JP2979891B2 - Dissolved oxygen concentration reduction system in deaerator - Google Patents

Dissolved oxygen concentration reduction system in deaerator

Info

Publication number
JP2979891B2
JP2979891B2 JP5085688A JP8568893A JP2979891B2 JP 2979891 B2 JP2979891 B2 JP 2979891B2 JP 5085688 A JP5085688 A JP 5085688A JP 8568893 A JP8568893 A JP 8568893A JP 2979891 B2 JP2979891 B2 JP 2979891B2
Authority
JP
Japan
Prior art keywords
water
dissolved oxygen
oxygen concentration
deaerator
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5085688A
Other languages
Japanese (ja)
Other versions
JPH06269769A (en
Inventor
敏広 茅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP5085688A priority Critical patent/JP2979891B2/en
Publication of JPH06269769A publication Critical patent/JPH06269769A/en
Application granted granted Critical
Publication of JP2979891B2 publication Critical patent/JP2979891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ボイラ等の熱機器や
ビル、マンション等への給水ライン中に適用される脱気
装置における溶存酸素濃度低下システムに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for reducing the concentration of dissolved oxygen in a deaerator applied to a water supply line to a boiler or other thermal equipment, a building, an apartment, or the like.

【0002】[0002]

【従来の技術】周知のように、ボイラ、温水器あるいは
冷却器等の冷熱機器類への給水ライン中には、これら機
器類の内部腐食防止を目的とした脱気装置が組み込まれ
ている。又、近年ではビル、マンション等の建造物にお
ける給配水管の赤水防止対策としても脱気装置が用いら
れるようになってきている。この脱気装置は、図3に示
すように使用機器等への給水ライン21中に膜式脱気モジ
ュール22を接続しておき、この脱気モジュール22内に原
水(水道水、井戸水、その他工業用水)を通水し、この
通水過程において前記脱気モジュール内を水封式真空ポ
ンプ23で真空引きして、前記原水中の溶存気体を脱気除
去する構成のものである。図中24は脱気水タンクであ
る。
2. Description of the Related Art As is well known, a deaerator for preventing internal corrosion of cooling and heating equipment such as a boiler, a water heater or a cooler is incorporated in a water supply line for such equipment. In recent years, a deaerator has been used as a measure for preventing red water in a water supply / distribution pipe in a building such as a building or an apartment. In this deaerator, as shown in FIG. 3, a membrane type deaeration module 22 is connected in a water supply line 21 to equipment used, and raw water (tap water, well water, other industrial water, etc.) is provided in the deaeration module 22. In this process, the inside of the degassing module is evacuated by a water-sealed vacuum pump 23 to degas and remove dissolved gases in the raw water. In the figure, reference numeral 24 denotes a deaerated water tank.

【0003】ところで、前記脱気装置は、図2に示すよ
うに処理水量が一定であれば、供給する原水の温度が低
いほど処理水の溶存酸素濃度が高くなる。一方、原水温
度が一定であれば処理水量が少ないほど溶存酸素濃度は
低下するという特性がある。そのため、水温の高い夏季
では溶存酸素濃度は低く、水温の低い冬季では溶存酸素
濃度は高くなり、したがって、脱気装置で処理した脱気
水も、その原水温度により溶存酸素濃度にバラツキがで
るため問題となり、寒冷地等ではやむなく脱気装置を大
型にして対応している。
As shown in FIG. 2, in the deaerator, if the amount of treated water is constant, the lower the temperature of the supplied raw water, the higher the dissolved oxygen concentration of the treated water. On the other hand, if the raw water temperature is constant, the dissolved oxygen concentration decreases as the amount of treated water decreases. Therefore, the dissolved oxygen concentration is low in summer when the water temperature is high, and the dissolved oxygen concentration is high in winter when the water temperature is low.Therefore, even in the degassed water treated by the deaerator, the dissolved oxygen concentration varies depending on the raw water temperature. This is a problem, and in cold climates, etc., the deaerator must be increased in size.

【0004】[0004]

【発明が解決しようとする課題】この発明は、上記課題
に鑑み、脱気水供給先の負荷の状態(脱気水使用量)に
より、原水の供給量を調整し脱気水中の溶存酸素濃度を
低下させるシステムを提供することを目的とするもので
ある。
DISCLOSURE OF THE INVENTION In view of the above problems, the present invention adjusts the supply amount of raw water by adjusting the load state of the degassed water supply destination (the amount of degassed water used) and adjusts the concentration of dissolved oxygen in the degassed water. It is an object of the present invention to provide a system for reducing the pressure.

【0005】[0005]

【課題を解決するための手段】即ち、この発明は、原水
供給部と脱気水タンクとの間の給水ライン中に、脱気モ
ジュールを接続した構成の脱気装置において、前記脱気
水タンク内に、水位に応じて段階的に作動する複数の水
位応動手段を設け、それぞれの手段の作動範囲ごとに前
記脱気モジュールを通す給水の流量を調整して、脱気水
を脱気水タンクに連続的に供給することを特徴としてい
る。
That is, the present invention relates to a deaeration apparatus having a deaeration module connected to a water supply line between a raw water supply section and a deaeration water tank. Inside, a plurality of water level responding means that operates stepwise according to the water level is provided, and the flow rate of the supply water passing through the deaeration module is adjusted for each operation range of each means, and the deaerated water is supplied to the deaerated water tank. It is characterized in that it is supplied continuously.

【0006】[0006]

【作用】この発明によれば、脱気水タンク内に設けた複
数の水位応動手段が、脱気水の流出量(使用量)によっ
て段階的に作動し、それぞれの作動範囲ごとに予め設定
した量の脱気水を供給するようにしたので、流出量の少
ないときは溶存酸素濃度の低い脱気水を供給するとがで
きる。
According to the present invention, the plurality of water level response means provided in the degassed water tank are operated stepwise according to the outflow amount (used amount) of the degassed water, and are preset for each operation range. Since a small amount of degassed water is supplied, when the amount of outflow is small, degassed water having a low dissolved oxygen concentration can be supplied.

【0007】[0007]

【実施例】以下、この発明の実施例を図面に基づいて詳
細に説明する。図1は、この発明を実施した脱気装置の
給水ライン6における各機器の配置と、脱気水タンク2
に設けた複数の水位応動手段、例えばボールタップ3,
4,5の関係を示す説明図である。前記給水ライン6の
原水供給部1と脱気水タンク2との間に、減圧弁7およ
び脱気モジュール8を挿設し、この脱気モジュール8に
真空脱気ライン10を介して水封式真空ポンプ9を接続し
ている。この水封式真空ポンプ9の封水は、前記給水ラ
イン6に設けた減圧弁7の上流側の所定個所より分岐し
た封水供給ライン11を介して供給し、使用済封水は排気
とともに排気ライン12を介して排出される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an arrangement of each device in a water supply line 6 of a deaeration device embodying the present invention, and a deaeration water tank 2.
A plurality of water level responding means provided in, for example, ball tap 3,
It is explanatory drawing which shows the relationship of 4,5. A pressure reducing valve 7 and a deaeration module 8 are inserted between the raw water supply section 1 and the deaeration water tank 2 of the water supply line 6, and the deaeration module 8 is provided with a water seal type through a vacuum deaeration line 10. The vacuum pump 9 is connected. The water sealed by the water-sealed vacuum pump 9 is supplied via a sealed water supply line 11 branched from a predetermined location on the upstream side of the pressure reducing valve 7 provided in the water supply line 6. Discharged via line 12.

【0008】前記脱気モジュール8は、例えば、多数の
中空糸膜を備え、この中空糸膜の内側に原水を通し、そ
の外側を真空に引いて中空糸膜内を水が通過する過程に
おいて、原水中の溶存酸素を除去する中空糸膜脱気モジ
ュールであって、前記減圧弁7は、脱気モジュール8に
一定以上の供給水圧が加わらないようにするもので、脱
気モジュール8の破損防止を図っている。図中13は、封
水供給ライン11に設けた定流量弁であり、14は、同じく
電磁弁である。15は、真空脱気ライン10に設けた電磁弁
である。
The degassing module 8 includes, for example, a large number of hollow fiber membranes. In a process in which raw water is passed through the inside of the hollow fiber membrane and a vacuum is drawn outside the hollow fiber membrane, water passes through the hollow fiber membrane. A hollow fiber membrane degassing module for removing dissolved oxygen in raw water, wherein the pressure reducing valve 7 prevents the supply water pressure above a certain level from being applied to the degassing module 8 and prevents the degassing module 8 from being damaged. Is being planned. In the figure, reference numeral 13 denotes a constant flow valve provided in the sealed water supply line 11, and reference numeral 14 denotes an electromagnetic valve. Reference numeral 15 denotes a solenoid valve provided in the vacuum degassing line 10.

【0009】この発明に係る脱気水の溶存酸素濃度低下
システムは、図1に示すように、前記脱気水タンク2内
の一端に、上下方向に所定間隔をおいて下部側より水位
応動手段としての第1ボールタップ3、第2ボールタッ
プ4および第3ボールタップ5を挿設し、それぞれのボ
ールタップの端部は前記給水ライン6に接続した構成と
なっている。図中16は、脱気水供給ラインである。そし
て、前記脱気モジュール8の定格処理水量を、例えば、
25℃の原水を溶存酸素濃度0.5PPMの脱気水に処
理する処理水量1000l/hr(図2参照)とする
と、前記第1,第2,第3の各ボールタップを経て開弁
した時の水量を前記定格処理水量(100%)とし、各
ボールタップの通水量は定格処理水量の略35%として
いる。図中17は、第3ボールタップ5の上限位置を示
す。
As shown in FIG. 1, the system for reducing the concentration of dissolved oxygen in degassed water according to the present invention is provided at one end in the degassed water tank 2 at predetermined intervals in the vertical direction from the lower side. , A first ball tap 3, a second ball tap 4, and a third ball tap 5 are inserted and the ends of the ball taps are connected to the water supply line 6. In the figure, reference numeral 16 denotes a deaerated water supply line. Then, the rated treated water amount of the degassing module 8 is, for example,
Assuming that the treated water volume of 25 ° C. is 1000 l / hr (see FIG. 2) for treating deaerated water having a dissolved oxygen concentration of 0.5 PPM, when the valve is opened through the first, second, and third ball taps, The amount of water is defined as the rated treated water amount (100%), and the amount of water passing through each ball tap is set to approximately 35% of the rated treated water amount. In the figure, reference numeral 17 denotes the upper limit position of the third ball tap 5.

【0010】次に、上記溶存酸素濃度低下システムの作
用を説明する。ところで、脱気水を供給する例えば、ボ
イラやビル給水系においても、脱気水の使用量は時間帯
によって変化し負荷は一定ではない。そこで、この発明
の溶存酸素濃度低下システムでは、脱気水の流出量に対
応して原水を供給し、より溶存酸素濃度の低い脱気水を
供給するようにしている。即ち、脱気水タンク2の所定
水位(第3ボールタップ5閉弁時)まで脱気水を貯水し
た後、前記水封式真空ポンプを停止する。しかる後、供
給先に負荷が発生し脱気水供給ライン16を介して脱気水
が流出し、脱気水タンク2内の水位が低下して前記第3
ボールタップ5が開弁すると同時に、図示省略の回線を
介して前記水封式真空ポンプ9が駆動し、前記脱気モジ
ュール8を介して脱気水を脱気水タンク2内へ供給す
る。しかしながら、前記第3ボールタップ5の開弁時の
流水量は、前記脱気モジュール8の定格処理水量の約3
5%に設定してあるから、図2に示すように脱気水中の
溶存酸素濃度は所定濃度(0.5PPM)より大巾に低
下している。
Next, the operation of the dissolved oxygen concentration lowering system will be described. Incidentally, for example, also in a boiler or a building water supply system for supplying degassed water, the amount of degassed water used varies depending on the time zone and the load is not constant. Therefore, in the dissolved oxygen concentration lowering system of the present invention, raw water is supplied according to the outflow amount of degassed water, and degassed water having a lower dissolved oxygen concentration is supplied. That is, after storing deaerated water to a predetermined water level of the deaerated water tank 2 (when the third ball tap 5 is closed), the water ring vacuum pump is stopped. Thereafter, a load is generated at the supply destination, the deaerated water flows out through the deaerated water supply line 16, and the water level in the deaerated water tank 2 decreases, and the third
At the same time that the ball tap 5 is opened, the water-sealed vacuum pump 9 is driven via a line (not shown) to supply deaerated water into the deaerated water tank 2 via the deaeration module 8. However, the amount of flowing water when the third ball tap 5 is opened is about 3 times the rated treated water amount of the degassing module 8.
Since it is set to 5%, as shown in FIG. 2, the dissolved oxygen concentration in the degassed water is significantly lower than the predetermined concentration (0.5 PPM).

【0011】そして、脱気水の供給量が増加し、前記脱
気水タンク2の水位が低下して第2ボールタップ4が開
弁されると、前記脱気モジュール8からの脱気水の供給
量は定格処理水量の約70%まで増加し、その増加分だ
け溶存酸素濃度は高くなる。そして、さらに脱気水の供
給量が増加し、第1ボールタップ3が開弁されると脱気
モジュール8は、100%の定格処理水量の脱気水を脱
気水タンク2へ供給する。以上のように、第1,第2,
第3の各ボールタップは、脱気水の供給量に対応して開
弁するので、負荷の少ないときには溶存酸素濃度の低い
脱気水を供給し、脱気水タンク2内に貯水する脱気水の
溶存酸素濃度を全体として低下させることができる。
尚、負荷が減少して脱気水タンク2の水位が上昇する
と、前記各ボールタップが順次閉弁して溶存酸素濃度の
低い脱気水を脱気水タンク2内に貯水する。
When the supply amount of the degassed water increases and the water level in the degassed water tank 2 decreases to open the second ball tap 4, the supply of the degassed water from the degassing module 8 is performed. The amount increases to about 70% of the rated treated water amount, and the dissolved oxygen concentration increases by the increase. Then, when the supply amount of the degassed water further increases and the first ball tap 3 is opened, the degassing module 8 supplies the degassed water with the 100% rated treated water amount to the degassed water tank 2. As described above, the first, second,
Since the third ball taps open in accordance with the supply amount of deaerated water, the deaerated water having a low dissolved oxygen concentration is supplied when the load is small, and the deaerated water stored in the deaerated water tank 2 is supplied. Can be reduced as a whole.
When the load decreases and the water level in the deaerated water tank 2 rises, each of the ball taps sequentially closes to store deaerated water having a low dissolved oxygen concentration in the deaerated water tank 2.

【0012】[0012]

【発明の効果】以上説明したように、この発明は、脱気
水タンク内のに水位に応じて段階的に作動する複数の水
位応動手段を設け、それぞれの手段の作動範囲ごとに予
め設定した量の脱気水を脱気水タンクに供給するように
したので、負荷に対応した溶存酸素濃度の低い脱気水を
供給することができる。したがって、負荷の少ないとき
には、溶存酸素濃度の低い脱気水を供給し、脱気水タン
ク内に貯水する脱気水全体の溶存酸素濃度を低下させて
おき、負荷が増加したときにも定格溶存酸素濃度以下の
脱気水を負荷に供給することができる。尚、寒冷地等の
原水温度が低いところでも、この溶存酸素濃度低下シス
テムを採用すれば脱気装置を大型化する必要はなく経済
的である。
As described above, according to the present invention, a plurality of water level responding means are provided in the degassing water tank, which operate stepwise according to the water level, and are set in advance for each operating range of each means. Since the amount of degassed water is supplied to the degassed water tank, degassed water having a low dissolved oxygen concentration corresponding to the load can be supplied. Therefore, when the load is small, supply degassed water with low dissolved oxygen concentration to reduce the dissolved oxygen concentration of the entire degassed water stored in the degassed water tank, and keep the rated dissolved Deaerated water having an oxygen concentration or less can be supplied to the load. In addition, even in a place where the temperature of raw water is low, such as in a cold region, if this dissolved oxygen concentration reduction system is adopted, it is economical without having to increase the size of the deaerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施した脱気装置と溶存酸素濃度低
下システムの各機器の配置を示す説明図である。
FIG. 1 is an explanatory diagram showing an arrangement of each device of a deaerator and a dissolved oxygen concentration reduction system embodying the present invention.

【図2】図1の脱気装置における原水温度と処理水溶存
酸素濃度および処理水量の関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the temperature of raw water, the concentration of dissolved oxygen in treated water, and the amount of treated water in the deaerator of FIG.

【図3】従来の脱気装置の各機器の配置を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing an arrangement of each device of a conventional deaerator.

【符号の説明】[Explanation of symbols]

1…原水供給部 2…脱気水タンク 3…第1ボールタップ 4…第2ボールタップ 5…第3ボールタップ 6…給水ライン 8…脱気モジュール 9…水封式真空ポンプ DESCRIPTION OF SYMBOLS 1 ... Raw water supply part 2 ... Deaerated water tank 3 ... 1st ball tap 4 ... 2nd ball tap 5 ... 3rd ball tap 6 ... Water supply line 8 ... Deaeration module 9 ... Water ring vacuum pump

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原水供給部1と脱気水タンク2との間の
給水ライン6中に、脱気モジュール8を接続した構成の
脱気装置において、 前記脱気水タンク2内に、水位に応じて段階的に作動す
る複数の水位応動手段3,4,5を設け、それぞれの手
段の作動範囲ごとに前記脱気モジュール8を通す給水の
流量を調整して、脱気水を脱気水タンク2に連続的に供
給することを特徴とする脱気装置における溶存酸素濃度
低下システム。
1. A deaerator having a configuration in which a deaeration module 8 is connected to a water supply line 6 between a raw water supply unit 1 and a deaeration water tank 2. A plurality of water level response means 3, 4 and 5 which operate stepwise in accordance with each other are provided, and the flow rate of the supply water passing through the deaeration module 8 is adjusted for each operation range of each means so that the deaeration water A system for reducing the concentration of dissolved oxygen in a deaerator, wherein the system is continuously supplied to a tank 2.
JP5085688A 1993-03-19 1993-03-19 Dissolved oxygen concentration reduction system in deaerator Expired - Fee Related JP2979891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085688A JP2979891B2 (en) 1993-03-19 1993-03-19 Dissolved oxygen concentration reduction system in deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5085688A JP2979891B2 (en) 1993-03-19 1993-03-19 Dissolved oxygen concentration reduction system in deaerator

Publications (2)

Publication Number Publication Date
JPH06269769A JPH06269769A (en) 1994-09-27
JP2979891B2 true JP2979891B2 (en) 1999-11-15

Family

ID=13865795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085688A Expired - Fee Related JP2979891B2 (en) 1993-03-19 1993-03-19 Dissolved oxygen concentration reduction system in deaerator

Country Status (1)

Country Link
JP (1) JP2979891B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110006807B (en) * 2019-05-07 2024-04-09 浙江省水利河口研究院 Airless water making and supplying device for geotechnical permeability test and using method thereof

Also Published As

Publication number Publication date
JPH06269769A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
CN113107811B (en) Method for stably switching vacuum pump
JP2979891B2 (en) Dissolved oxygen concentration reduction system in deaerator
EP0543285B1 (en) Device for expansion transfer in liquid cycle systems
JP3694399B2 (en) Membrane deaerator that uses chemical deaeration depending on the feed water temperature
JPH11193904A (en) Deaerator and deaerating method for boiler supply water
JPH07214046A (en) Deoxygenating device
JP2737586B2 (en) Method for stabilizing dissolved oxygen concentration in deaerator
JPS59154109A (en) Deaerator
JP3019734B2 (en) Corrosion protection system for plumbing equipment in water supply and distribution systems.
JP3707145B2 (en) Control method of deaerator
JP2559318Y2 (en) Water saving device in deoxidizer
JP2556399Y2 (en) Corrosion prevention device for hot water supply piping
JPS6039664Y2 (en) heat exchange equipment
JP2008229542A (en) Deoxygenation system
JPH06272798A (en) Device and method for parallel operation argon evaporator
JP2004259468A (en) Fuel-cell system
JP4953158B2 (en) Deoxygenation system
JPH0814183A (en) Sealing water cooling system of water sealing type vacuum pump in deaerator
JPH0337085B2 (en)
JPH06221509A (en) Control method of raw water supplying amount for deaerating device
JP3237532B2 (en) Control method of deaerator
JP3727042B2 (en) Precoat type filtration desalination equipment with pressure relief mechanism
JP3535547B2 (en) Power plant cooling system
JP2008188568A (en) Deoxidation system
KR20170079167A (en) Unmanned automatic operation available potable water supply control method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees