージセンサおよび検
体を移動させることなく、わずかに光路切替ミラーを回
転させるだけで該検体の体軸方向に連続性を有した該検
体の透過光投影像を検出できるとともに、検体やレーザ
光照射手段を走査する走査時間を削減することができ
る。
As described above, the method for measuring three-dimensional information of a specimen according to the present invention can be performed continuously in the body axis direction of the specimen only by slightly rotating the optical path switching mirror without moving the laser beam irradiation unit, the image sensor, and the specimen. It is possible to detect the transmitted light projected image of the specimen having the property, and to reduce the scanning time for scanning the specimen and the laser light irradiation unit.

【0041】[0041]

【0042】また、検体に照射する電磁波は必ずしもレ
ーザ光である必要はなく、近赤外光やX線等を採用する
ことができる。例えばX線を採用した場合は、電磁波照
射手段の位置に直接X線源を配することができる。即
ち、検体1の周囲につるまき螺旋状に複数のX線源を配
し、各X線源と検体とを結ぶ延長線上に透過X線検出手
段を配設すればよい。
The electromagnetic wave applied to the specimen does not necessarily need to be laser light, but may employ near-infrared light, X-rays, or the like. For example, when X-rays are employed, an X-ray source can be directly arranged at the position of the electromagnetic wave irradiation means. That is, a plurality of X-ray sources may be arranged in a spiral shape around the sample 1 and the transmission X-ray detection means may be provided on an extension line connecting each X-ray source and the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a) は本発明の検体の3次元情報計測装置の実
施例を示す概念図、(b) は(a)の上面視を示す上面図、
(c) は(a) の部分拡大図
1A is a conceptual diagram showing an embodiment of a three-dimensional information measuring apparatus for a specimen of the present invention, FIG. 1B is a top view showing a top view of FIG.
(c) is a partially enlarged view of (a)

【図2】本発明の実施例を示すブロック図FIG. 2 is a block diagram showing an embodiment of the present invention.

【図3】(a) は本発明の実施例にかかる3次元情報計測
装置の検体の体軸方向からの透視図、(b) は(a) のI-I
線断面図、(c) は(a) のII-II 線断面図、(d) は(a) の
III-III 線断面図
FIG. 3 (a) is a perspective view of the sample of the three-dimensional information measuring apparatus according to the embodiment of the present invention as viewed from the body axis direction, and FIG.
(C) is a sectional view taken along the line II-II of (a), and (d) is a sectional view of (a).
III-III sectional view

【符号の説明】[Explanation of symbols]

1 検体 2 レーザ光源 3 強度補正板 4 1/2波長板 5,7,9 偏光ビームスプリッタ 6 周波数シフタ 8 レンズ 10 1/4波長板 11,12 凹ミラー 13 偏光板 100 レーザ光出射部 200 計測処理手段 300 再構成手段 400 光路切替ミラー S1 〜S7 レーザ光照射手段 d1 〜d7 2次元並列動作型イメージセンサ L1 検体の仮想軸(体軸) L2 つるまき螺旋DESCRIPTION OF SYMBOLS 1 Sample 2 Laser light source 3 Intensity correction plate 4 1/2 wavelength plate 5,7,9 Polarization beam splitter 6 Frequency shifter 8 Lens 10 1/4 wavelength plate 11,12 Concave mirror 13 Polarization plate 100 Laser beam emission part 200 Measurement processing Means 300 Reconstruction means 400 Optical path switching mirror S 1 to S 7 Laser light irradiation means d 1 to d 7 Two-dimensional parallel operation type image sensor L 1 Virtual axis (body axis) of sample L 2 Spiral spiral

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 A61B 10/00 G01B 11/24 A61B 10/00 A61B 6/03 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 A61B 10/00 G01B 11/24 A61B 10/00 A61B 6 / 03

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 検体に電磁波を照射し、該電磁波が前記
検体をつるまき螺旋状に走査するように該電磁波と前記
検体とを相対的に変位させ、前記検体を透過した電磁波
の強度を検出して前記検体の3次元情報を計測する検体
の3次元情報計測方法において、単一の電磁波出射手段から出射された電磁波を、 前記検
体の周囲に等間隔に、少なくとも前記検体の周囲 360度
に亘ってつるまき螺旋状に配設されてなる複数の電磁波
照射手段に入射させ、該電磁波照射手段から前記検体に
前記電磁波を照射し、前記検体を透過した複数の電磁波
の強度を該電磁波毎に検出せしめる位置に配された複数
の電磁波検出手段により検出することを特徴とする検体
の3次元情報計測方法。
An object is irradiated with an electromagnetic wave, and the electromagnetic wave and the sample are relatively displaced so that the electromagnetic wave scans the sample in a spiral manner, and the intensity of the electromagnetic wave transmitted through the sample is detected. In the method for measuring three-dimensional information of a sample, the electromagnetic waves emitted from a single electromagnetic wave emitting unit are arranged at equal intervals around the sample, at least at 360 degrees around the sample. A plurality of electromagnetic waves irradiating a plurality of electromagnetic waves irradiating means which are arranged in a spiral shape over the spiral, irradiate the specimen with the electromagnetic waves from the electromagnetic wave irradiating means, and the intensity of the plurality of electromagnetic waves transmitted through the specimen for each of the electromagnetic waves. A method for measuring three-dimensional information of a specimen, wherein the three-dimensional information is detected by a plurality of electromagnetic wave detecting means arranged at positions to be detected.
【請求項2】 検体に電磁波を照射し、該電磁波が前記
検体をつるまき螺旋状に走査するように該電磁波と前記
検体とを相対的に変位させ、前記検体を透過した電磁波
の強度を検出して前記検体の3次元情報を計測する検体
の3次元情報計測装置において、単一の 電磁波出射手段と、前記検体の周囲に、等間隔に
少なくとも前記検体の周囲 360度に亘ってつるまき螺旋
状に配設され、前記電磁波出射手段から出射された電磁
波を受け、前記検体に電磁波を照射する複数の電磁波照
射手段と、前記電磁波出射手段から出射された電磁波の
進行方向を前記複数の電磁波照射手段の方向へ順次切り
換える方向切替手段と、前記検体を透過した複数の電磁
波の強度を該電磁波毎に検出する複数の電磁波検出手段
とを備なえてなることを特徴とする検体の3次元情報計
測装置。
Irradiating the sample with an electromagnetic wave, displacing the electromagnetic wave and the sample relatively so that the electromagnetic wave scans the sample in a spiral manner, and detects the intensity of the electromagnetic wave transmitted through the sample. A three-dimensional information measuring apparatus for measuring the three-dimensional information of the sample, wherein a single electromagnetic wave emitting means and a spiral helix are provided around the sample at equal intervals over at least 360 degrees around the sample. A plurality of electromagnetic wave irradiating means for receiving the electromagnetic wave emitted from the electromagnetic wave emitting means and irradiating the specimen with the electromagnetic wave, and the electromagnetic wave emitted from the electromagnetic wave emitting means.
The traveling direction is sequentially cut in the direction of the plurality of electromagnetic wave irradiation means.
A three-dimensional information measuring apparatus for a specimen , comprising: a direction switching means for changing the direction; and a plurality of electromagnetic wave detecting means for detecting the intensity of the plurality of electromagnetic waves transmitted through the specimen for each of the electromagnetic waves.
JP4205308A 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen Expired - Fee Related JP2981697B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4205308A JP2981697B2 (en) 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen
DE69333642T DE69333642T2 (en) 1992-07-31 1993-07-30 Method and apparatus for obtaining three-dimensional information of samples
EP97115633A EP0814334B1 (en) 1992-07-31 1993-07-30 Method and apparatus for obtaining three-dimensional information of samples
EP93112273A EP0585620B1 (en) 1992-07-31 1993-07-30 Method and apparatus for obtaining three-dimensional information of samples
DE69321316T DE69321316T2 (en) 1992-07-31 1993-07-30 Method and device for obtaining three-dimensional information from samples
US08/100,365 US5428447A (en) 1992-07-31 1993-08-02 Method and apparatus for obtaining three-dimensional information of samples using computer tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205308A JP2981697B2 (en) 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen

Publications (2)

Publication Number Publication Date
JPH0650881A JPH0650881A (en) 1994-02-25
JP2981697B2 true JP2981697B2 (en) 1999-11-22

Family

ID=16504805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205308A Expired - Fee Related JP2981697B2 (en) 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen

Country Status (1)

Country Link
JP (1) JP2981697B2 (en)

Also Published As

Publication number Publication date
JPH0650881A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
EP0814334B1 (en) Method and apparatus for obtaining three-dimensional information of samples
EP3346260B1 (en) Radiographic image generating device
US4805627A (en) Method and apparatus for identifying the distribution of the dielectric constants in an object
US5023895A (en) Three dimensional tomographic system
US6574296B2 (en) Computer tomography unit and method for operating same
RU2468392C2 (en) Detector with partially transparent scintillator substrate
JPH09187455A (en) Phase type x-ray ct apparatus
US20050023470A1 (en) Transmission mode terahertz computed tomography
JPH1043173A (en) X-ray computer tomographing device
US20070121697A1 (en) Thermoacoustic tomographic method and thermoacoustic tomograph
KR20060114720A (en) X-ray tomograph and stereoradioscopic image constructing device
JP2005534444A (en) Reconstruction method of computed tomography for inclined gantry
EP0849711B1 (en) Method and apparatus for cone beam imaging
JP2981697B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP2003010162A (en) Phase contrast x-ray imaging device
JP2981695B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
CN115024696A (en) OCT imaging method, system and equipment
JPH1068702A (en) Computed tomography device
WO1992006636A1 (en) Three-dimensional tomographic system
JP2981696B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP2981698B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP2981699B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
RU2113820C1 (en) Method and computer tomograph for performing medical intrascopy
JPH08280663A (en) Spirally scanning x-ray ct apparatus
KR101698910B1 (en) Detection probe and probe-type detection apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990811

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees