JP2981695B2 - Method and apparatus for measuring three-dimensional information of a specimen - Google Patents

Method and apparatus for measuring three-dimensional information of a specimen

Info

Publication number
JP2981695B2
JP2981695B2 JP4205306A JP20530692A JP2981695B2 JP 2981695 B2 JP2981695 B2 JP 2981695B2 JP 4205306 A JP4205306 A JP 4205306A JP 20530692 A JP20530692 A JP 20530692A JP 2981695 B2 JP2981695 B2 JP 2981695B2
Authority
JP
Japan
Prior art keywords
laser light
laser
specimen
sample
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4205306A
Other languages
Japanese (ja)
Other versions
JPH0650724A (en
Inventor
昌宏 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4205306A priority Critical patent/JP2981695B2/en
Priority to EP93112273A priority patent/EP0585620B1/en
Priority to DE69321316T priority patent/DE69321316T2/en
Priority to EP97115633A priority patent/EP0814334B1/en
Priority to DE69333642T priority patent/DE69333642T2/en
Priority to US08/100,365 priority patent/US5428447A/en
Publication of JPH0650724A publication Critical patent/JPH0650724A/en
Application granted granted Critical
Publication of JP2981695B2 publication Critical patent/JP2981695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は検体の3次元情報計測方
法および装置に関し、さらに詳しくはレーザ光を走査す
ることにより非破壊で検体の断層像や立体像等の形態的
3次元情報を計測する検体の3次元情報計測方法および
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring three-dimensional information of a specimen, and more particularly to non-destructively measuring morphological three-dimensional information such as a tomographic image and a three-dimensional image of a specimen by scanning a laser beam. The present invention relates to a method and an apparatus for measuring three-dimensional information of a specimen to be measured.

【0002】[0002]

【従来の技術】従来より検体の形態的3次元情報、即ち
検体の外面の形態のみならず検体の内部の形態を示す3
次元情報を非破壊で計測することが望まれており、特に
生物学や医学の分野においては上記検体は生体であるた
め、非破壊でその検体の形態的3次元情報(以下、単に
3次元情報という。)を計測する要望が強い。
2. Description of the Related Art Conventionally, morphological three-dimensional information of a specimen, that is, not only the external form of the specimen but also the internal form of the specimen, is shown.
It is desired that non-destructive measurement of dimensional information is performed. Particularly, in the field of biology and medicine, since the above-mentioned specimen is a living body, morphological three-dimensional information of the specimen is non-destructively (hereinafter simply referred to as three-dimensional information). Is strongly desired.

【0003】こうした要望に応えるものとしてX線CT
やMRIは検体の断層像を得ることを実現している。し
かし該断層像は厳密には2次元情報であり、検体の3次
元情報を計測するための研究が進められている。
[0003] To meet such demands, X-ray CT
And MRI have achieved tomographic images of specimens. However, the tomographic image is strictly two-dimensional information, and research for measuring three-dimensional information of a specimen is being advanced.

【0004】その1つである多断層X線CT手法は、1
つのX線を検体に照射し、このX線を検体の仮想軸(以
下体軸という)を中心とした、該体軸に垂直な面内の円
周上を360 ゜回転させて該検体を透過した透過X線より
断層画像データを算出し、前記X線を体軸方向に移動さ
せたのち再度上述と同様に断層画像データを算出して、
前記2つの断層画像データから体軸方向の画像データを
補間計算して算出し前記検体の3次元情報を計測するも
のである。
[0004] One of them is a multi-tomographic X-ray CT method.
The sample is irradiated with two X-rays, and the X-rays are transmitted through the sample by rotating the X-ray 360 ° on a circumference in a plane perpendicular to the body axis about a virtual axis (hereinafter referred to as a body axis) of the sample. Tomographic image data is calculated from the transmitted X-rays, and the X-rays are moved in the body axis direction, and then tomographic image data is calculated again in the same manner as described above.
The two-dimensional image data is interpolated and calculated from the two tomographic image data to calculate three-dimensional information of the specimen.

【0005】この多断層X線CT手法は、上記体軸方向
に連続した画像データを与える、前記X線を前記検体の
体軸を回転の中心軸とするつるまき螺旋状に移動させる
ヘリカルスキャンX線CT手法へ発展している。
The multi-tomographic X-ray CT technique provides helical scan X that gives continuous image data in the body axis direction and moves the X-ray in a spiral shape with the body axis of the specimen as the center axis of rotation. It has evolved into a line CT technique.

【0006】しかしながら、上記X線CT手法やMRI
はいずれも3次元情報を直接計測するには至ってない。
即ち上記X線CT手法は、点状の照射線が検体を照射す
るため、検出される上記画像は点を変位させた線分状の
情報にすぎない。そこで上記照射線を面状に照射し、面
状の画像データを得る、円錐ビームによるヘリカルスキ
ャンX線CT手法が提案されている(「円すいビーム投
影を用いた3次元ヘリカルスキャンCT」電子情報通信
学会論文誌D−II vol.J74−D−II No.8 1991年 8
月)が、上記円錐ビームによるヘリカルスキャンX線C
T手法により得られるX線の面状即ち2次元画像を検出
する手段が実現されていないため提案の域を出ていな
い。
However, the above-mentioned X-ray CT technique and MRI
Have not been able to directly measure three-dimensional information.
That is, in the X-ray CT method, since a point-shaped irradiation line irradiates a sample, the detected image is merely line segment information in which a point is displaced. Therefore, a helical scan X-ray CT method using a conical beam, which irradiates the above-mentioned irradiation light in a plane and obtains plane image data, has been proposed ("3D helical scan CT using conical beam projection"). Transactions of the Society D-II vol.J74-D-II No.8 1991 8
), The helical scan X-ray C
Since means for detecting a planar state of an X-ray obtained by the T method, that is, a two-dimensional image, has not been realized, it does not fall outside the range of the proposal.

【0007】一方、分光分析法は物質の同定に有用な方
法であるため、これにより光を用いて検体の内部形態を
画像化する試みがある。さらに光分野においては検体の
形態を2次元画像として検出する手段が既に確立されて
おり、例えばCCDカメラによれば検体の形態を2次元
的に検出することができる。
[0007] On the other hand, since spectroscopic analysis is a useful method for identifying a substance, an attempt has been made to image the internal morphology of a specimen by using light. In the optical field, means for detecting the form of a specimen as a two-dimensional image has already been established. For example, a CCD camera can detect the form of a specimen two-dimensionally.

【0008】そこで光を用いた3次元情報を計測する方
法として光CT顕微鏡を用いた検体の3次元情報計測方
法が知られている。
Therefore, as a method for measuring three-dimensional information using light, a method for measuring three-dimensional information of a specimen using an optical CT microscope is known.

【0009】この光CT顕微鏡は、レーザ光を検体に対
して斜め方向から面照射し、このレーザ光の光源を検体
を頂点とする円錐の底面の周縁に沿って移動させること
により、上記レーザ光の異なった角度から上記検体を透
過したレーザ光による透過光像をCCDカメラに記録
し、この透過光像からCT手法により画像再構成処理
し、上記検体の3次元情報を計測するものである(「光
CT顕微鏡と3次元観察」光技術コンタクトVol.28 No.
11 (1990) )。
This optical CT microscope irradiates the sample with a laser beam from an oblique direction and moves the light source of the laser beam along the periphery of the bottom surface of the cone whose apex is the sample. The transmitted light image of the laser light transmitted through the specimen from a different angle is recorded in a CCD camera, and the transmitted light image is subjected to image reconstruction processing by a CT method to measure three-dimensional information of the specimen ( “Optical CT Microscope and 3D Observation” Optical Technology Contact Vol.28 No.
11 (1990)).

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記計測
装置は、レーザ光が検体を照射する方向が限定されるた
めに上記透過光像の透過方向に沿った断面像のデータが
不十分なものとなり、上記断面像の精度を高めることが
できない。
However, in the above measuring apparatus, since the direction in which the laser light irradiates the sample is limited, the data of the cross-sectional image along the transmission direction of the transmitted light image becomes insufficient. The accuracy of the cross-sectional image cannot be improved.

【0011】また上記画像の再構成処理過程において、
検体を略透明体に限定する近似法(Born近似法)を用い
ているために、上記検体が生体に代表される、散乱光が
透過光と混在して出射される光散乱媒質を含有する検体
であるときは、上記計測方法を適用することができない
という難点がある。
In the above-mentioned image reconstruction process,
Since the approximation method (Born approximation method) for limiting the specimen to a substantially transparent body is used, the specimen contains a light scattering medium, such as a living body, in which scattered light is emitted mixed with transmitted light. In the case of, there is a disadvantage that the above measurement method cannot be applied.

【0012】本発明の目的は上記事情に鑑み、高精度か
つ光散乱媒質を含有する検体に対しても適用可能なレー
ザ光を用いた検体の形態的3次元情報計測方法および装
置を提供することにある。
In view of the above circumstances, it is an object of the present invention to provide a method and an apparatus for measuring morphological three-dimensional information of a specimen using a laser beam which are highly accurate and can be applied to a specimen containing a light scattering medium. It is in.

【0013】[0013]

【課題を解決するための手段】本発明にかかる請求項1
記載の検体の3次元情報計測方法は、検体に円錐状のビ
ームに形成されてなるレーザ光を面照射し、前記検体を
2次元的に透過したレーザ光と周波数がわずかに異なる
他の円錐状のレーザ光とを波面整合させ、該波面整合さ
れた断面2次元状のレーザ光を2次元的に光ヘテロダイ
ン検出し、該検出されたビート信号から前記検体を透過
したレーザ光の強度を計測し、前記レーザ光が前記検体
をつるまき螺旋状に走査するように該レーザ光と前記検
体とを相対的に変位させ、前記透過したレーザ光の強度
からCT手法により前記検体の形態的3次元情報を計測
することを特徴とする。
Means for Solving the Problems Claim 1 according to the present invention.
The method for measuring three-dimensional information of a specimen described above includes irradiating the specimen with a laser beam formed in a conical beam on the surface thereof, and forming another cone-shaped laser beam having a frequency slightly different from that of the laser beam transmitted two-dimensionally through the specimen. The laser light of the sample is wavefront-matched, the laser light of the cross-section two-dimensionally aligned with the wavefront is optically heterodyne-detected two-dimensionally, and the intensity of the laser light transmitted through the sample is measured from the detected beat signal. The laser beam and the sample are relatively displaced so that the laser beam scans the sample in a spiral manner, and the morphological three-dimensional information of the sample is obtained from the intensity of the transmitted laser beam by a CT method. Is measured.

【0014】また、請求項2記載の検体の3次元情報計
測方法は、第1のレーザ光に該レーザ光と周波数がわず
かに異なる第2のレーザ光を波面整合させ、該波面整合
されたレーザ光を円錐状のビームに形成し、該円錐状の
ビームに形成されたレーザ光を前記第1のレーザ光と同
じ周波数のレーザ光と、前記第2のレーザ光と同じ周波
数のレーザ光とに光路を分割し、検体に前記光路を分割
された2つのレーザ光のうちいずれか一方のレーザ光を
面照射し、該検体を透過したレーザ光と前記光路を分割
して得られた他方の円錐状のレーザ光とを波面整合さ
せ、前記波面整合された断面2次元状のレーザ光を2次
元的に光ヘテロダイン検出し、該検出されたビート信号
から前記検体を透過したレーザ光の強度を計測し、前記
レーザ光が前記検体をつるまき螺旋状に走査するように
該レーザ光と前記検体とを相対的に変位させ、前記透過
したレーザ光の強度からCT手法により前記検体の形態
的3次元情報を計測することを特徴とする。
According to a third aspect of the present invention, in the method for measuring three-dimensional information of a specimen, the first laser beam is wavefront-matched with a second laser beam having a frequency slightly different from that of the laser beam. The light is formed into a conical beam, and the laser light formed into the conical beam is converted into a laser light having the same frequency as the first laser light and a laser light having the same frequency as the second laser light. The optical path is divided, and one of the two laser lights having the divided optical path is irradiated onto the specimen, and the laser light transmitted through the specimen and the other cone obtained by dividing the optical path. Wavefront matching with the laser light in a cross section, two-dimensional optical heterodyne detection of the laser light having a two-dimensional cross section with the wavefront matched, and measuring the intensity of the laser light transmitted through the specimen from the detected beat signal. And the laser light is applied to the specimen. The laser light and the specimen are relatively displaced so as to scan in a spiral manner, and the morphological three-dimensional information of the specimen is measured from the intensity of the transmitted laser light by a CT method. .

【0015】さらに、請求項3記載の検体の3次元情報
計測装置は、前記請求項1記載の検体の3次元情報計測
方法を実施するための装置であり、単一周波数のレーザ
光源と、該レーザ光源から発射されたレーザ光の光路中
に配された該レーザ光の光路を2つに分割させる光路分
割手段と、分割されて得られた2つの光路のうち一方の
光路を進行するレーザ光の周波数と他方の光路を進行す
るレーザ光の周波数とがわずかに異なるように少なくと
も一方のレーザ光の周波数を他の周波数に変換する周波
数変換手段と、前記分割されて得られた2つの光路を進
行するレーザ光をそれぞれ円錐状のビームに形成させる
光学的手段と、該円錐状のビームに形成された2つのレ
ーザ光のうちいずれか一方のレーザ光を検体に面照射さ
せるとともに該レーザ光が前記検体をつるまき螺旋状に
走査するように前記レーザ光と前記検体とを相対的に変
位させる走査手段と、前記検体に照射され該検体を透過
したレーザ光と前記円錐状のビームに形成された他方の
レーザ光とを波面整合させる波面整合手段と、該波面整
合手段により波面整合されたレーザ光の進行方向とほぼ
垂直に交わる面に配された、該波面整合された断面2次
元状のレーザ光の差周波数により強弱を繰り返す光強度
を2次元的に検出する2次元強度検出手段と、該検出手
段により検出されたレーザ光の強度に基づいて前記検体
を透過したレーザ光の強度を検出しCT手法により該検
体の3次元情報を計測処理する計測処理手段とを備えて
なることを特徴とする。
Further, a three-dimensional information measuring apparatus for a specimen according to a third aspect is an apparatus for implementing the three-dimensional information measuring method for a specimen according to the first aspect. Optical path splitting means for splitting the optical path of the laser light, which is arranged in the optical path of the laser light emitted from the laser light source, into two, and a laser light traveling along one of the two optical paths obtained by splitting Frequency conversion means for converting the frequency of at least one laser light to another frequency so that the frequency of the laser light traveling on the other optical path is slightly different from the frequency of the laser light traveling on the other optical path, and the two optical paths obtained by the division. An optical means for forming the traveling laser light into a conical beam, and applying one of the two laser lights formed on the conical beam to the sample and irradiating the sample with the laser light. Scanning means for relatively displacing the laser light and the sample so that the light scans the sample in a spiral shape; a laser beam irradiated on the sample and transmitted through the sample; and the conical beam A wavefront matching means for wavefront matching the other laser light formed on the surface thereof, and a wavefront-matched cross section 2 arranged on a plane which intersects substantially perpendicularly to the traveling direction of the laser light wavefront matched by the wavefront matching means. Two-dimensional intensity detecting means for two-dimensionally detecting light intensity that repeats intensity according to the difference frequency of the two-dimensional laser light, and a laser light transmitted through the specimen based on the intensity of the laser light detected by the detecting means. Measurement processing means for detecting intensity and measuring and processing three-dimensional information of the sample by a CT method.

【0016】さらにまた、請求項4記載の検体の3次元
情報計測装置は、前記請求項2記載の検体の3次元情報
計測方法を実施するための装置であり、単一周波数のレ
ーザ光源と、該レーザ光源から発射されたレーザ光の光
路中に配された該レーザ光の光路を2つに分割させる第
1の光路分割手段と、分割されて得られた2つの光路の
うち一方の光路を進行するレーザ光の周波数と他方の光
路を進行するレーザ光の周波数とがわずかに異なるよう
に少なくとも一方のレーザ光の周波数を他の周波数に変
換する周波数変換手段と、該周波数を変換されたレーザ
光と前記分割されて得られた一方の光路を進行するレー
ザ光とを波面整合させる第1の波面整合手段と、該波面
整合されたレーザ光を円錐状のビームに形成させる光学
的手段と、該円錐状のビームに形成されたレーザ光の光
路を前記周波数のわずかに異なる2つのレーザ光毎に分
割させる第2の光路分割手段と、該光路分割手段により
分割されて得られた2つの光路のうちいずれか一方の光
路を進行するレーザ光を検体に面照射させるとともに該
レーザ光が前記検体をつるまき螺旋状に走査するように
前記レーザ光と前記検体とを相対的に変位させる走査手
段と、前記検体に照射され該検体を透過したレーザ光と
前記第2の光路分割手段により分割されて得られた他方
の光路を進行するレーザ光とを波面整合させる第2の波
面整合手段と、該第2の波面整合手段により波面整合さ
れたレーザ光の進行方向とほぼ垂直に交わる面に配され
た、該波面整合された断面2次元状のレーザ光の差周波
数により強弱を繰り返す光強度を2次元的に検出する2
次元強度検出手段と、該検出手段により検出されたレー
ザ光の強度に基づいて前記検体を透過したレーザ光の強
度を検出しCT手法により該検体の3次元情報を計測処
理する計測処理手段とを備えてなることを特徴とする。
A three-dimensional information measuring apparatus for a specimen according to a fourth aspect is an apparatus for performing the three-dimensional information measuring method for a specimen according to the second aspect, comprising: a single-frequency laser light source; First optical path splitting means for splitting the optical path of the laser light, which is arranged in the optical path of the laser light emitted from the laser light source, into two, and one of the two optical paths obtained by the splitting; Frequency conversion means for converting the frequency of at least one laser beam to another frequency so that the frequency of the traveling laser beam and the frequency of the laser beam traveling on the other optical path are slightly different, and a laser having the frequency converted First wavefront matching means for wavefront matching the light and the laser light traveling in one optical path obtained by the division, and optical means for forming the wavefront matched laser light into a conical beam; The cone Second optical path splitting means for splitting the optical path of the laser light formed into the two beams into two laser lights having slightly different frequencies, and any one of two optical paths obtained by splitting by the optical path splitting means. A scanning unit that relatively displaces the laser light and the sample so that the sample scans the sample in a spiral shape while irradiating the sample with laser light that travels in one of the optical paths. Second wavefront matching means for wavefront matching the laser light irradiated on the sample and transmitted through the sample and the laser light traveling on the other optical path obtained by splitting by the second optical path splitting means; The intensity of light that repeats intensities due to the difference frequency between the two-dimensionally cross-sectionally two-dimensional laser light, which is arranged on a plane that intersects substantially perpendicularly to the traveling direction of the laser light that has been wavefront-aligned by the wavefront matching means, The original to detect 2
Dimensional intensity detection means, and measurement processing means for detecting the intensity of the laser light transmitted through the specimen based on the intensity of the laser light detected by the detection means, and measuring and processing the three-dimensional information of the specimen by a CT method. It is characterized by comprising.

【0017】さらに、請求項5記載の検体の3次元情報
計測装置は、前記請求項2記載の検体の3次元情報計測
方法を実施するための装置であり、前記請求項4記載の
検体の3次元情報計測装置において前記第2の光路分割
手段が前記第2の波面整合手段を兼ねるとともに、前記
検体を透過したレーザ光を前記第2の光路分割手段へ進
行させる位置に配された反射手段を具備することを特徴
する。
Further, the apparatus for measuring three-dimensional information of a specimen according to claim 5 is an apparatus for performing the method for measuring three-dimensional information of a specimen according to claim 2, and the apparatus for measuring three-dimensional information of specimen according to claim 4. In the dimensional information measuring device, the second optical path splitting means also serves as the second wavefront matching means, and the reflecting means arranged at a position for causing the laser light transmitted through the sample to travel to the second optical path splitting means. It is characterized by having.

【0018】上記つるまき螺旋とは、検体の任意の仮想
軸(以下、体軸という)を中心とした回転変位と,前記
体軸方向への直線変位とのベクトル和により得られた変
位の軌跡を意味する。
The above-mentioned helix is a locus of displacement obtained by a vector sum of a rotational displacement about an arbitrary virtual axis (hereinafter referred to as a body axis) of the specimen and a linear displacement in the body axis direction. Means

【0019】従って、上記レーザ光が検体をつるまき螺
旋状に走査するとは、例えばレーザ光源が上記つるまき
螺旋に沿って変位するとともに、該レーザ光源からのレ
ーザ光が前記検体に照射されることを意味する。
Therefore, the above-mentioned laser beam scans the specimen in a spiral manner when, for example, the laser light source is displaced along the spiral spiral and the laser beam from the laser light source is applied to the specimen. Means

【0020】また、上記単一周波数のレーザ光源とは、
単一周波数のレーザ光のみを発射し得るレーザ光源を意
味するものではなく、所定時間単一周波数のレーザ光を
発射し得るレーザ光源であれば、複数の周波数(波長)
のレーザ光を発射し得るレーザ光源をも意味する。
The single-frequency laser light source is
It does not mean a laser light source that can emit only a single-frequency laser beam, but a laser light source that can emit a single-frequency laser beam for a predetermined period of time.
Means a laser light source capable of emitting the above laser light.

【0021】さらに、上記周波数変換手段は、光路分割
手段により2つの光路に分割された2つのレーザ光のう
ち一方のレーザ光を周波数がわずかに異なる他の周波数
に変換させる手段であってもよいし、前記2つのレーザ
光を一方のレーザ光の周波数と他方のレーザ光の周波数
とがわずかに異なるように両方とも周波数変換させる手
段であってもよい。
Further, the frequency converting means may be means for converting one of the two laser lights divided into two optical paths by the optical path dividing means into another frequency having a slightly different frequency. A means for frequency-converting the two laser lights so that the frequency of one laser light is slightly different from the frequency of the other laser light may be used.

【0022】[0022]

【作用】本発明にかかる検体の3次元情報計測方法は、
円錐状のビームに形成されたレーザ光を検体に照射
し、該レーザ光は該検体を透過するとともに一部が該検
体の外表面や内部の物質により散乱されまたは吸収され
て該検体から出射し、この出射されたレーザ光に該レー
ザ光と周波数がわずかに異なる他の円錐状のレーザ光を
波面整合させることにより、前記出射したレーザ光のう
ち検体を透過して直進する透過光のみを該他のレーザ光
と干渉させて2つのレーザ光の差の周波数の干渉で強弱
を繰り返す干渉レーザ光とし、その他のレーザ光はその
まま進行させ、該干渉レーザ光の強度を光ヘテロダイン
検出することにより前記透過光の2次元強度分布を検出
するものである。
The method for measuring three-dimensional information of a specimen according to the present invention comprises:
The laser light formed on the conical beam surface irradiation in the sample, the laser beam is emitted from the outer surface and internal scattered by material or absorbed by the specimen of the portion of the specimen as well as transmitted through the specimen and, by the laser beam and the frequency be WFM other conical laser beam slightly different to the emitted laser beam, only the transmitted light goes straight through the sample out of the laser beam the emission By interfering with the other laser light to form an interfering laser light that repeats the intensity with the interference of the frequency of the difference between the two laser lights, the other laser light proceeds as it is, and the intensity of the interference laser light is detected by optical heterodyne detection. The two-dimensional intensity distribution of the transmitted light is detected.

【0023】さらに上記円錐状のビームに形成されたレ
ーザ光を検体に対してつるまき螺旋状に走査し、各走査
位置における上記透過光の2次元強度分布を連続的に検
出し、この検出された透過光の2次元強度分布をCT手
法即ち円錐ビーム投影ヘリカルスキャン用の再構成アル
ゴリズムにより該検体の3次元情報を計測することがで
きる。
Further, the laser beam formed into the conical beam is spirally scanned with respect to the specimen, and the two-dimensional intensity distribution of the transmitted light at each scanning position is continuously detected. The two-dimensional intensity distribution of the transmitted light can be measured by the CT method, that is, the reconstruction algorithm for the conical beam projection helical scan, to measure the three-dimensional information of the specimen.

【0024】また、請求項2記載の検体の3次元情報計
測方法は、前記請求項1記載の方法が、周波数のわずか
に異なる2つのレーザ光のうち一方を検体に照射した
後に両レーザ光を波面整合させているのに対して、前記
周波数のわずかに異なる2つのレーザ光のうち一方が検
体に入射する前に両レーザ光を波面整合させ、この波面
整合されたレーザ光を円錐状のビームに形成したのちに
再度周波数の異なる2つのレーザ光に分割し、この2つ
に分割された2つのレーザ光のうちいずれか一方を検体
照射させ、その後両者を干渉させるようにしたもの
である。
According to a second aspect of the present invention, there is provided a method for measuring three-dimensional information of a specimen, wherein the method according to the first aspect irradiates the specimen with one of two laser lights having slightly different frequencies on the surface of the specimen. In contrast to the above, the two laser lights having slightly different frequencies are subjected to wavefront matching before one of the two laser lights is incident on the specimen, and the wavefront-matched laser light is conically shaped. After being formed into a beam, it is again divided into two laser beams having different frequencies, and one of the two divided laser beams is irradiated onto the surface of the specimen, and then the two interfere with each other. It is.

【0025】[0025]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0026】図1は本発明にかかる検体の3次元情報計
測装置の実施例を示すブロック図である。図示の検体の
3次元情報計測装置は、単一の周波数ν0 のレーザ光a
1 を出射するレーザ光源1と、該レーザ光源1から発射
されたレーザ光a1 の光路中に該レーザ光a1 を2つの
光路に分割させるハーフミラー9が配されている。
FIG. 1 is a block diagram showing an embodiment of an apparatus for measuring three-dimensional information of a specimen according to the present invention. The illustrated three-dimensional information measuring apparatus for a specimen uses a laser beam a having a single frequency ν 0.
1 a laser light source 1 for emitting a half mirror 9 for dividing the laser beam a 1 into two optical paths in the optical path of the emitted laser beam a 1 from the laser light source 1 is disposed.

【0027】また、前記ハーフミラー9により得られた
2つの光路のうち一方の光路には、該光路を進行するレ
ーザ光a3 の周波数をレーザ光a1 の周波数ν0 とわず
かに異なる他の周波数ν0 +Δνのレーザ光a4 に変換
させる周波数変換手段としての周波数シフタ3が前記レ
ーザ光a3 の光路中に配されている。
Further, wherein the one optical path of the two light paths obtained by the half mirror 9, the laser beam a 1 the frequency of the laser beam a 3 traveling through the optical path frequency [nu 0 and slightly different from the the frequency shifter 3 as a frequency conversion means for converting the laser beam a 4 frequency [nu 0 + .DELTA..nu are arranged in the optical path of the laser beam a 3.

【0028】さらに、この周波数シフタ3により周波数
変換されたのちのレーザ光a4 の光路中に(図では反射
ミラー10により反射された後に)このレーザ光a4 を円
錐状のビームa6 に形成させるレンズ5が配設されてい
る。
Furthermore, in the optical path of the laser beam a 4 in after being frequency converted by the frequency shifter 3 (after being reflected by the reflecting mirror 10 in the figure) forming the laser beam a 4 to conical beam a 6 A lens 5 is provided.

【0029】一方、前記ハーフミラー9により分割され
た他の一方の光路を進行するレーザ光a2 の光路中(図
では反射ミラー10' により反射された後に)に該レーザ
光a2 を円錐状のビームに形成させるレンズ4が配設さ
れ、この円錐状のビームに形成されたのちのレーザ光a
5 が検体2を面照射するとともに該レーザ光a5 が検体
2をつるまき螺旋状に走査するように前記検体2を変位
させる走査手段6が配されている。
On the other hand, in the optical path of the laser beam a 2 traveling on the other optical path split by the half mirror 9 (after being reflected by the reflection mirror 10 ′ in the figure), the laser beam a 2 is conical. Is formed, and a laser beam a after being formed into this conical beam is provided.
5 is a scanning unit 6 to which the laser beam a 5 displaces the sample 2 so as to scan the sample 2 in the helical spiral is arranged with the sample 2 surface irradiation.

【0030】さらに、前記円錐状のビームに形成された
レーザ光a6 と前記検体2を照射したのち該検体2を出
射したレーザ光a7 を波面整合させる位置に波面整合手
段としてのビームスプリッタ7が配設されている。
Further, a beam splitter 7 as a wavefront matching means is provided at a position where the laser beam a 6 formed into the conical beam and the laser beam a 7 emitted from the sample 2 after irradiating the sample 2 are wavefront matched. Are arranged.

【0031】さらにまた、上記波面整合されたレーザ光
8 の進行方向に垂直な面に該レーザ光a8 の2次元強
度分布を検出する2次元並列動作型イメージセンサ8が
配され、該イメージセンサ8により検出されたレーザ光
8 の強度に基づいて前記検体2の透過光投影像を算出
しCT手法により該検体の3次元情報を計測する計測処
理手段11と、この3次元情報から前記検体2の立体像等
を出力する再構成手段12とを具備している。ここで上記
検体2は、光散乱媒質を含有する検体、例えば分散粒子
を含む液体である。
[0031] Furthermore, two-dimensional intensity distribution detecting a two-dimensional parallel operation type image sensor 8 of the laser beam a 8 to a plane perpendicular direction of travel of the wavefront-matched laser beam a 8 is disposed, the image A measurement processing unit 11 for calculating a transmitted light projection image of the sample 2 based on the intensity of the laser beam a 8 detected by the sensor 8 and measuring three-dimensional information of the sample by a CT method; Reconstructing means 12 for outputting a stereoscopic image of the specimen 2 and the like. Here, the sample 2 is a sample containing a light scattering medium, for example, a liquid containing dispersed particles.

【0032】次に本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0033】単一の周波数ν0 のレーザ光源1から発射
されたレーザ光a1 はハーフミラー9により2つのレー
ザ光a2 およびa3 に分割され、一方のレーザ光a3
周波数シフタ3によりもとの周波数ν0 とわずかに異な
る他の周波数ν0 +Δνのレーザ光a4 に変換される。
The laser beam a 1 emitted from the laser light source 1 having a single frequency [nu 0 is divided by a half mirror 9 into two laser beams a 2 and a 3, one of the laser beam a 3 by frequency shifter 3 is converted to the laser beam a 4 slightly different other frequency [nu 0 + .DELTA..nu the original frequency [nu 0.

【0034】上記レーザ光a2 はレンズ4により円錐状
のビームに形成されたレーザ光a5となり検体2を面照
射する。
The laser beam a 2 becomes a laser beam a 5 formed into a conical beam by the lens 4 and irradiates the surface of the specimen 2.

【0035】ここで検体2は、走査手段6によりつるま
き螺旋状に変位されて前記レーザ光a5 を全周に亘りつ
るまき螺旋状に走査される。
[0035] Here, the sample 2 is displaced by the scanning means 6 in a helical spiral are scanned with the laser beam a 5 to helical spiral along the entire circumference.

【0036】前記レーザ光a5 はその一部が前記検体2
の外表面や内部の光散乱媒質により散乱されて不定の方
向へ出射され、また他の一部は前記検体2の外表面や内
部の物質により吸収され、残りは該レーザ光a5 が該検
体2に入射した方向を維持し該検体を透過して出射され
る。このため、前記レーザ光a5 が検体2を出射した出
射光a7 は前記散乱され不定の方向へ進行する散乱光と
一定方向へ進行する透過光とが混在している。
[0036] The laser beam a 5 is partially the specimen 2
Scattered by the outer surface or inside of the light scattering medium is emitted into the indefinite direction and another portion is absorbed by the outer surface and internal material of the specimen 2, the remainder is the laser beam a 5 specimen of The light is transmitted through the specimen while maintaining the direction of incidence on the sample 2, and is emitted. Therefore, the transmitted light the emitted light a 7 the laser beam a 5 is emitted from the specimen 2 is traveling with the scattered light traveling in the direction of the indefinite is the scattered in a certain direction are mixed.

【0037】一方周波数ν0 +Δνの前記レーザ光a4
は、前記周波数ν0 のレーザ光a5と同様にレンズ5に
より円錐状のビームに形成されてレーザ光a6 となり、
前記出射光a7 のうち透過光と前記レーザ光a6 とがビ
ームスプリッタ7により波面整合されて、干渉レーザ光
8 が生成される。
On the other hand, the laser beam a 4 having the frequency ν 0 + Δν
Is formed in a conical beam by the lens 5 in the same manner as the laser beam a 5 of the frequency [nu 0 to laser light a 6, and the
The transmitted light and the laser light a 6 of the emitted light a 7 are wavefront-aligned by the beam splitter 7 to generate the interference laser light a 8 .

【0038】次に、上記干渉レーザ光a8 は2次元並列
動作型イメージセンサ8の2次元面上に該干渉レーザ光
8 の2次元強度分布像を投影し、該イメージセンサ8
により前記2次元強度分布像は光電変換され、計測処理
手段11により光ヘテロダイン検出処理されて、前記干渉
レーザ光a8 の2次元強度分布像から前記透過光の2次
元強度分布データ(透過光投影像)が算出され、さらに
前記検体2の各走査位置に応じた前記透過光の2次元強
度分布データがCT処理(円錐ビーム投影ヘリカルスキ
ャン用再構成アルゴリズム)されて該検体2の3次元情
報が計測される。 さらに再構成手段12により該3次元
情報から該検体の立体像あるいは任意断面に沿った断層
像等が出力される。
Next, the interference laser beam a 8 projects a two-dimensional intensity distribution image of the interference laser beam a 8 on the two-dimensional surface of the two-dimensional parallel operation type image sensor 8.
Said two-dimensional intensity distribution image is photoelectrically converted by, is optical heterodyne detection processing by the measurement processing means 11, two-dimensional intensity distribution data (transmitted light projected from the two-dimensional intensity distribution image of the light transmitted through the interference laser beam a 8 Image) is calculated, and two-dimensional intensity distribution data of the transmitted light corresponding to each scanning position of the specimen 2 is subjected to a CT process (a reconstruction algorithm for a cone beam projection helical scan) to obtain three-dimensional information of the specimen 2. Measured. Further, the reconstruction means 12 outputs a three-dimensional image of the specimen or a tomographic image along an arbitrary cross section from the three-dimensional information.

【0039】本実施例の検体の3次元情報計測装置は、
レーザ光を検体につるまき螺旋状に走査するため、検体
を透過して得られる透過光投影像は該検体の全周に亘っ
て連続性を有し、透過方向に沿った断面像の精度が向上
する。
The apparatus for measuring three-dimensional information of a specimen according to the present embodiment
Since the laser beam scans the sample in a spiral shape, the transmitted light projection image obtained through the sample has continuity over the entire circumference of the sample, and the accuracy of the cross-sectional image along the transmission direction is high. improves.

【0040】また、検体を出射した出射光を光ヘテロダ
イン検出処理することにより、該検体の成分分布を得る
ための透過光のみを検出することが可能とされ、従って
上記検体が光散乱媒質を含有する検体であっても、該検
体の3次元情報を計測することが可能である。
Further, by subjecting the emitted light emitted from the specimen to optical heterodyne detection processing, it is possible to detect only transmitted light for obtaining the component distribution of the specimen, and therefore, the specimen contains a light scattering medium. It is possible to measure the three-dimensional information of the sample even if it is a sample.

【0041】なお、本実施例においては検体2を変位さ
せているが、該検体2を停止させ、レンズ4とレンズ5
とビームスプリッタ7とイメージセンサ8とを一体的に
該検体2を略中心としてつるまき螺旋状に変位させても
良く、また、該検体2と前記レンズ等とを相対的に変位
させても良い。
In this embodiment, the specimen 2 is displaced. However, the specimen 2 is stopped, and the lens 4 and the lens 5 are displaced.
The beam splitter 7 and the image sensor 8 may be integrally displaced in a spiral shape around the specimen 2 substantially, or the specimen 2 and the lens or the like may be relatively displaced. .

【0042】図2は本発明による検体の3次元情報計測
装置の他の実施例を示すブロック図である。
FIG. 2 is a block diagram showing another embodiment of the apparatus for measuring three-dimensional information of a specimen according to the present invention.

【0043】図示の検体の3次元情報計測装置は、単一
の周波数ν0 のレーザ光a21を出射するレーザ光源21
と、該レーザ光源21から発射されたレーザ光a21を偏光
面が直交する2つの光路に分割させる1/2波長板28と
偏光ビームスプリッタ25とを具備している。
The three-dimensional information measuring apparatus for a specimen shown in the figure has a laser light source 21 which emits a laser beam a 21 having a single frequency ν 0.
When, and a the laser light source two half-wave plate 28 to be divided into the optical path 21 polarization plane of the laser beam a 21 emitted from the orthogonal polarization beam splitter 25.

【0044】また、該偏光ビームスプリッタ25により分
割されて得られた2つの光路のうち一方の光路を進行す
るレーザ光a23の光路中に該レーザ光a23の周波数ν0
をこの周波数ν0 とわずかに異なる周波数ν0 +Δνの
レーザ光a24に変換させる周波数シフタ23が配されてい
る。
[0044] The frequency [nu 0 of the polarizing beam splitter 25 the laser beam a 23 in the optical path of the laser beam a 23 traveling one optical path of the two light paths obtained divided by
Frequency shifter 23 for converting the laser beam a 24 slightly different frequency [nu 0 + .DELTA..nu this frequency [nu 0 is arranged to.

【0045】さらに、該周波数変換されたレーザ光a24
と前記分割された他方のレーザ光a 22とを波面整合させ
る位置に偏光ビームスプリッタ45が配されている。
Further, the frequency-converted laser light atwenty four
And the other split laser beam a twenty twoAnd wavefront matching
A polarization beam splitter 45 is disposed at a position where the polarization beam splitter 45 is located.

【0046】この波面整合されたレーザ光a25の光路中
に該レーザ光a25を円錐状のビームに形成させるレンズ
24が配され、さらにこの円錐状のビームに形成されたレ
ーザ光a26を偏光面が直交する周波数ν0 のレーザ光a
27と周波数ν0 +Δνのレーザ光a28とに光路を分割さ
せる偏光ビームスプリッタ26が配設されている。
A lens for forming the laser beam a 25 into a conical beam in the optical path of the laser beam a 25 whose wavefront has been matched.
24, and further converts the laser beam a 26 formed into this conical beam into a laser beam a having a frequency ν 0 whose polarization planes are orthogonal to each other.
A polarizing beam splitter 26 for splitting an optical path into 27 and a laser beam a 28 having a frequency ν 0 + Δν is provided.

【0047】また、上記偏光ビームスプリッタ26により
分割された一方の光路中には検体22に前記分割された一
方のレーザ光a27を面照射させるとともに該レーザ光a
27が該検体22をつるまき螺旋状に走査するように該検体
22を変位させる走査手段27を備えている。
Further, the laser beam a with the optical path of one divided by the polarization beam splitter 26 is the divided one laser beam a 27 faces irradiation to the specimen 22
27 so that the sample 22 spirally scans the sample 22.
Scanning means 27 for displacing 22 is provided.

【0048】さらに、上記検体22を照射したのち該検体
22を出射したレーザ光a29と前記偏光ビームスプリッタ
26により分割された他方の光路を進行するレーザ光a28
とを波面整合させる偏光ビームスプリッタ38と、波面整
合させた2つのレーザ光の同一偏光面成分同士を干渉さ
せる偏光板30とを備え、この干渉されたレーザ光a30
2次元強度分布を検出し電気信号に変換する2次元並列
動作型イメージセンサ35と、該イメージセンサ35により
検出されたレーザ光a30の強度に基づいて前記検体22の
透過光投影像を算出し、この透過光投影像から前記検体
22の3次元情報を計測する計測処理手段36と、該3次元
情報から前記検体22の立体像等を出力する再構成手段37
とを具備している。
Further, after irradiating the sample 22, the sample 22
The laser beam a 29 emitted from 22 and the polarizing beam splitter
Laser light a 28 traveling on the other optical path divided by 26
A polarization beam splitter 38 to a wavefront matching the door, and a polarizing plate 30 to interfere with the same polarization plane components between the two laser beams obtained by wavefront matching, the two-dimensional intensity distribution of the interference laser beam a 30 Detection A two-dimensional parallel operation type image sensor 35 for converting the transmitted light into an electric signal, and a transmitted light projected image of the specimen 22 are calculated based on the intensity of the laser beam a 30 detected by the image sensor 35. From the specimen
Measurement processing means 36 for measuring three-dimensional information of the sample 22; and reconstructing means 37 for outputting a three-dimensional image of the sample 22 from the three-dimensional information.
Is provided.

【0049】次に本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0050】単一の周波数ν0 のレーザ光源21から発射
されたレーザ光a21は1/2波長板28および偏光ビーム
スプリッタ25により偏光面が直交するレーザ光a22およ
びa23に分割され、一方のレーザ光a23は周波数シフタ
23によりもとの周波数ν0 とわずかに異なる他の周波数
ν0 +Δνのレーザ光a24に変換される。
The laser light a 21 emitted from the laser light source 21 having a single frequency ν 0 is split by the half-wave plate 28 and the polarizing beam splitter 25 into laser lights a 22 and a 23 whose polarization planes are orthogonal to each other. one laser beam a 23 frequency shifter
The laser light is converted into a laser beam a 24 of another frequency ν 0 + Δν slightly different from the original frequency ν 0 by 23.

【0051】上記偏光面が直交しかつ周波数がわずかに
異なる2つのレーザ光a22およびa24は第2の偏光ビー
ムスプリッタ45により波面整合されたレーザ光a25を形
成し、さらにレンズ24により円錐状のビームに形成され
る。
The two laser beams a 22 and a 24 whose polarization planes are orthogonal to each other and have slightly different frequencies form a laser beam a 25 whose wavefront has been matched by the second polarization beam splitter 45, and are further conical by the lens 24. Shaped beam.

【0052】該円錐状のビームに形成されたレーザ光a
26は偏光ビームスプリッタ26により前記周波数ν0 のレ
ーザ光a27と周波数ν0 +Δνのレーザ光a28とに分割
される。
The laser beam a formed into the conical beam
26 is divided by the polarization beam splitter 26 into a laser beam a 27 and the frequency [nu 0 + .DELTA..nu laser beam a 28 of the frequency [nu 0.

【0053】このときレーザ光a27は該偏光ビームスプ
リッタ26により反射され、レーザ光a28は該偏光ビーム
スプリッタを透過する。
At this time, the laser beam a 27 is reflected by the polarizing beam splitter 26, and the laser beam a 28 transmits through the polarizing beam splitter.

【0054】上記反射されたレーザ光a27は検体22を面
照射し、該検体22を透過して出射したレーザ光は偏光ビ
ームスプリッタ38により反射され、このとき前記検体22
を出射したレーザ光a29のうち透過光が前記周波数ν0
+Δνのレーザ光a28と波面整合される。次にこの波面
整合されたレーザ光は偏光板30により前記透過光と周波
数ν0 +Δνのレーザ光a28との同一偏光方向成分同士
が干渉され、該干渉されたレーザ光a30の2次元強度分
布像を2次元並列動作型イメージセンサ35上に投影す
る。
The reflected laser beam a 27 irradiates the surface of the sample 22, and the laser beam transmitted and emitted through the sample 22 is reflected by the polarizing beam splitter 38.
The frequency [nu 0 is transmitted light of the laser beam a 29 emitted from the
Wavefront matching with + Δν laser light a 28 . Next, in the wavefront-matched laser light, the same polarization direction components of the transmitted light and the laser light a 28 having the frequency ν 0 + Δν interfere with each other by the polarizing plate 30, and the two-dimensional intensity of the interfered laser light a 30 The distribution image is projected on the two-dimensional parallel operation type image sensor 35.

【0055】また、前記検体22は走査手段27によりつる
まき螺旋状に変位されて前記レーザ光a27を全周に亘り
つるまき螺旋状に走査される。
[0055] Further, the sample 22 is scanned with the laser beam a 27 is displaced in a helical spiral by scanning means 27 to the helical spiral along the entire circumference.

【0056】以下、イメージセンサ35と計測処理手段36
と再構成手段37との作用は前記最初の実施例におけるイ
メージセンサ8と計測処理手段11と再構成手段12との作
用と同じである。
Hereinafter, the image sensor 35 and the measurement processing means 36
The operation of the reconfiguration means 37 is the same as the operation of the image sensor 8, the measurement processing means 11, and the reconfiguration means 12 in the first embodiment.

【0057】本実施例の検体の3次元情報計測装置は、
周波数変換された直後のレーザ光a24と周波数変換され
ないレーザ光a22とを検体を走査する以前に波面整合さ
せる光学系100 に入射するとき、その入射方向にずれが
生じた場合も、検体22を透過したレーザ光a29と偏光ビ
ームスプリッタ26を透過したレーザ光a28とがずれを生
じることなく偏光ビームスプリッタ38により波面整合す
ることができる。
The three-dimensional information measuring apparatus for a specimen according to the present embodiment
When the laser beam a 24 immediately after the frequency conversion and the laser beam a 22 not frequency-converted are incident on the optical system 100 for wavefront matching before scanning the sample, even if the incident direction shifts, the sample 22 The laser beam a 29 transmitted through the polarization beam splitter 26 and the laser beam a 28 transmitted through the polarization beam splitter 26 can be wavefront-matched by the polarization beam splitter 38 without causing a shift.

【0058】上記走査手段27は、必ずしも検体22を走査
する必要はなく図3に示すように該検体22にレーザ光を
照射する光学系101 を該検体22に対してつるまき螺旋状
に走査することも採用できる。
The scanning means 27 does not necessarily scan the specimen 22, but scans the specimen 22 in an spiral manner with an optical system 101 for irradiating the specimen 22 with a laser beam as shown in FIG. Things can also be adopted.

【0059】図4は本発明による検体の3次元情報計測
装置の他の実施例を示すブロック図である。図示の検体
の3次元情報計測装置は、図2に示す実施例において第
2の光路分割手段としての偏光ビームスプリッタ26が第
2の波面整合手段としての偏光ビームスプリッタ38を兼
ねるとともに、検体22を透過したレーザ光を前記第2の
光路分割手段としての偏光ビームスプリッタ26へ進行さ
せる位置に配された反射手段としての凹ミラー33、34を
備え、さらにレーザ光が前記偏光ビームスプリッタ26を
反射または透過させることを制御する、該レーザ光の偏
光面を回転させる1/4波長板29を備える。
FIG. 4 is a block diagram showing another embodiment of the apparatus for measuring three-dimensional information of a specimen according to the present invention. In the illustrated sample three-dimensional information measuring apparatus, in the embodiment shown in FIG. 2, the polarizing beam splitter 26 as the second optical path splitting unit also serves as the polarizing beam splitter 38 as the second wavefront matching unit, and the sample 22 is The optical disk device further includes concave mirrors 33 and 34 as reflection means disposed at positions where the transmitted laser light travels to the polarization beam splitter 26 as the second optical path splitting means, and further the laser light reflects or reflects the polarization beam splitter 26. A quarter-wave plate 29 for controlling the transmission of the laser light and rotating the polarization plane of the laser light is provided.

【0060】次に本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0061】単一の周波数ν0 のレーザ光源21から発射
されたレーザ光a21は1/2波長板28および偏光ビーム
スプリッタ25により偏光面が直交するレーザ光a22およ
びa23に分割され、一方のレーザ光a23は周波数シフタ
23によりもとの周波数ν0 とわずかに異なる他の周波数
ν0 +Δνのレーザ光a24に変換される。
The laser light a 21 emitted from the laser light source 21 having a single frequency ν 0 is split by a half-wave plate 28 and a polarizing beam splitter 25 into laser lights a 22 and a 23 whose polarization planes are orthogonal to each other. one laser beam a 23 frequency shifter
The laser light is converted into a laser beam a 24 of another frequency ν 0 + Δν slightly different from the original frequency ν 0 by 23.

【0062】上記偏光面が直交しかつ周波数がわずかに
異なる2つのレーザ光a22およびa24は第2の偏光ビー
ムスプリッタ45により波面整合されたレーザ光a25を形
成し、さらにレンズ24により円錐状のビームに形成され
る。
The two laser beams a 22 and a 24 whose polarization planes are orthogonal to each other and have slightly different frequencies form a laser beam a 25 whose wavefront has been matched by the second polarization beam splitter 45, and are further conical by the lens 24. Shaped beam.

【0063】該円錐状のビームに形成されたレーザ光a
26は偏光ビームスプリッタ26により前記周波数ν0 のレ
ーザ光a27と周波数ν0 +Δνのレーザ光a28とに分割
される。
The laser beam a formed into the conical beam
26 is divided by the polarization beam splitter 26 into a laser beam a 27 and the frequency [nu 0 + .DELTA..nu laser beam a 28 of the frequency [nu 0.

【0064】このときレーザ光a27は該偏光ビームスプ
リッタ26の反射面P1 で反射され、レーザ光a28は該偏
光ビームスプリッタを透過する。
At this time, the laser beam a 27 is reflected by the reflection surface P 1 of the polarization beam splitter 26, and the laser beam a 28 passes through the polarization beam splitter.

【0065】上記反射されたレーザ光a27は1/4波長
板29を透過し、曲率半径Rの凹ミラー33により反射さ
れ、再度1/4波長板29を透過する。このとき、レーザ
光a27は1/4波長板を2回透過するため偏光面が90°
回転され前記偏光ビームスプリッタ26の反射面P1 を透
過する。
The reflected laser beam a 27 transmits through the quarter-wave plate 29, is reflected by the concave mirror 33 having the radius of curvature R, and transmits through the quarter-wave plate 29 again. At this time, since the laser beam a 27 transmits through the quarter-wave plate twice, the polarization plane is 90 °.
Is rotated passes through the reflecting surface P 1 of the polarization beam splitter 26.

【0066】さらに、該偏光ビームスプリッタ26を透過
したレーザ光a27は1/4波長板29を透過し、検体22を
面照射し、該検体22を透過して出射したレーザ光は前記
凹ミラー33と曲率中心の一致する、該凹ミラー33と対向
する位置に配された曲率半径2Rの凹ミラー34により反
射され、再度検体22を照射する。
Further, the laser beam a 27 transmitted through the polarizing beam splitter 26 passes through the quarter-wave plate 29, irradiates the surface of the specimen 22, and the laser beam transmitted through the specimen 22 and exits the concave mirror. The reflected light is reflected by the concave mirror 34 having a curvature radius 2R disposed at a position where the center of curvature coincides with the concave mirror 33 and is opposed to the concave mirror 33, and irradiates the specimen 22 again.

【0067】該検体22を照射し、該検体22を透過して出
射したレーザ光a29は、再度1/4波長板を透過するた
め偏光面が90°回転され、前記偏光ビームスプリッタ26
の反射面P2 で反射しこのとき前記検体22を出射したレ
ーザ光a29のうち透過光が前記周波数ν0 +Δνのレー
ザ光a28と波面整合される。次にこの波面整合されたレ
ーザ光は偏光板30により前記透過光と周波数ν0 +Δν
のレーザ光a28との同一偏光方向成分同士が干渉され、
該干渉されたレーザ光a30の2次元強度分布像を2次元
並列動作型イメージセンサ35上に投影する。
The laser beam a 29 irradiating the specimen 22 and passing through the specimen 22 and emitted again passes through the quarter-wave plate, so that the polarization plane is rotated by 90 ° and the polarization beam splitter 26
The transmitted light is WFM laser light a 28 in the frequency [nu 0 + .DELTA..nu in the laser beam a 29 emitted the specimen 22 reflected at this time by the reflecting surface P 2 of the. Next, this wavefront-matched laser light is transmitted by the polarizing plate 30 to the transmitted light at a frequency ν 0 + Δν.
The same polarization direction components of the laser light a 28
The two-dimensional intensity distribution image of the interfering laser beam a 30 is projected onto the two-dimensional parallel operation type image sensor 35.

【0068】また、前記検体22は走査手段27によりつる
まき螺旋状に変位されて前記レーザ光a27を全周に亘り
つるまき螺旋状に走査される。
[0068] Further, the sample 22 is scanned with the laser beam a 27 is displaced in a helical spiral by scanning means 27 to the helical spiral along the entire circumference.

【0069】以下、イメージセンサ35と計測処理手段36
と再構成手段37とは前記最初の実施例における作用と同
じ作用をして前記検体の3次元情報を計測し、立体像等
を出力する。上述の作用により、本実施例の検体の3次
元情報計測装置は前記図2に示した実施例と同様の効果
を得る。
Hereinafter, the image sensor 35 and the measurement processing means 36
The reconstructing means 37 operates in the same manner as in the first embodiment to measure three-dimensional information of the specimen and output a stereoscopic image or the like. By the above-described operation, the apparatus for measuring three-dimensional information of a specimen according to the present embodiment obtains the same effects as those of the embodiment shown in FIG.

【0070】ただし本実施例は、レーザ光が凹ミラー33
から凹ミラー34へ進行するときと、凹ミラー34から偏光
ビームスプリッタ26へ進行するときとの2回検体を照射
するため、計測処理手段36は上記作用を考慮して透過光
投影像を計測処理するように設定されていることはいう
までもない。
However, in this embodiment, the laser beam is
In order to irradiate the specimen twice, when the specimen advances from the concave mirror 34 to the concave mirror 34 and when the specimen advances from the concave mirror 34 to the polarization beam splitter 26, the measurement processing means 36 measures the transmitted light projection image in consideration of the above-described operation. Needless to say, it is set to be performed.

【0071】[0071]

【発明の効果】以上詳細に説明したように本発明の検体
の3次元情報計測方法および装置は、円錐状のビームに
形成されたレーザ光を検体に対してつるまき螺旋状に照
射するため検体の全周方向から連続的に該検体の透過光
投影像を検出でき、この検出された透過光投影像からい
かなる方向に沿った断面においても高精度の3次元情報
を計測することができる。
As described above in detail, the method and apparatus for measuring three-dimensional information of a specimen according to the present invention irradiate the specimen with a laser beam formed in a conical beam in a spiral helix. The transmitted light projection image of the specimen can be continuously detected from the entire circumferential direction, and high-precision three-dimensional information can be measured in a cross section along any direction from the detected transmitted light projection image.

【0072】また、光ヘテロダイン検出法により光散乱
媒質を含有した検体から透過光のみを検出することがで
き、生体を始めとする光散乱媒質を含有する検体の形態
的3次元情報を高精度で計測することが可能とされる。
Further, only the transmitted light can be detected from the specimen containing the light scattering medium by the optical heterodyne detection method, and the morphological three-dimensional information of the specimen containing the light scattering medium such as a living body can be detected with high accuracy. It is possible to measure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる検体の3次元情報計測装置の実
施例を示すブロック図
FIG. 1 is a block diagram showing an embodiment of an apparatus for measuring three-dimensional information of a specimen according to the present invention.

【図2】本発明にかかる検体の3次元情報計測装置の第
2の実施例を示すブロック図
FIG. 2 is a block diagram showing a second embodiment of the apparatus for measuring three-dimensional information of a specimen according to the present invention;

【図3】本発明にかかる検体の3次元情報計測装置の第
3の実施例を示すブロック図
FIG. 3 is a block diagram showing a third embodiment of the sample three-dimensional information measuring apparatus according to the present invention;

【図4】本発明にかかる検体の3次元情報計測装置の第
4の実施例を示すブロック図
FIG. 4 is a block diagram showing a fourth embodiment of the sample three-dimensional information measuring apparatus according to the present invention;

【符号の説明】[Explanation of symbols]

1,21 単一周波数レーザ光源 2,22 検体 3,23 周波数シフタ 4,5,24 レンズ 6,27 走査手段 7 ビームスプリッタ 8,35 2次元並列動作型イメージセンサ 9 ハーフミラー 10,10' ,32,39 ミラー 11,36 計測処理手段 12,37 再構成手段 25,26,38,45 偏光ビームスプリッタ 28 1/2波長板 29 1/4波長板 30 偏光板 31 強度補正手段 33 凹ミラー(曲率半径R) 34 凹ミラー(曲率半径2R) 1,21 Single frequency laser light source 2,22 Sample 3,23 Frequency shifter 4,5,24 Lens 6,27 Scanning means 7 Beam splitter 8,35 Two-dimensional parallel operation type image sensor 9 Half mirror 10,10 ', 32 , 39 mirror 11, 36 measurement processing means 12, 37 reconstruction means 25, 26, 38, 45 polarizing beam splitter 28 1/2 wavelength plate 29 1/4 wavelength plate 30 polarizing plate 31 intensity correction means 33 concave mirror (radius of curvature) R) 34 concave mirror (curvature radius 2R)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/17 A61B 10/00 G01B 11/24 A61B 6/03 ──────────────────────────────────────────────────続 き Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/17 A61B 10/00 G01B 11/24 A61B 6/03

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 検体に円錐状のビームに形成されてなる
レーザ光を面照射し、前記検体を2次元的に透過したレ
ーザ光と周波数がわずかに異なる他の円錐状のレーザ光
とを波面整合させ、該波面整合された断面2次元状のレ
ーザ光を2次元的に光ヘテロダイン検出し、該検出され
たビート信号から前記検体を透過したレーザ光の強度を
計測し、前記レーザ光が前記検体をつるまき螺旋状に走
査するように該レーザ光と前記検体とを相対的に変位さ
せ、前記透過したレーザ光の強度からCT手法により前
記検体の形態的3次元情報を計測することを特徴とする
検体の3次元情報計測方法。
1. A sample is irradiated with a laser beam formed in a conical beam onto a sample, and a laser beam transmitted two-dimensionally through the sample and another conical laser beam having a slightly different frequency are wavefronted. Aligned, two-dimensionally optically heterodyne-detects the laser light having a two-dimensional cross section subjected to the wavefront alignment, measures the intensity of the laser light transmitted through the specimen from the detected beat signal, and determines that the laser light is The method is characterized in that the laser light and the sample are relatively displaced so as to scan the sample in a spiral shape, and the morphological three-dimensional information of the sample is measured by a CT method from the intensity of the transmitted laser light. 3D information measurement method for the specimen to be determined.
【請求項2】 第1のレーザ光に該レーザ光と周波数が
わずかに異なる第2のレーザ光を波面整合させ、該波面
整合されたレーザ光を円錐状のビームに形成し、該円錐
状のビームに形成されたレーザ光を前記第1のレーザ光
と同じ周波数のレーザ光と、前記第2のレーザ光と同じ
周波数のレーザ光とに光路を分割し、検体に前記光路を
分割された2つのレーザ光のうちいずれか一方のレーザ
光を面照射し、該検体を透過したレーザ光と前記光路を
分割して得られた他方の円錐状のレーザ光とを波面整合
させ、前記波面整合された断面2次元状のレーザ光を2
次元的に光ヘテロダイン検出し、該検出されたビート信
号から前記検体を透過したレーザ光の強度を計測し、前
記レーザ光が前記検体をつるまき螺旋状に走査するよう
に該レーザ光と前記検体とを相対的に変位させ、前記透
過したレーザ光の強度からCT手法により前記検体の形
態的3次元情報を計測することを特徴とする検体の3次
元情報計測方法。
2. A second laser light having a frequency slightly different from that of the laser light is wavefront-matched to the first laser light, and the wavefront-matched laser light is formed into a conical beam. The optical path of the laser beam formed into the beam is divided into a laser beam having the same frequency as the first laser beam and a laser beam having the same frequency as the second laser beam, and the optical path is divided into a specimen. One of the two laser lights is irradiated on the surface, and the laser light transmitted through the specimen and the other conical laser light obtained by dividing the optical path are wavefront-matched, and the wavefront matching is performed. Laser light with a two-dimensional cross section
Dimensionally detect optical heterodyne, measure the intensity of laser light transmitted through the sample from the detected beat signal, and scan the sample with the laser light so that the laser beam scans the sample in a spiral shape. And measuring the morphological three-dimensional information of the sample from the intensity of the transmitted laser light by a CT method.
【請求項3】 単一周波数のレーザ光源と、該レーザ光
源から発射されたレーザ光の光路中に配された該レーザ
光の光路を2つに分割させる光路分割手段と、分割され
て得られた2つの光路のうち一方の光路を進行するレー
ザ光の周波数と他方の光路を進行するレーザ光の周波数
とがわずかに異なるように少なくとも一方のレーザ光の
周波数を他の周波数に変換する周波数変換手段と、前記
分割されて得られた2つの光路を進行するレーザ光とを
それぞれ円錐状のビームに形成させる光学的手段と、該
円錐状のビームに形成された2つのレーザ光のうちいず
れか一方のレーザ光を検体に面照射させるとともに該レ
ーザ光が前記検体をつるまき螺旋状に走査するように前
記レーザ光と前記検体とを相対的に変位させる走査手段
と、前記検体に照射され該検体を透過したレーザ光と前
記円錐状のビームに形成された他方のレーザ光とを波面
整合させる波面整合手段と、該波面整合手段により波面
整合されたレーザ光の進行方向とほぼ垂直に交わる面に
配された、該波面整合された断面2次元状のレーザ光の
差周波数により強弱を繰り返す光強度を2次元的に検出
する2次元強度検出手段と、該検出手段により検出され
たレーザ光の強度に基づいて前記検体を透過したレーザ
光の強度を検出しCT手法により該検体の形態的3次元
情報を計測処理する計測処理手段とを備えてなることを
特徴とする検体の3次元情報計測装置。
3. A laser light source having a single frequency, an optical path splitting means for splitting an optical path of the laser light, which is disposed in an optical path of the laser light emitted from the laser light source, into two, and obtained by splitting. Frequency conversion for converting the frequency of at least one laser beam to another frequency such that the frequency of the laser beam traveling on one of the two optical paths is slightly different from the frequency of the laser beam traveling on the other optical path. Means, optical means for forming the laser light traveling along the two optical paths obtained by the division into a conical beam, and one of the two laser lights formed on the conical beam. Scanning means for irradiating the surface of the sample with one laser beam and relatively displacing the laser beam and the sample so that the laser beam scans the sample in a spiral shape; and irradiates the sample. Wavefront matching means for wavefront matching the laser light transmitted through the sample and the other laser light formed into the conical beam, and substantially perpendicular to the traveling direction of the laser light wavefront matched by the wavefront matching means. Two-dimensional intensity detection means for two-dimensionally detecting light intensity which repeats intensities depending on the difference frequency of the laser light having a cross-section two-dimensional shape and arranged on the intersecting surface, and a laser detected by the detection means Measuring means for detecting the intensity of the laser beam transmitted through the sample based on the intensity of the light, and measuring and processing the morphological three-dimensional information of the sample by a CT method. Information measuring device.
【請求項4】 単一周波数のレーザ光源と、該レーザ光
源から発射されたレーザ光の光路中に配された該レーザ
光の光路を2つに分割させる第1の光路分割手段と、分
割されて得られた2つの光路のうち一方の光路を進行す
るレーザ光の周波数と他方の光路を進行するレーザ光の
周波数とがわずかに異なるように少なくとも一方のレー
ザ光の周波数を他の周波数に変換する周波数変換手段
と、該周波数を変換されたレーザ光と前記分割されて得
られた一方の光路を進行するレーザ光とを波面整合させ
る第1の波面整合手段と、該波面整合されたレーザ光を
円錐状のビームに形成させる光学的手段と、該円錐状の
ビームに形成されたレーザ光の光路を前記周波数のわず
かに異なる2つのレーザ光毎に分割させる第2の光路分
割手段と、該光路分割手段により分割されて得られた2
つの光路のうちいずれか一方の光路を進行するレーザ光
を検体に面照射させるとともに該レーザ光が前記検体を
つるまき螺旋状に走査するように前記レーザ光と前記検
体とを相対的に変位させる走査手段と、前記検体に照射
され該検体を透過したレーザ光と前記第2の光路分割手
段により分割されて得られた他方の光路を進行するレー
ザ光とを波面整合させる第2の波面整合手段と、該第2
の波面整合手段により波面整合されたレーザ光の進行方
向とほぼ垂直に交わる面に配された、該波面整合された
断面2次元状のレーザ光の差周波数により強弱を繰り返
す光強度を2次元的に検出する2次元強度検出手段と、
該検出手段により検出されたレーザ光の強度に基づいて
前記検体を透過したレーザ光の強度を検出しCT手法に
より該検体の3次元情報を計測処理する計測処理手段と
を備えてなることを特徴とする検体の3次元情報計測装
置。
4. A single-frequency laser light source, and first optical path splitting means for splitting an optical path of the laser light disposed in an optical path of the laser light emitted from the laser light source into two, The frequency of at least one laser beam is converted to another frequency such that the frequency of the laser beam traveling on one optical path of the two optical paths obtained is slightly different from the frequency of the laser beam traveling on the other optical path. Frequency-converting means, a first wavefront matching means for wavefront-matching the laser light whose frequency has been converted and the laser light traveling on one of the divided optical paths, and a laser light having the wavefront matched. Optical means for forming a laser beam into a conical beam; second optical path dividing means for dividing the optical path of the laser beam formed into the conical beam into two laser beams having slightly different frequencies; Optical path split 2 obtained by dividing by means
And irradiating the surface of the specimen with laser light traveling along one of the two optical paths, and displacing the laser light and the specimen relatively so that the laser light scans the specimen in a spiral manner. Scanning means, and second wavefront matching means for wavefront matching the laser light irradiated on the specimen and transmitted through the specimen and the laser light traveling on the other optical path obtained by division by the second optical path dividing means. And the second
The light intensity which repeats intensities depending on the difference frequency of the two-dimensionally cross-sectioned laser light, which is arranged on a plane substantially perpendicular to the traveling direction of the laser light wave-aligned by the wave front matching means, is two-dimensionally. Two-dimensional intensity detection means for detecting
Measurement processing means for detecting the intensity of the laser light transmitted through the specimen based on the intensity of the laser light detected by the detection means, and measuring the three-dimensional information of the specimen by a CT method. A three-dimensional information measuring device for a specimen.
【請求項5】 前記第2の光路分割手段が前記第2の波
面整合手段を兼ねるとともに、前記検体を透過したレー
ザ光を前記第2の光路分割手段へ進行させる位置に配さ
れた反射手段を具備することを特徴する前記請求項4記
載の検体の3次元情報計測装置。
5. The second optical path splitting means also serves as the second wavefront matching means, and a reflecting means disposed at a position for causing the laser light transmitted through the sample to travel to the second optical path splitting means. The apparatus for measuring three-dimensional information of a specimen according to claim 4, wherein the apparatus is provided.
JP4205306A 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen Expired - Fee Related JP2981695B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4205306A JP2981695B2 (en) 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen
EP93112273A EP0585620B1 (en) 1992-07-31 1993-07-30 Method and apparatus for obtaining three-dimensional information of samples
DE69321316T DE69321316T2 (en) 1992-07-31 1993-07-30 Method and device for obtaining three-dimensional information from samples
EP97115633A EP0814334B1 (en) 1992-07-31 1993-07-30 Method and apparatus for obtaining three-dimensional information of samples
DE69333642T DE69333642T2 (en) 1992-07-31 1993-07-30 Method and apparatus for obtaining three-dimensional information of samples
US08/100,365 US5428447A (en) 1992-07-31 1993-08-02 Method and apparatus for obtaining three-dimensional information of samples using computer tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205306A JP2981695B2 (en) 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen

Publications (2)

Publication Number Publication Date
JPH0650724A JPH0650724A (en) 1994-02-25
JP2981695B2 true JP2981695B2 (en) 1999-11-22

Family

ID=16504772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205306A Expired - Fee Related JP2981695B2 (en) 1992-07-31 1992-07-31 Method and apparatus for measuring three-dimensional information of a specimen

Country Status (1)

Country Link
JP (1) JP2981695B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883350B2 (en) * 2006-06-29 2012-02-22 アイシン精機株式会社 Terahertz wave generator / detector
EP2446251B1 (en) * 2009-06-25 2018-12-05 Phase Holographic Imaging Phi AB Analysis of ova or embryos with digital holographic imaging
CN109443237B (en) * 2018-11-30 2023-09-22 广西师范大学 Remote structured light three-dimensional measuring device

Also Published As

Publication number Publication date
JPH0650724A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
US5428447A (en) Method and apparatus for obtaining three-dimensional information of samples using computer tomography
JP2916500B2 (en) Imaging method and system for fluoroscopy using photon frequency marking
US6345194B1 (en) Enhanced high resolution breast imaging device and method utilizing non-ionizing radiation of narrow spectral bandwidth
US10267753B2 (en) Multi-energy spectrum X-ray grating-based imaging system and imaging method
KR100218080B1 (en) Phase contrast x-ray ct apparatus
JP5134177B2 (en) Systems using light-scattering spectroscopy based on electric fields
CN105996999B (en) Method and system for measuring sample depth resolution attenuation coefficient based on OCT
JP2009008393A (en) Optical image measuring device
JPH0635946B2 (en) Light wave reflection image measuring device
JP2005509483A (en) Imaging method and apparatus
JP2981695B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JPH11506839A (en) Device for localizing objects in turbid media
JP2981698B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP2981696B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JPH10260136A (en) Method and device for extracting internal information of pearl
JP3000320B2 (en) Deep observation endoscope
JP2981699B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP6234518B2 (en) Information processing apparatus and information processing method
JPH10246697A (en) Optical inspection method and device
JP2890309B2 (en) Form and function imaging device
JP2981697B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JPH02150747A (en) Device for optical tomographic imaging
JP2644609B2 (en) Simultaneous detection of amplitude image and phase image using heterodyne detection light receiving system
JP2018012027A (en) Structure of recorded data
JP3077703B2 (en) Phase image detection device using heterodyne detection light receiving system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990811

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees