JP2976777B2 - Austenitic heat-resistant cast steel - Google Patents

Austenitic heat-resistant cast steel

Info

Publication number
JP2976777B2
JP2976777B2 JP5259836A JP25983693A JP2976777B2 JP 2976777 B2 JP2976777 B2 JP 2976777B2 JP 5259836 A JP5259836 A JP 5259836A JP 25983693 A JP25983693 A JP 25983693A JP 2976777 B2 JP2976777 B2 JP 2976777B2
Authority
JP
Japan
Prior art keywords
cast steel
machinability
heat
resistant
austenitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5259836A
Other languages
Japanese (ja)
Other versions
JPH07113143A (en
Inventor
喜和 弦間
正実 鈴木
治己 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5259836A priority Critical patent/JP2976777B2/en
Publication of JPH07113143A publication Critical patent/JPH07113143A/en
Application granted granted Critical
Publication of JP2976777B2 publication Critical patent/JP2976777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はオーステナイト系耐熱鋳
鋼に関する。本発明の耐熱鋳鋼は自動車エンジン用排気
系部品等に利用して好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic heat-resistant cast steel. The heat-resistant cast steel of the present invention is suitable for use in exhaust system parts for automobile engines and the like.

【0002】[0002]

【従来の技術】近年、自動車エンジンの出力向上、及び
低燃費化の動向に伴い、自動車エンジン用排気系部品の
耐熱性を向上させる要求が非常に大きい。現在、自動車
エンジン用排気系部品にフェライト系耐熱鋳鋼を用いる
のが主流であるが、フェライト系耐熱鋳鋼の高温強度の
向上を図ることは限界に達しつつある。このため、高温
強度の向上がさらに期待できるオーステナイト系耐熱鋳
鋼の開発が望まれる。
2. Description of the Related Art In recent years, with the trend of increasing the output of automobile engines and reducing fuel consumption, there is a great demand for improving the heat resistance of exhaust system parts for automobile engines. At present, heat-resistant ferritic cast steel is mainly used for exhaust parts for automobile engines, but improvement of high-temperature strength of heat-resistant ferritic cast steel is reaching its limit. For this reason, development of an austenitic heat-resistant cast steel in which improvement in high-temperature strength can be further expected is desired.

【0003】このようなオーステナイト系耐熱鋳鋼とし
て、例えば特開昭62−260044号公報には、重量
比率にて、C:0.3〜2.0%、Si:2.0%以
下、Mn:1〜6%、P:0.05%以下、S:0.0
5%以下、Cr:13〜27%、Ni:5〜14%、M
o:0.5〜3%、Nb:0.5〜3%、及び残部Fe
からなるものが開示されている。
As such an austenitic heat-resistant cast steel, for example, Japanese Patent Application Laid-Open No. 62-004444 discloses that, by weight, C: 0.3 to 2.0%, Si: 2.0% or less, Mn: 1 to 6%, P: 0.05% or less, S: 0.0
5% or less, Cr: 13 to 27%, Ni: 5 to 14%, M
o: 0.5 to 3%, Nb: 0.5 to 3%, and the balance Fe
Are disclosed.

【0004】上記オーステナイト系耐熱鋳鋼は、高温、
具体的には700℃以上での強度、及び鋳造性、特に湯
流れ性の双方の要求を満たすものである。しかし、高
温、とくに900℃以上でのさらなる強度向上が望まれ
る。また、オーステナイト系耐熱鋳鋼は、フェライト系
耐熱鋳鋼に比べて、高温強度や耐酸化性に優れる反面、
被削性に劣る。オーステナイト系鋳鋼が被削性に劣るの
は、一般に靱性を向上させるNi等を多量に含むためと
と考えられる。
[0004] The heat-resistant austenitic cast steel has a high temperature,
More specifically, it satisfies both requirements of strength at 700 ° C. or higher and castability, particularly hot water flowability. However, further improvement in strength at high temperatures, especially at 900 ° C. or higher, is desired. Austenitic heat-resistant cast steel is superior in high-temperature strength and oxidation resistance to ferritic heat-resistant cast steel.
Poor machinability. It is considered that the austenitic cast steel is inferior in machinability because it generally contains a large amount of Ni or the like that improves toughness.

【0005】そこで、本出願人は高温強度をさらに高
め、かつ、被削性を向上させたオーステナイト系耐熱鋳
鋼を開発し、先に出願している(特開平4−35015
0号公報)。このオーステナイト系耐熱鋳鋼は、重量比
率にて、C:0.2〜0.4%、Si:1.5〜2.5
%、Mn:0.09〜5.0%、P:0.05%以下、
S:0.03〜0.5%、Cr:16〜18%、Ni:
13〜15%、N:0.05〜0.15%、及びNb:
0.3〜0.7%を含み、残部Feからなるもので、N
の特定量の添加により高温強度が向上され、かつ、Mn
及びSの特定量の添加により被削性が向上されている。
また、高温強度をさらに向上させる目的で、上記組成に
さらにMo:1.0〜3.0%添加したものも開示され
ている。
Accordingly, the present applicant has developed a heat-resistant, austenitic cast steel with further improved high-temperature strength and improved machinability, and has filed an application for the same (Japanese Patent Application Laid-Open No. Hei 4-35015).
No. 0). This austenitic heat-resistant cast steel has a weight ratio of C: 0.2 to 0.4% and Si: 1.5 to 2.5%.
%, Mn: 0.09 to 5.0%, P: 0.05% or less,
S: 0.03 to 0.5%, Cr: 16 to 18%, Ni:
13-15%, N: 0.05-0.15%, and Nb:
Containing 0.3 to 0.7% with the balance being Fe
At a high temperature by adding a specific amount of
And the addition of specific amounts of S improve machinability.
Also disclosed is a composition in which Mo: 1.0 to 3.0% is further added to the above composition for the purpose of further improving high-temperature strength.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記特開平4
−350150号公報に開示されたオーステナイト系耐
熱鋳鋼は、Moを添加していないものでも、950℃で
の引張り強さが約90MPa以上であり、高温強度を十
分に向上させることができたが、被削性の面で要求性能
を必ずしも満足するものではなく、さらなる被削性向上
が望まれる。
However, the above-mentioned Japanese Patent Application Laid-Open No.
The austenitic heat-resistant cast steel disclosed in -350150 No., even when Mo was not added, had a tensile strength at 950 ° C. of about 90 MPa or more, and could sufficiently improve high-temperature strength. The required performance is not always satisfied in terms of machinability, and further improvement in machinability is desired.

【0007】本発明は、950℃での引張り強さが90
MPa程度以上を確保でき、しかも被削性をさらに向上
させたオーステナイト系耐熱鋳鋼を提供することを解決
すべき技術課題とするものである。
According to the present invention, the tensile strength at 950.degree.
An object of the present invention is to provide an austenitic heat-resistant cast steel that can secure a pressure of about MPa or more and further improves machinability.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記特開平
4−350150号公報に開示されたオーステナイト系
耐熱鋳鋼において、被削性をさらに向上させるべく研究
の結果、NbやMoが塊状の炭化物(NbCやMoC)
となって金属組織中に析出しており、この塊状炭化物が
被削性の向上を妨げていることを解明し、本発明を完成
した。
SUMMARY OF THE INVENTION The present inventor has conducted a study to further improve the machinability of heat-resistant austenitic cast steel disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-350150. Carbide (NbC or MoC)
As a result, it was clarified that the carbides were precipitated in the metallographic structure, and that the massive carbides hindered the improvement of the machinability, thereby completing the present invention.

【0009】すなわち、上記課題を解決する本第1発明
のオーステナイト系耐熱鋳鋼は、重量比率にて、C:
0.2〜0.4%、Si:1.5〜2.5%、Mn:
0.09〜5.0%、P:0.05%以下、S:0.0
3%未満、Cr:16〜18%、Ni:13〜20%、
及びN:0.05〜0.30%を含み、残部不可避不純
物とFeからなることを特徴とするものである。
That is, the heat-resistant austenitic cast steel according to the first aspect of the present invention, which solves the above-mentioned problems, has a weight ratio of C:
0.2-0.4%, Si: 1.5-2.5%, Mn:
0.09 to 5.0%, P: 0.05% or less, S: 0.0
Less than 3%, Cr: 16-18%, Ni: 13-20%,
And N: 0.05 to 0.30%, and the balance consists of Fe and inevitable impurities.

【0010】上記第1発明のオーステナイト系耐熱鋳鋼
における各合金元素の添加量の範囲限定理由について説
明する。なお、以下の説明において各合金元素の添加量
は全て重量%にて表示する。Cは高温強度の向上と鋳造
性の改善に有効であるが、Cの添加量を0.2%未満に
するとその効果が充分でなく、0.4%超過にすると耐
酸化性が悪化する。
The reason for limiting the range of the addition amount of each alloy element in the austenitic heat-resistant cast steel of the first invention will be described. In addition, in the following description, the addition amount of each alloy element is all shown by weight%. C is effective for improving the high-temperature strength and the castability. However, if the addition amount of C is less than 0.2%, the effect is not sufficient, and if it exceeds 0.4%, the oxidation resistance deteriorates.

【0011】Siは耐酸化性と鋳造性の改善に有効であ
るが、Siの添加量を1.5%未満にするとその効果が
充分でなく、2.5%超過にすると靱性が低下する。M
nはオーステナイト地を安定にする効果があるが、Mn
の添加量を0.09%未満にするとそれらの効果が充分
でない。一方、Mnを多量に添加すると粒界に偏析して
脆化を引き起こすため、Mnの添加量の上限は5.0%
とした。MnはSと結合してMnSとなり被削性を改善
する効果があるが、本第1発明のオーステナイト系鋳鋼
においては、Sの添加量が0.03%未満と少量である
ためMnSが析出しない。
Although Si is effective in improving oxidation resistance and castability, its effect is not sufficient if the amount of Si is less than 1.5%, and if it exceeds 2.5%, the toughness decreases. M
n has the effect of stabilizing the austenitic ground, but Mn
Is less than 0.09%, their effects are not sufficient. On the other hand, if a large amount of Mn is added, it segregates at the grain boundaries and causes embrittlement, so the upper limit of the amount of Mn added is 5.0%.
And Mn combines with S to form MnS and has an effect of improving machinability. However, in the austenitic cast steel of the first invention, MnS does not precipitate because the addition amount of S is as small as less than 0.03%. .

【0012】Pを多量に添加すると加熱、冷却の繰り返
しによる熱劣化が発生しやすくなり、更に靱性も低下す
るため、Pの添加量の上限は0.05%とした。Sは不
純物元素として考えて0.03%未満とした。Crは耐
酸化性、高温強度の向上に有効であるが、Crの添加量
を16%未満にするとその効果が充分でない。一方、C
rを多量に添加すると、Crがフェライト地を安定にさ
せる性質をもつので、オーステナイト地を不安定にし、
更にσ相の析出により脆化を引き起こす。このため、C
rの添加量の上限は18%とした。
If a large amount of P is added, thermal deterioration due to repeated heating and cooling is likely to occur, and the toughness is further reduced. Therefore, the upper limit of the amount of P added is set to 0.05%. S was considered as an impurity element and was set to less than 0.03%. Cr is effective in improving oxidation resistance and high-temperature strength, but its effect is not sufficient if the added amount of Cr is less than 16%. On the other hand, C
When a large amount of r is added, Cr has a property of stabilizing the ferrite ground, so that the austenite ground becomes unstable,
Further, embrittlement is caused by precipitation of the σ phase. Therefore, C
The upper limit of the amount of r added was 18%.

【0013】NiはCrと共存することにより耐酸化
性、高温強度の向上に寄与し、またオーステナイト地を
安定にし、さらには切削時に生じる加工誘起マルテンサ
イトの形成を阻止して被削性の向上に寄与するが、Ni
の添加量を13%未満にするとその効果が充分でない。
一方、Niを多量に添加すると、鋳造性が悪化しコスト
アップにもなるので、Niの添加量の上限は20%とし
た。
Ni contributes to the improvement of oxidation resistance and high-temperature strength by coexisting with Cr, stabilizes austenite ground, and prevents the formation of work-induced martensite generated during cutting, thereby improving machinability. , But Ni
Is less than 13%, the effect is not sufficient.
On the other hand, if a large amount of Ni is added, the castability deteriorates and the cost increases, so the upper limit of the amount of Ni added was set to 20%.

【0014】Nは高温強度の向上に寄与し、またオース
テナイト地を安定にし、さらには切削時に生じる加工誘
起マルテンサイトの形成を阻止して被削性の向上に寄与
するが、Nの添加量を0.05%未満にするとその効果
が充分でなく、0.30%超過にすると鋳造性に対して
悪影響を与える。上記課題を解決する本第2発明のオー
ステナイト系耐熱鋳鋼は、重量比率にて、C:0.2〜
0.4%、Si:1.5〜2.5%、Mn:0.09〜
5.0%、P:0.05%以下、S:0.03〜0.5
0%、Cr:16〜18%、Ni:13〜20%、及び
N:0.05〜0.30%を含み、残部不可避不純物と
Feからなることを特徴とするものである。
N contributes to the improvement of the high-temperature strength, stabilizes the austenite ground, and further prevents the formation of work-induced martensite generated during cutting, thereby contributing to the improvement of machinability. If it is less than 0.05%, the effect is not sufficient, and if it exceeds 0.30%, the castability is adversely affected. The heat-resistant, austenitic cast steel according to the second aspect of the present invention, which solves the above-mentioned problems, has a C: 0.2 to
0.4%, Si: 1.5 to 2.5%, Mn: 0.09 to
5.0%, P: 0.05% or less, S: 0.03 to 0.5
It contains 0%, Cr: 16 to 18%, Ni: 13 to 20%, and N: 0.05 to 0.30%, and is characterized by being composed of Fe and inevitable impurities.

【0015】上記第2発明のオーステナイト系耐熱鋳鋼
における各合金元素の添加量の範囲限定理由について説
明する。C、Si、Mn、P、Cr、Ni、及びNにつ
いては、上記第1発明のオーステナイト系耐熱鋳鋼にお
ける添加量と同様であり、その範囲限定理由も同様であ
る。以下、Sの限定理由を説明する。
The reason for limiting the range of the addition amount of each alloy element in the austenitic heat-resistant cast steel of the second invention will be described. The amounts of C, Si, Mn, P, Cr, Ni, and N are the same as the amounts added in the austenitic heat-resistant cast steel of the first invention, and the reasons for limiting the ranges are also the same. Hereinafter, the reason for limiting S will be described.

【0016】被削性には、MnとSとが結合して鋳鉄中
に存在するMnS化合物が関与する。すなわち、鋳鉄中
にMnS化合物が存在すると被削性が向上し、また鋳鉄
中に存在するMnS化合物の量が多いほど、被削性が向
上する。このように、Sは被削性の向上に有効である
が、Sの添加量を0.03%未満にするとMnと結合し
てMnSとして析出することがほとんどないため被削性
向上の効果が充分でなく、一方0.5%超過にすると、
加熱、冷却の繰り返しによる熱劣化が発生しやすくな
り、更に靱性も低下する。したがって、Sの添加量は
0.03〜0.5%とした。
The machinability involves the MnS compound present in the cast iron by combining Mn and S. That is, when the MnS compound is present in the cast iron, the machinability is improved, and as the amount of the MnS compound present in the cast iron is larger, the machinability is improved. As described above, S is effective in improving machinability, but when the addition amount of S is less than 0.03%, it hardly combines with Mn and precipitates as MnS. Not enough, but if it exceeds 0.5%,
Thermal deterioration due to repeated heating and cooling is likely to occur, and toughness is further reduced. Therefore, the addition amount of S is set to 0.03 to 0.5%.

【0017】なお、上記第2発明のオーステナイト系鋳
鋼において、引張り強さを向上させる観点からは、Mn
の添加量をSの添加量の3倍以上にすることが好まし
い。これは、Mnの添加量がSの添加量の3倍より少な
いと、SがMnS化合物にならずに母相中に溶け込み靱
性が低下するためと考えられる。
In the austenitic cast steel according to the second invention, from the viewpoint of improving the tensile strength, Mn
Is preferably three times or more the amount of S added. This is considered to be because if the amount of Mn added is less than three times the amount of S added, S does not become an MnS compound but dissolves in the parent phase and the toughness is reduced.

【0018】[0018]

【発明の作用及び効果】上記構成を有する本第1発明及
び第2発明のオーステナイト系耐熱鋳鋼では、NbやM
oが添加されていないので、金属組織中にNbCやMo
Cの塊状炭化物が析出することがなく、この塊状炭化物
により被削性が低下されることがない。また、Ni及び
Nが特定量添加されることにより、基地のオーステナイ
ト相の安定化により切削時に生じる加工誘起マルテンサ
イトの形成が阻止される。このため、本第1発明及び第
2発明のオーステナイト系耐熱鋳鋼では、被削性を著し
く向上させることができる。
In the austenitic heat-resistant cast steel according to the first and second aspects of the present invention having the above structure, Nb or M
Since o is not added, NbC or Mo
The massive carbide of C does not precipitate, and the machinability is not reduced by the massive carbide. Further, by adding specific amounts of Ni and N, the formation of work-induced martensite which occurs during cutting due to stabilization of the austenite phase of the matrix is prevented. Therefore, in the heat-resistant austenitic cast steels of the first and second inventions, the machinability can be significantly improved.

【0019】また、Ni及びNが特定量添加されること
により、高温強度及び耐酸化性を向上させることがで
き、NbやMoを添加しないことによるこれらの特性低
下を補うことができる。さらに、Sが0.03〜0.5
0%添加された本第2発明のオーステナイト系耐熱鋳鋼
では、SとMnとの結合によりMnSが析出しているの
で、被削性をさらに向上させることができる。
Further, by adding Ni and N in specific amounts, high-temperature strength and oxidation resistance can be improved, and these characteristics can be compensated for by not adding Nb or Mo. Furthermore, S is 0.03-0.5.
In the austenitic heat-resistant cast steel of the second invention to which 0% is added, MnS is precipitated by the bond between S and Mn, so that the machinability can be further improved.

【0020】したがって、本第1発明及び第2発明のオ
ーステナイト系耐熱鋳鋼は、耐熱性の必要な自動車の排
気系部品等の薄肉化を可能とし、燃費向上及び動力性能
の向上に寄与するとともに、機械加工の高能率化、及び
工具の耐久性向上に寄与することができる。
Therefore, the heat-resistant austenitic cast steel according to the first and second aspects of the present invention makes it possible to reduce the thickness of automobile exhaust system parts and the like that require heat resistance, and contributes to improvement of fuel efficiency and power performance. It can contribute to higher efficiency of machining and improvement of tool durability.

【0021】[0021]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表1に示すように、本発明の請求項1記載
のオーステナイト耐熱鋳鋼に係る組成をもつ耐熱鋳鋼の
各試材を鋳造により得た。この鋳造は、50kg高周波
溶解炉を用いて大気溶解を行い、Fe−Si(75重量
%)により脱酸処理した後、1550℃で鋳型に注湯す
ることにより行った。
Embodiments of the present invention will be described below. (Example 1) As shown in Table 1, each test material of heat-resistant cast steel having a composition according to claim 1 of the present invention was obtained by casting. This casting was performed by melting in the air using a 50 kg high frequency melting furnace, deoxidizing with Fe-Si (75% by weight), and pouring the mold at 1550 ° C.

【0022】[0022]

【表1】 (実施例2)表2に示すように、本発明の請求項2記載
のオーステナイト耐熱鋳鋼に係る組成をもつ耐熱鋳鋼の
各試材を上記実施例1と同様にして得た。
[Table 1] (Example 2) As shown in Table 2, each test piece of heat-resistant cast steel having a composition according to claim 2 of the present invention was obtained in the same manner as in Example 1.

【0023】[0023]

【表2】 (比較例)表3に示す組成の比較例としての耐熱鋳鋼の
各試材を上記実施例1と同様にして得た。なお、比較材
11はフェライト系耐熱鋳鋼の一般材(SCH1;JI
SG 5122に規格)であり、比較材12はオーステ
ナイト系耐熱鋳鋼の一般材(HK40;ASTM A2
97に規格)である。
[Table 2] (Comparative Example) Test samples of heat-resistant cast steel as comparative examples having the compositions shown in Table 3 were obtained in the same manner as in Example 1 above. The comparative material 11 is a general material (SCH1; JI) made of heat-resistant ferritic cast steel.
SG 5122), and the comparative material 12 is a general material (HK40; ASTM A2) of austenitic heat-resistant cast steel.
97 standard).

【0024】[0024]

【表3】 (被削性の評価)上記実施例1、2、及び比較例に係る
各試材の被削性について評価した。これは、各試材につ
いて、切削速度:100m/min、送り量:0.2m
m/rev、切り込み:1.5mm、トータル切削長
さ:1000mの切削条件で被削性(連続旋削)試験を
行い、刃具摩耗量を調べて行った。この結果を図1に示
す。
[Table 3] (Evaluation of Machinability) The machinability of each of the test materials according to Examples 1 and 2 and Comparative Example was evaluated. This means that for each test material, cutting speed: 100 m / min, feed rate: 0.2 m
A machinability (continuous turning) test was performed under cutting conditions of m / rev, a depth of cut: 1.5 mm, and a total cutting length: 1000 m, and the wear amount of the cutting tool was examined. The result is shown in FIG.

【0025】図1からも明らかなように、本実施例1に
係る本発明材No.1〜4は、快削元素としてのSが
0.03%未満添加されているにすぎないが、快削元素
としてのSが0.03〜0.10%添加された比較例に
係る比較材No.8〜10と同等の被削性を有してい
る。ここで、本実施例1に係る本発明材No.1の金属
組織を示す光学顕微鏡写真(400倍)、及び比較例に
係る比較材No.10の金属組織を示す光学顕微鏡写真
(400倍)を、それぞれ図2及び図3に示す。これら
の図からも明らかなように、比較材No.10において
は、硬質な塊状炭化物としてのNbCやMoCの析出が
観察されたのに対して、本発明材No.1においては、
粒状の炭化物としてのCr7 3 のみが観察された。こ
れにより、本発明材の被削性向上に対して、炭化物の形
態が大きく寄与していることが明確となった。すなわ
ち、本発明材は、炭化物形成元素であるMoやNbを添
加していないので、硬質な塊状炭化物が析出せず、これ
により被削性を著しく向上させることができた。
As is apparent from FIG. Comparative materials according to Comparative Examples 1 to 4 were only added with less than 0.03% of S as a free-cutting element, but contained 0.03 to 0.10% of S as a free-cutting element. No. It has machinability equivalent to 8-10. Here, the material No. of the present invention according to the first embodiment. Optical micrograph (× 400) showing the metal structure of Comparative Example No. 1 and Comparative Material No. 1 according to Comparative Example. Optical micrographs (× 400) showing the metallographic structures of No. 10 are shown in FIGS. 2 and 3, respectively. As is clear from these figures, the comparative material No. In No. 10, NbC and MoC were precipitated as hard massive carbides. In 1,
Only Cr 7 C 3 as granular carbide was observed. Thereby, it became clear that the form of the carbide greatly contributed to the improvement of the machinability of the material of the present invention. That is, since the material of the present invention did not contain the carbide-forming elements Mo and Nb, hard massive carbides did not precipitate, thereby significantly improving machinability.

【0026】また、本実施例1に係る本発明材No.1
〜4に対して、快削元素としてのSを添加した本実施例
2に係る本発明材No.5〜7は、本発明材No.1〜
4、及び比較材No.8〜10と比べて被削性が著しく
向上した。ここで、本実施例2に係る本発明材No.6
の金属組織を示す光学顕微鏡写真(400倍)を、図4
に示す。図4からも明らかなように、本発明材No.6
においては、粒状の炭化物としてのCr7 3 と、Mn
Sの析出とが観察された。これにより、MnSによる被
削性向上の効果が確認された。
Further, according to the present invention material No. 1
Inventive material No. 1 according to Example 2 in which S was added as a free-cutting element to Nos. Nos. 5 to 7 are materials of the present invention. 1 to
4 and Comparative Material No. Machinability was remarkably improved as compared with 8 to 10. Here, the material No. 1 of the present invention according to the second embodiment. 6
FIG. 4 shows an optical micrograph (× 400) showing the metal structure of FIG.
Shown in As is clear from FIG. 6
In the above, Cr 7 C 3 as granular carbide and Mn
Precipitation of S was observed. Thereby, the effect of improving machinability by MnS was confirmed.

【0027】(高温強度の評価)本発明材No.1〜
7、及び比較材No.8〜12の各試材について、高温
引張試験を行った。この試験は、JIS Z 2241
の規定に準拠し、950℃の温度で行った。この結果を
図5に示す。図5からも明らかなように、本発明材は9
50℃での引張り強さが90MPa以上であり、比較材
と同等の高温強度を有する。
(Evaluation of High Temperature Strength) 1 to
7 and Comparative Material No. A high-temperature tensile test was performed on each of the test materials 8 to 12. This test is based on JIS Z 2241
The test was performed at a temperature of 950 ° C. The result is shown in FIG. As is clear from FIG.
The tensile strength at 50 ° C. is 90 MPa or more, and has the same high-temperature strength as the comparative material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明材と比較材の連続旋削試験の結果を示
すグラフである。
FIG. 1 is a graph showing the results of a continuous turning test of a material of the present invention and a comparative material.

【図2】 本発明材No.1の金属組織を示す光学顕微
鏡写真(400倍)である。
FIG. 1 is an optical micrograph (× 400) showing a metal structure of Example 1.

【図3】 比較材No.10の金属組織を示す光学顕微
鏡写真(400倍)である。
FIG. 10 is an optical micrograph (× 400) showing a metal structure of No. 10.

【図4】 本発明材No.6の金属組織を示す光学顕微
鏡写真(400倍)である。
FIG. 6 is an optical micrograph (× 400) showing a metal structure of No. 6.

【図5】 本発明材と比較材の高温引張試験の結果を示
すグラフである。
FIG. 5 is a graph showing the results of a high-temperature tensile test of a material of the present invention and a comparative material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比率にて、C:0.2〜0.4%、
Si:1.5〜2.5%、Mn:0.09〜5.0%、
P:0.05%以下、S:0.03%未満、Cr:16
〜18%、Ni:13〜20%、及びN:0.05〜
0.30%を含み、残部不可避不純物とFeからなるこ
とを特徴とするオーステナイト系耐熱鋳鋼。
C: 0.2 to 0.4% by weight,
Si: 1.5 to 2.5%, Mn: 0.09 to 5.0%,
P: 0.05% or less, S: less than 0.03%, Cr: 16
-18%, Ni: 13-20%, and N: 0.05-
An austenitic heat-resistant cast steel containing 0.30%, the balance being unavoidable impurities and Fe.
【請求項2】 重量比率にて、C:0.2〜0.4%、
Si:1.5〜2.5%、Mn:0.09〜5.0%、
P:0.05%以下、S:0.03〜0.50%、C
r:16〜18%、Ni:13〜20%、及びN:0.
05〜0.30%を含み、残部不可避不純物とFeから
なることを特徴とするオーステナイト系耐熱鋳鋼。
2. C: 0.2 to 0.4% by weight,
Si: 1.5 to 2.5%, Mn: 0.09 to 5.0%,
P: 0.05% or less, S: 0.03 to 0.50%, C
r: 16-18%, Ni: 13-20%, and N: 0.
An austenitic heat-resistant cast steel containing 0.05 to 0.30%, the balance being unavoidable impurities and Fe.
JP5259836A 1993-10-18 1993-10-18 Austenitic heat-resistant cast steel Expired - Lifetime JP2976777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5259836A JP2976777B2 (en) 1993-10-18 1993-10-18 Austenitic heat-resistant cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5259836A JP2976777B2 (en) 1993-10-18 1993-10-18 Austenitic heat-resistant cast steel

Publications (2)

Publication Number Publication Date
JPH07113143A JPH07113143A (en) 1995-05-02
JP2976777B2 true JP2976777B2 (en) 1999-11-10

Family

ID=17339667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5259836A Expired - Lifetime JP2976777B2 (en) 1993-10-18 1993-10-18 Austenitic heat-resistant cast steel

Country Status (1)

Country Link
JP (1) JP2976777B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046591B2 (en) * 2013-03-22 2016-12-21 トヨタ自動車株式会社 Austenitic heat-resistant cast steel
KR101974815B1 (en) * 2017-11-28 2019-05-07 포항공과대학교 산학협력단 Austenitic steel excellent in high temperature strength using reduction of chromium content

Also Published As

Publication number Publication date
JPH07113143A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP3096959B2 (en) Low Mn and low Cr ferrite heat resistant steel with excellent high temperature strength
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
JP2542753B2 (en) Austenitic heat-resistant cast steel exhaust system parts with excellent high-temperature strength
JP2820776B2 (en) Precipitation hardened ferrite-pearlite steel
JPH0813102A (en) Austenitic heat resistant steel excellent in high temperature strength
JPS626634B2 (en)
JP3458971B2 (en) Austenitic heat-resistant cast steel with excellent high-temperature strength and machinability, and exhaust system parts made of it
US5091147A (en) Heat-resistant cast steels
JP2976777B2 (en) Austenitic heat-resistant cast steel
JPH07145444A (en) High strength spheroidal graphite case iron
JP2002167655A (en) Stainless cast steel having excellent heat resistance and machinability
JP2960496B2 (en) Cold tool steel
JP3375001B2 (en) Austenitic heat-resistant cast steel with excellent castability and machinability and exhaust system parts made of it
JPH07228950A (en) Austenitic heat resistant cast steel, excellent in strength at high temperature and machinability, and exhaust system parts made of the same
JP3700977B2 (en) Austenitic heat-resistant cast steel with low cost, good castability, high-temperature strength and oxidation resistance, and exhaust system parts made of it
JPH04308058A (en) Steel having superior wear resistance
JPH06228713A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JPH11323479A (en) Heat resistant cast steel
JPH06228712A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JP3417636B2 (en) Austenitic heat-resistant cast steel with excellent castability and machinability and exhaust system parts made of it
JPH0790502A (en) Austenitic heat resistant cast steel
JP4271311B2 (en) Ferritic heat resistant steel
JPH04193932A (en) Heat resistant alloy for engine valve
JP3639155B2 (en) Heat-resistant cast steel and heat-resistant cast steel parts produced using the same