JP2978335B2 - Belt type continuous casting method - Google Patents

Belt type continuous casting method

Info

Publication number
JP2978335B2
JP2978335B2 JP4181039A JP18103992A JP2978335B2 JP 2978335 B2 JP2978335 B2 JP 2978335B2 JP 4181039 A JP4181039 A JP 4181039A JP 18103992 A JP18103992 A JP 18103992A JP 2978335 B2 JP2978335 B2 JP 2978335B2
Authority
JP
Japan
Prior art keywords
molten steel
continuous casting
belt
molten
type continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4181039A
Other languages
Japanese (ja)
Other versions
JPH0623497A (en
Inventor
昌紀 皆川
秀幸 三隅
昭夫 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4181039A priority Critical patent/JP2978335B2/en
Publication of JPH0623497A publication Critical patent/JPH0623497A/en
Application granted granted Critical
Publication of JP2978335B2 publication Critical patent/JP2978335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ベルト式連続鋳造にお
ける薄鋳片の鋳造方法に係わり、表面性状の良好な鋳片
を得る方法に関するものである。いわゆる本発明は、溶
鋼から鋳片の厚みが30〜150mm、幅が500〜25
00mm程度の薄鋳片を連続鋳造によって得るベルト(例
えば普通鋼帯)式連続鋳造の分野に関連する技術であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting thin slabs in belt type continuous casting, and more particularly to a method for obtaining slabs having good surface properties. The so-called present invention is based on the assumption that molten steel has a slab thickness of 30 to 150 mm and a width of 500 to 25.
This is a technique related to the field of belt (for example, ordinary steel strip) continuous casting in which a thin slab of about 00 mm is obtained by continuous casting.

【0002】[0002]

【従来の技術】従来、連続鋳造の一種として、例えば特
開昭58−107255号公報、特開昭58−1661
45号公報、特開平1−293956号公報に開示され
ている、走行経路の一部領域を所定の間隔(鋳片厚み)
を持たせて向かい合わせに対向した一対の無端金属ベル
トと、該金属ベルトに狭持された金属ベルトおよび薄鋳
片と同期移動する所定の間隔(鋳片幅)を持たせて向か
い合わせに対向した一対のブロック群とにより、所望の
鋳片に対応する断面形状を形成し、それらの金属ベルト
とブロック群とはガイドロールとガイドレールとによっ
て所定の移動経路に沿って輪回移動するように案内支持
するとともに、各ガイドロール間の金属ベルト裏側に噴
流ノズルおよび冷却パッドを配置し、金属ベルト裏側に
冷却用流体を噴出させて形成した流体膜により該金属ベ
ルトを冷却する一方、上記鋳造空間の上方より注入ノズ
ルを介して溶鋼を注入し、上記金属ベルトやブロック群
等の鋳型壁に沿って凝固殻を生成させ、凝固殻の成長に
よって生じる鋳片を下端からガイドロールを介して鋳造
空間から引き出すように構成した、いわゆるベルト式連
続鋳造機が提案されている。
2. Description of the Related Art Conventionally, as a kind of continuous casting, for example, JP-A-58-107255 and JP-A-58-1661.
No. 45, Japanese Unexamined Patent Application Publication No. 1-293956, a part of the travel route is provided at a predetermined interval (slab thickness).
And a pair of endless metal belts facing each other facing each other, and a predetermined interval (slab width) synchronously moving with the metal belt and the thin slab held by the metal belts and facing each other. A pair of blocks formed as described above forms a cross-sectional shape corresponding to a desired slab, and the metal belt and the blocks are guided by guide rolls and guide rails so as to make a circular movement along a predetermined movement path. While supporting, a jet nozzle and a cooling pad are arranged on the back side of the metal belt between each guide roll, and the metal belt is cooled by a fluid film formed by ejecting a cooling fluid on the back side of the metal belt, while the casting space of the casting space is cooled. Molten steel is injected from above through an injection nozzle to form a solidified shell along the mold wall of the metal belt, block group, etc., and a slab produced by the growth of the solidified shell. Configured to derive from the casting space from the lower end via a guide roll, a so-called belt type continuous casting machine has been proposed.

【0003】[0003]

【発明が解決しようとする課題】かかるベルト式連続鋳
造機により鋼を鋳造する目的は、従来鋳片(200〜3
00mm厚み)より薄い鋳片を得ることであるが、鋳片が
薄くなると、後工程での圧延時に圧下比が小さくなるた
め、鋳片段階から良好な鋳片の表面性状が要求される。
すなわち、鋳片の表面に欠陥が存在すると、圧下比が小
さいときは圧延しても欠陥が十分消滅せず、重大な製品
欠陥につながる。
The purpose of casting steel by such a belt-type continuous caster is to use a conventional slab (200 to 3).
(Thickness: 00 mm) is required to obtain a thinner slab. However, when the slab is thinner, the rolling reduction in the subsequent step becomes smaller, so that good slab surface properties are required from the slab stage.
That is, if there is a defect on the surface of the slab, when the rolling reduction is small, the defect does not disappear sufficiently even by rolling, leading to a serious product defect.

【0004】このような表面欠陥には、湯面の変動等で
生じる表面凹凸、いわゆる湯皺、および湯面に浮上して
いる酸化物等の巻き込み物(介在物)がある。これらの
欠陥は湯面の直下で凝固が開始することが原因である。
湯面の直下で凝固が開始するため、湯面変動の影響を受
け湯皺が発生したり、湯面に浮上している酸化物等を巻
き込むこととなる。これらの表面欠陥防止方法の一つと
して、従来は湯面の溶鋼流速を低減し、湯面の変動を極
力小さくする方法がとられていた。
Such surface defects include surface irregularities caused by fluctuations in the molten metal surface, so-called wrinkles, and inclusions (inclusions) such as oxides floating on the molten metal surface. These defects are caused by the start of solidification immediately below the surface of the molten metal.
Since solidification starts immediately below the surface of the molten metal, wrinkles are generated under the influence of fluctuations in the surface of the molten metal, and oxides and the like floating on the surface of the molten metal are involved. As one of these surface defect prevention methods, a method of reducing the flow velocity of molten steel on the molten metal surface and minimizing the fluctuation of the molten metal surface as far as possible has conventionally been adopted.

【0005】しかしながら湯面の溶鋼流速が小さくなる
と、湯面の凝固いわゆるデッケルが発生し、操業を妨害
するとともに、かえって鋳片の表面欠陥をさせることが
ある。したがって表面流速を小さくすることは上記表面
欠陥の防止には効果が認められるものの、操業の安定性
を確保する上ではよい方法とは言えない。
[0005] However, when the flow rate of the molten steel on the molten metal surface is reduced, solidification of the molten metal surface, so-called deckle, occurs, which hinders the operation and may cause surface defects of the cast slab. Therefore, although reducing the surface flow velocity is effective in preventing the above-mentioned surface defects, it cannot be said to be a good method for securing the stability of operation.

【0006】またその他の表面欠陥防止方法として、湯
面近傍にあたる鋳型の一部を加熱または保温して湯面近
傍での鋼の凝固を抑制する方法、いわゆる湯面下凝固技
術が考えられている。しかしながら、この方法で使用す
る鋳型加熱技術やセラミクス等の保温材は十分開発され
ておらず、現状段階での実用には困難を伴う。またベル
ト式連続鋳造機のような鋳型が常に回転移動している場
合には湯面近傍の特定部分を安定して加熱、保温するこ
とは非常に困難である。
As another method of preventing surface defects, a method of heating or keeping a part of a mold near the molten metal surface to suppress solidification of steel near the molten metal surface, that is, a so-called under-solidification technology has been considered. . However, heat-insulating materials such as a mold heating technique and ceramics used in this method have not been sufficiently developed, and practical use at the present stage involves difficulties. In addition, when a mold such as a belt-type continuous casting machine is constantly rotating, it is very difficult to stably heat and maintain a specific portion near the molten metal surface.

【0007】そこで本発明は、かかる上記ベルト式連続
鋳造機において鋼を鋳造する際に起こる鋳片表面欠陥を
発生させず、かつ安定した操業を確保できるベルト式連
続鋳造方法を確立することを課題とするものである。
Accordingly, an object of the present invention is to establish a belt-type continuous casting method that does not generate a slab surface defect that occurs when casting steel in the above-described belt-type continuous casting machine and that can ensure stable operation. It is assumed that.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するため、下記のベルト式連続鋳造機の鋳造方法を提
供するものである。ベルト式連続鋳造機において、鋼を
連続して鋳造するに際し、鋳型によって保持されている
溶鋼の、表面から50mmの範囲内の深さにある溶鋼の流
速を、流速測定器を用いて測定するとともに、タンディ
ッシュ内溶鋼温度を測定し、測定結果を基に溶鋼流速u
(mm/s)と溶鋼過熱度ΔT(℃)との関係を、 (8800/ΔT)≦u0.8 ≦(19000/ΔT) に保持することを特徴とするベルト式連続鋳造方法。こ
こで流速測定は、流動抵抗を測定するような測定器など
を使用する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides the following casting method for a belt type continuous casting machine. In a belt-type continuous casting machine, when continuously casting steel, while measuring the flow velocity of the molten steel at a depth within 50 mm from the surface of the molten steel held by the mold using a flow velocity measuring device. , The temperature of the molten steel in the tundish is measured, and the molten steel flow rate u
A belt-type continuous casting method characterized by maintaining the relationship between (mm / s) and the degree of superheat of molten steel ΔT (° C.) as follows: (8800 / ΔT) ≦ u 0.8 ≦ (19000 / ΔT). Here, the flow velocity measurement uses a measuring instrument or the like that measures the flow resistance.

【0009】なお本発明は通常連続鋳造機にも適用可能
であるが、通常連続鋳造機では溶鋼表面保温のためパウ
ダーを使用しており、湯面の溶鋼流速が早い場合、パウ
ダーが溶鋼中に巻き込まれることによりかえって鋳片品
質が劣化したり、パウダー層の厚みが不安定になりパウ
ダー層の薄くなった部分で表面保温の効果を喪失し、デ
ッケルを発生させたりする。したがって、本発明を通常
連続鋳造機に採用することは、現状では困難を伴う。
Although the present invention can be applied to a continuous casting machine, a powder is generally used in the continuous casting machine to keep the surface of the molten steel warm. The entanglement rather deteriorates the quality of the cast slab, makes the thickness of the powder layer unstable, loses the effect of keeping the surface warm in the thinned portion of the powder layer, and generates deckle. Therefore, it is difficult at present to adopt the present invention in a continuous casting machine.

【0010】[0010]

【作用】本発明者らは、上記鋳片表面欠陥の発生原因
が、湯面の直下で凝固が開始するため、湯面変動の影響
を受けたり、湯面に浮上している酸化物等を巻き込むと
いう事実を基に、表面欠陥を防止するために、湯面近傍
の溶鋼流動に着目し、種々の溶鋼流速によりベルト式連
続鋳造機での鋳造実験およびオフラインでの実験とそれ
らの解析、検討とを行った。
The inventors of the present invention have found that the cause of the above-mentioned slab surface defects is that solidification starts immediately below the molten metal surface, so that the influence of fluctuations in the molten metal surface, oxides floating on the molten metal surface, and the like. In order to prevent surface defects based on the fact that it is involved, we focus on the molten steel flow near the molten metal surface, casting experiments with a belt-type continuous caster and off-line experiments with various molten steel velocities and their analysis and examination And went.

【0011】その結果、ベルト式連続鋳造機において、
鋼を連続して鋳造するに際し、鋳型によって保持されて
いる溶鋼の、表面から50mmの範囲内の深さにある溶鋼
の流速を、流速測定器を用いて測定するとともに、タン
ディッシュ内溶鋼温度を測定し、測定結果を基に溶鋼流
速u(mm/s)と溶鋼過熱度ΔT(℃)との関係を、 (8800/ΔT)≦u0.8 ≦(19000/ΔT) に保持することで湯面近傍の凝固を起こさせることがな
く、表面欠陥を防止し、良好な鋳片を得ることができる
とともに、安定した操業が可能であることを知見した。
このとき、湯面近傍の溶鋼流速の与え方は、ノズルから
の注入流による流動、電磁攪拌など電磁力による流動な
どがある。
As a result, in the belt type continuous casting machine,
During continuous casting of steel, the flow velocity of molten steel at a depth within 50 mm from the surface of the molten steel held by the mold is measured using a flow rate measuring device, and the molten steel temperature in the tundish is measured. Measure and based on the measurement result, maintain the relationship between the molten steel flow rate u (mm / s) and the superheat degree of molten steel ΔT (° C.) at (8800 / ΔT) ≦ u 0.8 ≦ (19000 / ΔT). It has been found that, without causing solidification in the vicinity, surface defects can be prevented, good cast pieces can be obtained, and stable operation is possible.
At this time, the flow rate of the molten steel in the vicinity of the molten metal surface is given by a flow caused by an injection flow from a nozzle or a flow caused by an electromagnetic force such as electromagnetic stirring.

【0012】次に本発明の考え方について述べる。凝固
は鋳型すなわち本発明の場合ベルトから溶鋼が抜熱され
ることによって起こる。図1は溶鋼3−凝固殻2間およ
びベルト1−凝固殻2間の熱移動を模式的に示した図で
ある。図1と図2とに示すように、凝固殻2が生成し成
長するかしないかは、符号6に示す溶鋼3から凝固殻2
への熱流束(Q1 )と符号7で示す凝固殻2からベルト
1への熱流束(Q2 )との関係で決まる。すなわちQ1
<Q2 のとき凝固殻は成長し凝固が進行するのに対し
て、Q1 >Q2 のとき凝固殻は成長せず凝固が進行しな
い。したがって、湯面4からある深さの範囲にわたっ
て、Q1 >Q2 なる熱条件を実現すればその範囲での凝
固は起こらない。
Next, the concept of the present invention will be described. Solidification occurs due to the heat removal of the molten steel from the mold, in the case of the present invention, the belt. FIG. 1 is a diagram schematically showing heat transfer between molten steel 3 and solidified shell 2 and between belt 1 and solidified shell 2. As shown in FIG. 1 and FIG. 2, whether or not the solidified shell 2 is formed and grows is determined from the molten steel 3 indicated by reference numeral 6.
Is determined by the relationship between the heat flux (Q 1 ) and the heat flux (Q 2 ) from the solidified shell 2 to the belt 1 indicated by reference numeral 7. That is, Q 1
When <Q 2, the solidified shell grows and solidification proceeds, whereas when Q 1 > Q 2 , the solidified shell does not grow and solidification does not progress. Therefore, if a thermal condition of Q 1 > Q 2 is realized over a range of a certain depth from the molten metal surface 4, no solidification occurs in that range.

【0013】湯面近傍での凝固殻からベルトへの熱流束
2 は約600万kcal/m2 hrであるのに対して、溶鋼か
ら凝固殻への熱流束Q1 は溶鋼流速によって異なる。溶
鋼流速が大きくなるに従って熱流束Q1 は大きくなる。
ある大きさ以上の溶鋼流速を与え、Q1 >Q2 となる条
件を達成すれば湯面近傍での凝固は起こらない。本発明
者らは種々の溶鋼流速を変化させた凝固実験を行い、溶
鋼流速と熱流束Q1 との関係を明らかにした。その結
果、例えば溶鋼過熱度ΔT=20℃のとき、溶鋼流速が
560mm/s以上ならば、上記Q1 >Q2 なる条件を達成
できることを知見した。
The heat flux Q 2 from the solidified shell to the belt near the molten metal surface is about 6 million kcal / m 2 hr, whereas the heat flux Q 1 from the molten steel to the solidified shell varies depending on the flow rate of the molten steel. Heat flux Q 1 according to the molten steel flow speed increases increases.
If a molten steel flow velocity of a certain size or more is given and the condition of Q 1 > Q 2 is achieved, solidification near the molten metal surface does not occur. The present inventors have carried out solidification experiments with varying various molten steel flow speed, it revealed the relationship between the molten steel flow velocity and heat flux Q 1. As a result, it has been found that, for example, when the molten steel superheat degree ΔT is 20 ° C. and the molten steel flow rate is 560 mm / s or more, the above condition of Q 1 > Q 2 can be achieved.

【0014】なお、湯面近傍の溶鋼流速を変化させる態
様としては、例えば図3に示すように、金属ベルト1及
び短辺ブロック群8で形成される鋳型に浸漬ノズル9に
より溶鋼を注入して注入流10を生じさせる場合に、前
記ノズルの注入角度を変えて溶鋼流速を変化せしめる
か、或いは図4に示す如く、ベルトに近接した電磁コイ
ル11を設置して電磁攪拌操作を行うに際し、電磁力の
変更により溶鋼流速を変化させるようにしてもよい。
In order to change the flow speed of molten steel near the molten metal surface, for example, as shown in FIG. 3, molten steel is injected into a mold formed by the metal belt 1 and the short side block group 8 by the immersion nozzle 9. When the injection flow 10 is generated, the injection angle of the nozzle is changed to change the flow speed of the molten steel, or as shown in FIG. 4, an electromagnetic coil 11 is installed near the belt to perform the electromagnetic stirring operation. The molten steel flow velocity may be changed by changing the force.

【0015】しかしながら、溶鋼流速が大きくなり過
ぎ、1470mm/s以上になると、凝固殻がない状態で、
溶鋼からベルトへ直接熱が移動し、その熱流束が大きく
なり過ぎると、ベルトが熱的に損傷するという障害が発
生することも知見した。したがって、必要な溶鋼流速に
はある範囲が存在することが判明した。
However, when the flow rate of the molten steel becomes too large and becomes 1470 mm / s or more, there is no solidified shell,
It has also been found that when heat is transferred directly from the molten steel to the belt and the heat flux becomes too large, an obstacle occurs such that the belt is thermally damaged. Therefore, it was found that the required molten steel flow velocity had a certain range.

【0016】さらに、溶鋼過熱度ΔTを変化させて実験
を行い、溶鋼流速u(mm/s)と溶鋼過熱度ΔT(℃)と
の関係を、 (8800/ΔT)≦u0.8 ≦(19000/ΔT) に保持することで良好な鋳片表面性状を得るとともに、
安定した操業をも達成できることを明らかとした。図5
はこの本発明における領域を溶鋼過熱度ΔTと溶鋼流速
uとの関係で示したものであり、斜線部が本発明の請求
項に示す範囲領域である。
Further, an experiment was conducted by changing the superheat degree ΔT of the molten steel, and the relationship between the flow rate u (mm / s) of the molten steel and the superheat degree ΔT (° C.) of the molten steel was calculated as follows: (8800 / ΔT) ≦ u 0.8 ≦ (19000 / ΔT) to obtain good slab surface properties,
It was clarified that stable operation could be achieved. FIG.
Indicates the region in the present invention by the relationship between the degree of superheat of molten steel ΔT and the flow rate u of molten steel, and the hatched portion is the range region shown in the claims of the present invention.

【0017】溶鋼流速u(mm/s)と溶鋼過熱度ΔT
(℃)との関係を、 (8800/ΔT)≦u0.8 ≦(19000/ΔT) に保持する湯面からの範囲については次のように考えら
れる。通常連続鋳造において、鋳造速度2m/min で鋳造
する際、溶鋼表面に堆積している介在物は湯面から5mm
以内に集中している。ベルト式連続鋳造機においては、
鋳造速度20m/min までと通常連続鋳造機の10倍の速
度で鋳造するため、溶鋼表面に集中する介在物は湯面か
ら50mm以内にまで拡大する。よって、溶鋼流速u(mm
/s)と溶鋼過熱度ΔT(℃)との関係を、 (8800/ΔT)≦u0.8 ≦(19000/ΔT) に保持する湯面からの範囲は、湯面から50mmまでの範
囲を確保することが必要である。
Molten steel flow rate u (mm / s) and molten steel superheat ΔT
(8800 / ΔT) ≦ u 0.8 ≦ (19000 / ΔT) The relationship from the molten metal surface is considered as follows. In normal continuous casting, when casting at a casting speed of 2 m / min, inclusions deposited on the surface of molten steel are 5 mm from the molten metal surface.
Within. In belt type continuous casting machines,
Since casting is performed at a casting speed of 20 m / min and a speed 10 times that of a normal continuous casting machine, inclusions concentrated on the molten steel surface expand to within 50 mm from the molten metal surface. Therefore, the molten steel flow rate u (mm
/ s) and the degree of superheat ΔT (° C.) of the molten steel are set to be (8800 / ΔT) ≦ u 0.8 ≦ (19000 / ΔT). It is necessary.

【0018】[0018]

【実施例】図3に示すように、注入ノズルを用いて注入
流の角度を変化させることにより、湯面近傍の溶鋼流速
を変化させ下記の鋳造条件でベルト式連続鋳造機により
鋳造実験を行った。
EXAMPLE As shown in FIG. 3, by changing the angle of the injection flow using an injection nozzle, the flow rate of molten steel near the molten metal surface was changed, and a casting experiment was performed by a belt type continuous casting machine under the following casting conditions. Was.

【0019】(実施例1) 連続鋳造条件 鋼種、鋳造条件、溶鋼過熱度及び注入流角度、湯面から
一定深さの流速は表1に示す通りである。
(Example 1) Continuous casting conditions Steel type, casting conditions, degree of superheat of molten steel, injection flow angle, and flow velocity at a certain depth from the molten metal surface are as shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】鋳造結果 上記の条件による鋳造の結果、各溶鋼流速時における表
面欠陥指標、ベルト損傷状態は表2に示す通りである。
なお、表2に示す表面欠陥指標は、スラブ単位面積あた
りの湯皺、スカム巻込み数を表している。表2から本発
明が表面欠陥が少なくかつベルト損傷も全く認められな
かったことが分かる。
Casting Results As a result of casting under the above conditions, the surface defect index and belt damage at each molten steel flow rate are as shown in Table 2.
The surface defect index shown in Table 2 indicates the number of hot wrinkles and the number of scum involved per unit area of the slab. It can be seen from Table 2 that the present invention had few surface defects and no belt damage was observed.

【0022】[0022]

【表2】 [Table 2]

【0023】(実施例2) 連続鋳造条件 実施例1と同一の鋼種、サイズ、鋳造速度で、溶鋼過熱
度、注入流角度を変えて鋳造を行った(表3参照)。
(Example 2) Continuous casting conditions Casting was carried out at the same steel type, size and casting speed as in Example 1 while changing the degree of superheat of molten steel and the angle of injection flow (see Table 3).

【0024】[0024]

【表3】 [Table 3]

【0025】鋳造結果 上記の条件による鋳造の結果を表4に示す。表4から本
発明が表面欠陥が少なくかつベルト損傷も全く認められ
なかったことが分かる。
Casting Results Table 4 shows the results of casting under the above conditions. Table 4 shows that the present invention had few surface defects and no belt damage was observed.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】本発明は、上記したように、ベルト式連
続鋳造機を用いて連続鋳造する際、鋳片に発生する表面
欠陥を防止することで、得られる鋳片の品質を向上し、
かつ安定した操業を可能にしたことで、当業分野にもた
らす効果は大きい。
As described above, the present invention improves the quality of the obtained slab by preventing surface defects occurring in the slab when performing continuous casting using a belt type continuous casting machine.
The fact that it has enabled stable operations has a great effect on the business field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ベルト式連続鋳造機の湯面近傍での熱流束を示
す図である。
FIG. 1 is a diagram showing a heat flux in the vicinity of a molten metal surface of a belt type continuous casting machine.

【図2】溶鋼から凝固殻への熱流束(Q1 )と凝固殻か
らベルトへの熱流束(Q2 )との関係とを示すと同時
に、溶鋼流速と溶鋼から凝固殻への熱流束(Q1 )とを
示す図である。
FIG. 2 shows the relationship between the heat flux from the molten steel to the solidified shell (Q 1 ) and the heat flux from the solidified shell to the belt (Q 2 ), as well as the flow rate of the molten steel and the heat flux from the molten steel to the solidified shell (Q 1 ). Q 1 ).

【図3】湯面近傍の溶鋼流速を変化させるため用いた注
入ノズルの注入角度操作を模式的に示す図である。
FIG. 3 is a view schematically showing an injection angle operation of an injection nozzle used for changing a flow rate of molten steel near a molten metal surface.

【図4】湯面近傍の溶鋼流速を変化させるため、電磁攪
拌を利用するときの電磁力を付与方法を示す図である。
FIG. 4 is a diagram showing a method of applying an electromagnetic force when using electromagnetic stirring to change the flow rate of molten steel near the molten metal surface.

【図5】本発明の領域をΔTとuとで示した図である。FIG. 5 is a diagram showing an area of the present invention by ΔT and u.

【符号の説明】[Explanation of symbols]

1 金属ベルト 2 凝固殻 3 溶鋼 4 湯面 5 湯面溶鋼流動 6 溶鋼から凝固殻への熱流束(Q1 ) 7 凝固殻からベルトへの熱流束(Q2 ) 8 短辺ブロック群 9 ノズル 10 注入流 11 電磁コイルREFERENCE SIGNS LIST 1 metal belt 2 solidified shell 3 molten steel 4 molten surface 5 molten surface molten steel flow 6 heat flux from molten steel to solidified shell (Q 1 ) 7 heat flux from solidified shell to belt (Q 2 ) 8 short side block group 9 nozzle 10 Injection flow 11 Electromagnetic coil

フロントページの続き (72)発明者 笠間 昭夫 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社 大分製鐵所内 (56)参考文献 特開 平4−305344(JP,A) 特開 平4−300051(JP,A) 特開 平4−284953(JP,A) 特開 平3−207556(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 11/06 340 B22D 11/18 Continuation of the front page (72) Inventor Akio Kasama 1 Nishinosu, Oita, Oita, Oita Prefecture Nippon Steel Corporation Oita Works (56) References JP-A-4-305344 (JP, A) JP-A-4- 300051 (JP, A) JP-A-4-284953 (JP, A) JP-A-3-207556 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22D 11/06 340 B22D 11/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ベルト式連続鋳造機において、鋼を連続
して鋳造するに際し、鋳型によって保持されている溶鋼
の、表面から50mmの範囲内の深さにある溶鋼の流速
と、タンディッシュ内溶鋼温度を測定し、測定結果を基
に溶鋼流速u(mm/s)と溶鋼過熱度ΔT(℃)との関係
を、 (8800/ΔT)≦u0.8 ≦(19000/ΔT) に保持することを特徴とするベルト式連続鋳造方法。
1. A belt-type continuous casting machine, wherein, during continuous casting of steel, the flow rate of molten steel held at a depth within 50 mm from the surface of molten steel held by a mold, and the molten steel in a tundish. The temperature is measured, and based on the measurement result, the relation between the molten steel flow rate u (mm / s) and the molten steel superheat degree ΔT (° C.) is maintained at (8800 / ΔT) ≦ u 0.8 ≦ (19000 / ΔT). Characteristic belt type continuous casting method.
JP4181039A 1992-07-08 1992-07-08 Belt type continuous casting method Expired - Lifetime JP2978335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4181039A JP2978335B2 (en) 1992-07-08 1992-07-08 Belt type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4181039A JP2978335B2 (en) 1992-07-08 1992-07-08 Belt type continuous casting method

Publications (2)

Publication Number Publication Date
JPH0623497A JPH0623497A (en) 1994-02-01
JP2978335B2 true JP2978335B2 (en) 1999-11-15

Family

ID=16093699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4181039A Expired - Lifetime JP2978335B2 (en) 1992-07-08 1992-07-08 Belt type continuous casting method

Country Status (1)

Country Link
JP (1) JP2978335B2 (en)

Also Published As

Publication number Publication date
JPH0623497A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
US8016021B2 (en) Casting steel strip with low surface roughness and low porosity
NZ286348A (en) Continuous casting of metal: casting surface contains fine ridges
EP0679114B1 (en) Casting stainless steel strip on surface with specified roughness
JP3058185B2 (en) Austenitic stainless steel continuous cast slab
EP0605094B1 (en) Contained quench system for controlled cooling of continuous web
JP2978335B2 (en) Belt type continuous casting method
JPS62259644A (en) Method and apparatus for producing rapidly cooled sheet metal having excellent end face
JP3089608B2 (en) Continuous casting method of beam blank
EP0174765B1 (en) Method and apparatus for continuous casting of crystalline strip
EP0174767B1 (en) Method and apparatus for direct casting of crystalline strip by radiantly cooling
JP2913829B2 (en) Steel continuous casting method
EP0174766B1 (en) Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere
JP2003290896A (en) Method for producing continuously cast slab
EP0594951A1 (en) Tundish outlet edge seal and riser for continuous casting apparatus and method
JP2662467B2 (en) Injection method of belt type continuous casting
JP2825988B2 (en) Method of preventing longitudinal cracks in continuous casting of thin cast slab
JPH06339752A (en) Twin roll continuous caster and continuous casting method
JPH04284953A (en) Belt type continuous casting method
JPH01127147A (en) Method for casting molten metal
JP3098699B2 (en) Supply method of molten alloy for manufacturing amorphous alloy ribbon and stopper for controlling supply amount
JP3238781B2 (en) Stable casting method for metal strip
EP0342020A2 (en) Method and apparatus for continuous strip casting
JPH07116783A (en) Mold for continuous casting and cooling method of cast slab using it
JPH0824998A (en) Belt type continuous casting method
JPH01237055A (en) Method for continuously casting strip

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817