JP2976694B2 - Method and apparatus for manufacturing artificial lattice film - Google Patents

Method and apparatus for manufacturing artificial lattice film

Info

Publication number
JP2976694B2
JP2976694B2 JP4121041A JP12104192A JP2976694B2 JP 2976694 B2 JP2976694 B2 JP 2976694B2 JP 4121041 A JP4121041 A JP 4121041A JP 12104192 A JP12104192 A JP 12104192A JP 2976694 B2 JP2976694 B2 JP 2976694B2
Authority
JP
Japan
Prior art keywords
substrate
artificial lattice
temperature
film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4121041A
Other languages
Japanese (ja)
Other versions
JPH05295565A (en
Inventor
敦 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4121041A priority Critical patent/JP2976694B2/en
Publication of JPH05295565A publication Critical patent/JPH05295565A/en
Application granted granted Critical
Publication of JP2976694B2 publication Critical patent/JP2976694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は人工格子膜の製造方法お
よびその製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an artificial lattice film and an apparatus for producing the same.

【0002】[0002]

【従来の技術およびその課題】ガラス、シリコンなどの
基板上に、いくつかの物質を原子層オーダーの膜厚制御
を行いながら交互に積層させた人工格子・多層膜の形成
は、(1)ターンテーブルに固定された基板が、該ター
ンテーブルの回転に伴ってスパッタソース上を交互に行
き来する基板回転スパッタリング法や、(2)蒸着源上
に分子線流の開閉を行うシャッタおよび膜厚の制御を行
うための膜厚計を備え、一定位置にある基板上に蒸着を
行う多元蒸着法により行われている。これらの人工格子
・多層膜の形成方法においては、基板温度は常に一定温
度に保たれている。コバルト(Co)と銅(Cu)から
なるCo/Cu人工格子は、磁気抵抗の飽和する磁場が
小さく、かつ磁気抵抗比が大きく(ジャーナル・オブ・
マグネティズム・アンド・マグネティック・マテリアル
ズ,第94巻,L1ページ,1991年)、磁気センサ
や磁気ヘッドとしての応用が考えられる。特に磁気セン
サとして用いる場合には、磁気抵抗の変化量が磁場に対
して直線的に変化すること、ヒステリシスがないことが
望ましい。しかしながらCo/Cu人工格子を上に述べ
た一定温度に保たれた基板上に作製すると、磁気抵抗の
磁場依存性は直線的ではなく、ヒステリシスも大きい。
本発明はこのような従来の課題を解決するためになされ
たもので、Co/Cu人工格子などの2種類の金属より
なる人工格子において、磁気抵抗の磁場依存性が直線的
で、ヒステリシスのない人工格子膜の製造方法およびそ
の製造装置を提供することを目的とする。
2. Description of the Related Art The formation of an artificial lattice / multilayer film in which several substances are alternately stacked on a substrate such as glass or silicon while controlling the film thickness on the order of an atomic layer involves (1) turns. A substrate rotating sputtering method in which a substrate fixed to a table alternately moves on a sputter source with the rotation of the turntable; and (2) a shutter for opening and closing a molecular beam flow on a vapor deposition source and control of film thickness. This is performed by a multi-source evaporation method in which a film thickness gauge for performing the above-mentioned steps is provided, and evaporation is performed on a substrate at a predetermined position. In these methods of forming an artificial lattice / multilayer film, the substrate temperature is always kept at a constant temperature. The Co / Cu artificial lattice made of cobalt (Co) and copper (Cu) has a small magnetic field at which the magnetoresistance is saturated and a large magnetoresistance ratio (Journal of
Magnetics and Magnetic Materials, Vol. 94, L1 page, 1991), and applications to magnetic sensors and magnetic heads are conceivable. In particular, when used as a magnetic sensor, it is desirable that the amount of change in the magnetic resistance changes linearly with respect to the magnetic field and that there is no hysteresis. However, when the Co / Cu artificial lattice is formed on the substrate maintained at the above-mentioned constant temperature, the magnetic field dependence of the magnetic resistance is not linear, and the hysteresis is large.
The present invention has been made to solve such a conventional problem. In an artificial lattice made of two kinds of metals such as a Co / Cu artificial lattice, the magnetic field dependence of the magnetic resistance is linear, and there is no hysteresis. An object of the present invention is to provide a method of manufacturing an artificial lattice film and an apparatus for manufacturing the same.

【0003】[0003]

【課題を解決するための手段】本発明者らは、Co/C
u人工格子の成長条件について検討したところ、ひとつ
の層について、低温での成長と高温での熱処理を行うと
いう工程をすべての層について繰り返すことによって極
めて平坦な界面構造を有する人工格子・多層膜を形成す
ることができ、このようにして作製したCo/Cu人工
格子は、磁気抵抗が磁場に対して直線的に変化し、かつ
ヒステリシスがない、ということを見い出した。
Means for Solving the Problems The present inventors have proposed Co / C
After examining the growth conditions of the u artificial lattice, it was found that an artificial lattice / multilayer film having an extremely flat interface structure was obtained by repeating the process of performing low-temperature growth and high-temperature heat treatment on all layers for one layer. It has been found that the Co / Cu artificial lattice that can be formed and thus produced has a magnetoresistance that changes linearly with the magnetic field and has no hysteresis.

【0004】即ち本発明は、2種類の金属を交互に積層
させ、積層方向に人工的な周期構造を有しめた人工格子
の製造方法において、第1の金属を低温で成長させた後
熱処理を行う工程と、第2の金属を低温で成長させた後
熱処理を行う工程とを交互に繰り返し、2種類の金属を
積層させることを特徴とする人工格子膜の製造方法であ
る。また、その方法に用いられる人工格子膜の製造装置
は、2種類の金属膜の成長に必要な分子線流を発生させ
る機構と、2種類の金属を決められた膜厚で積層する膜
厚制御機構と、金属膜の成長温度に保たれた基板保持機
構と、基板に金属膜の成長温度よりも高い温度を付与す
る基板加熱機構と、基板に金属膜の成長温度よりも低い
温度を付与する基板冷却機構とを備え、前記基板保持機
構と前記基板加熱機構と前記基板冷却機構との間を相互
に基板移動させる搬送機構を備えたことを特徴とする。
That is, the present invention relates to a method of manufacturing an artificial lattice in which two kinds of metals are alternately stacked and has an artificial periodic structure in the stacking direction. This is a method for manufacturing an artificial lattice film, characterized by alternately repeating a step of performing and a step of performing a heat treatment after growing a second metal at a low temperature, and stacking two types of metals. The apparatus for producing an artificial lattice film used in the method includes a mechanism for generating a molecular beam flow necessary for growing two kinds of metal films, and a film thickness control for laminating two kinds of metals at a predetermined film thickness. Mechanism, a substrate holding mechanism maintained at a growth temperature of the metal film, a substrate heating mechanism for applying a temperature higher than the growth temperature of the metal film to the substrate, and applying a temperature lower than the growth temperature of the metal film to the substrate. A substrate cooling mechanism; and a transport mechanism for mutually moving the substrate between the substrate holding mechanism, the substrate heating mechanism, and the substrate cooling mechanism.

【0005】[0005]

【作用】平坦な表面を有する薄膜を形成するためには、
室温程度の低温で金属膜を形成した後、基板温度を上げ
て熱処理を行うことが有効である。基板温度が高い場合
は、被蒸着金属が凝集を起こしやすく、その結果として
凹凸のある表面となってしまうのに対し、基板温度が低
い場合は、結晶粒サイズが小さく、マクロなスケールで
は比較的平坦な表面となるが、これに熱処理を施すと再
結晶化が進み、非常に平坦な表面になる。この方法を人
工格子膜の形成に適用して各層毎に基板温度の上げ下げ
を行い人工格子を作製すると、一定温度の基板上に作製
した場合に比べて、極めて平坦な界面構造を有する人工
格子膜が得られる。例えば、この方法により作製したC
o/Cu人工格子膜は、磁気抵抗が磁場に対して直線的
に変化し、かつヒステリシスがないために磁気センサな
どの磁気抵抗効果素子に適している。
In order to form a thin film having a flat surface,
After forming the metal film at a low temperature of about room temperature, it is effective to perform heat treatment by increasing the substrate temperature. When the substrate temperature is high, the metal to be deposited tends to agglomerate, resulting in an uneven surface.On the other hand, when the substrate temperature is low, the crystal grain size is small. Although a flat surface is obtained, when heat treatment is performed on the surface, recrystallization proceeds, and a very flat surface is obtained. When this method is applied to the formation of an artificial lattice film and the artificial lattice is manufactured by raising and lowering the substrate temperature for each layer, an artificial lattice film having an extremely flat interface structure is produced as compared to the case where the artificial lattice is manufactured on a substrate at a constant temperature. Is obtained. For example, C prepared by this method
The o / Cu artificial lattice film is suitable for a magnetoresistive element such as a magnetic sensor because the magnetoresistance changes linearly with respect to a magnetic field and has no hysteresis.

【0006】しかしながら人工格子膜の形成にあたって
は、原子層オーダーの膜厚で、数十周期の積層が必要で
あり、従来の基板回転スパッタ法や多元蒸着法では、各
層ごとに基板温度を上げ下げしなければならず、これで
は薄膜形成に非常に時間がかかり現実的でない。そこで
2種類の金属膜の成長に必要な分子流を発生させるため
の機構と、2種類の金属を決められた膜厚で積層する膜
厚制御機構と、金属膜の成長温度に保たれた基板保持機
構の他に、基板を熱処理するために、基板に金属膜の成
長温度よりも高い温度を付与する基板加熱機構と、基板
温度を金属膜の成長温度に急冷するために、基板に金属
膜の成長温度よりも低い温度を付与する基板冷却機構
と、金属膜の形成時には基板保持機構上に置かれた基板
が基板保持機構、基板加熱機構ならびに基板冷却機構間
を相互に移動できる搬送機構を備えた製造装置とするこ
とによって、従来の装置で、基板温度の上げ下げに必要
だった時間をなくすことができ、平坦な界面構造を有す
る人工格子膜の製造を短時間で行う。
However, when forming an artificial lattice film, it is necessary to stack several tens of cycles with a film thickness of the order of an atomic layer, and in the conventional substrate rotation sputtering method and multi-source evaporation method, the substrate temperature is raised and lowered for each layer. This requires a very long time to form a thin film, which is not practical. Therefore, a mechanism for generating a molecular flow necessary for growing two kinds of metal films, a film thickness control mechanism for laminating two kinds of metals with a predetermined film thickness, and a substrate maintained at a growth temperature of the metal film. In addition to the holding mechanism, a substrate heating mechanism that applies a temperature higher than the growth temperature of the metal film to the substrate to heat-treat the substrate, and a metal film to the substrate to rapidly cool the substrate temperature to the growth temperature of the metal film A substrate cooling mechanism that gives a temperature lower than the growth temperature of the substrate, and a transport mechanism that allows the substrate placed on the substrate holding mechanism to move between the substrate holding mechanism, the substrate heating mechanism, and the substrate cooling mechanism during metal film formation. With the manufacturing apparatus provided with the conventional apparatus, the time required for raising and lowering the substrate temperature in the conventional apparatus can be eliminated, and the production of the artificial lattice film having a flat interface structure can be performed in a short time.

【0007】[0007]

【実施例】以下、本発明の実施例について説明する。図
1および図2は本発明の人工格子膜製造装置の一例の構
成図である。図1では、真空チャンバ(蒸着チャンバ)
1のなかに、2種類の金属膜の成長に必要な分子線流を
発生させるための機構として電子ビーム蒸着源2あるい
は分子線セル(抵抗加熱蒸着源)3があり、2種類の金
属を決められた膜厚で積層するための制御機構として水
晶振動子を用いた膜厚計4と蒸着分子線流の開閉を行う
ためのシャッタ14があり、金属膜の成長温度に保たれ
た基板保持機構としての蒸着ステージ5があり、ゲート
バルブ6を通して真空チャンバ(基板加熱・冷却チャン
バ)7のなかに、基板を熱処理するためにヒータで加熱
された基板加熱ステージ(基板加熱機構)8と、基板温
度を金属膜の成長温度に急冷するために液体窒素で冷却
された基板冷却ステージ(基板冷却機構)9があり、基
板を設置する基板ホルダ10は、直線導入機11によ
り、蒸着ステージ5、基板加熱ステージ8および基板冷
却ステージ9に移動できるようになっている。真空チャ
ンバ1および7は図示してないクライオポンプおよびタ
ーボ分子ポンプによってそれぞれ真空排気されている。
Embodiments of the present invention will be described below. 1 and 2 are configuration diagrams of an example of an apparatus for producing an artificial lattice film according to the present invention. In FIG. 1, a vacuum chamber (evaporation chamber)
Among them, an electron beam evaporation source 2 or a molecular beam cell (resistance heating evaporation source) 3 is provided as a mechanism for generating a molecular beam flow necessary for growing two types of metal films. As a control mechanism for laminating with the film thickness set, there are a film thickness meter 4 using a quartz oscillator and a shutter 14 for opening and closing the vaporized molecular beam flow, and a substrate holding mechanism kept at the growth temperature of the metal film. A substrate heating stage (substrate heating mechanism) 8 heated by a heater to heat-treat the substrate through a gate valve 6 into a vacuum chamber (substrate heating / cooling chamber) 7; There is a substrate cooling stage (substrate cooling mechanism) 9 cooled with liquid nitrogen in order to rapidly cool the substrate to the growth temperature of the metal film. And it is adapted to be movable in the substrate heating stage 8 and the substrate cooling stage 9. The vacuum chambers 1 and 7 are evacuated by a cryopump and a turbo molecular pump (not shown).

【0008】図2では、真空チャンバ1のなかに、2種
類の金属膜の成長に必要な分子線流を発生するための機
構として2つのマグネトロンスパッタガン12a、12
b(両者の間はプラズマの相互干渉を防止するために仕
切板13aで仕切られている)があり、2種類の金属を
決められた膜厚で積層するための制御機構として水晶振
動子を用いた膜厚計4とスパッタプラズマの開閉を行う
ためのシャッタ14があり、金属膜の成長温度に保たれ
た基板保持機構としてのスパッタステージ15があり、
仕切板13bを挟んで同一真空チャンバ1のなかに、基
板を熱処理するためにヒータで加熱された基板加熱ステ
ージ(基板加熱機構)8と、基板温度を金属膜の成長温
度に急冷するために液体窒素で冷却された基板冷却ステ
ージ(基板冷却機構)9があり、基板を設置する基板ホ
ルダ10は、直線導入機11により、スパッタステージ
15、基板加熱ステージ8および基板冷却ステージ9に
移動できるようになっている。真空チャンバ1は図示し
てないクライオポンプによって真空排気されている。
In FIG. 2, two magnetron sputtering guns 12a, 12 are provided in a vacuum chamber 1 as a mechanism for generating a molecular beam flow necessary for growing two types of metal films.
b (partitioned by a partition plate 13a to prevent mutual interference between plasmas), and a quartz oscillator is used as a control mechanism for laminating two kinds of metals with a predetermined film thickness. There is a film thickness meter 4 and a shutter 14 for opening and closing the sputter plasma, and a sputter stage 15 as a substrate holding mechanism kept at the growth temperature of the metal film.
A substrate heating stage (substrate heating mechanism) 8 heated by a heater for heat-treating the substrate and a liquid for rapidly cooling the substrate temperature to the growth temperature of the metal film in the same vacuum chamber 1 with the partition plate 13b interposed therebetween. There is a substrate cooling stage (substrate cooling mechanism) 9 cooled by nitrogen, and a substrate holder 10 on which a substrate is placed can be moved to a sputtering stage 15, a substrate heating stage 8 and a substrate cooling stage 9 by a linear introduction device 11. Has become. The vacuum chamber 1 is evacuated by a cryopump (not shown).

【0009】次に、図1の電子ビーム蒸着源2からCo
を、分子線セル3からCuを蒸発させ、シリコン(S
i)の(111)基板上にCo/Cu人工格子を作製し
た実施例について説明する。CoならびにCu蒸着時の
基板温度を室温とし、蒸着ステージ5にあるSi(11
1)基板に蒸着速度1オングストローム/秒で蒸着した
例について説明する。作製した人工格子は、Coを20
オングストローム、Cuを15オングストロームを1周
期とし、これを50周期積層したものである([Co
(20オングストローム)/Cu(15オングストロー
ム)]50と記す。)。蒸着チャンバ1の真空度は、3×
10-9Toor、基板加熱・冷却チャンバの真空度は、
8×10-10Torrであった。用いたCoならびにC
uインゴットの純度はそれぞれ4N、5Nである。まず
蒸着ステージ5上の基板にCoを上記の条件で20オン
グストローム蒸着する。次に基板を基板加熱ステージ8
に搬送し、200℃、10分間の熱処理を行う。この後
基板を基板冷却ステージ9へ移動し基板を急冷する。基
板冷却ステージ9は液体窒素により冷却されているの
で、基板は数分で室温以下に冷却される。この後、再び
基板を蒸着ステージ5に搬送し、Cuを上記の条件で1
5オングストローム蒸着する。次いで、基板を基板加熱
ステージ8上で、200℃、5分間の熱処理を行った
後、基板を基板冷却ステージ9において急冷する。以
下、上述した一連の工程を50周期繰り返すことによっ
て、設計通りのCo/Cu人工格子(A)を得た。
Next, the electron beam evaporation source 2 shown in FIG.
Is evaporated from the molecular beam cell 3 to form silicon (S
An example in which a Co / Cu artificial lattice is formed on the (111) substrate in i) will be described. The substrate temperature during the deposition of Co and Cu was set to room temperature, and Si (11
1) An example of vapor deposition on a substrate at a vapor deposition rate of 1 Å / sec will be described. The fabricated artificial lattice contains 20 Co
Angstroms and Cu have a cycle of 15 Angstroms and are stacked for 50 cycles ([Co
It referred to as (20 Å) / Cu (15 Å)] 50. ). The degree of vacuum of the deposition chamber 1 is 3 ×
10 -9 Toor, the degree of vacuum in the substrate heating / cooling chamber is
It was 8 × 10 −10 Torr. Co and C used
The purity of the u ingot is 4N and 5N, respectively. First, Co is vapor-deposited on the substrate on the vapor deposition stage 5 at 20 angstrom under the above conditions. Next, the substrate is heated to the substrate heating stage 8.
And heat-treated at 200 ° C. for 10 minutes. Thereafter, the substrate is moved to the substrate cooling stage 9 to rapidly cool the substrate. Since the substrate cooling stage 9 is cooled by liquid nitrogen, the substrate is cooled to room temperature or less in a few minutes. Thereafter, the substrate is transported to the vapor deposition stage 5 again, and Cu is reduced to 1 under the above conditions.
Deposit 5 angstrom. Next, the substrate is subjected to a heat treatment at 200 ° C. for 5 minutes on the substrate heating stage 8, and then rapidly cooled on the substrate cooling stage 9. Hereinafter, by repeating the above-described series of steps for 50 cycles, a Co / Cu artificial lattice (A) as designed was obtained.

【0010】比較のため、第1の比較例として、Si
(111)上に基板温度100℃の一定温度で上と同一
設計構造のCo/Cu人工格子(B)を作製した。また
第2の比較例として、Si(111)上に基板温度室温
の一定温度で同一設計構造のCo/Cu人工格子を作製
した後、200℃、20分間の熱処理を行ったサンプル
(C)を作製した。以上の3つのサンプルについて表面
の凹凸の状態を走査トンネル顕微鏡により測定するとと
もに、直流4端子法により−5キロエルステッドから5
キロエルステッドまでの磁気範囲で磁気抵抗を測定し、
磁気抵抗曲線の形状ならびにヒステリシスの有無を調べ
た。磁場および電流は人工格子膜面内にあって互いに直
交する配置で測定した。測定温度は室温である。この結
果を表1に示す。
For comparison, as a first comparative example, Si
A Co / Cu artificial lattice (B) having the same design structure as above was produced on (111) at a constant substrate temperature of 100 ° C. Further, as a second comparative example, a sample (C) obtained by fabricating a Co / Cu artificial lattice having the same design structure on Si (111) at a constant substrate temperature of room temperature and then performing a heat treatment at 200 ° C. for 20 minutes was used. Produced. The surface irregularities of the above three samples were measured by a scanning tunneling microscope, and -5 kOe to -5 kOe were measured by a DC four-terminal method.
Measure the magnetoresistance in the magnetic range up to kilo-Oersted,
The shape of the magnetoresistance curve and the presence or absence of hysteresis were examined. The magnetic field and the electric current were measured in an arrangement perpendicular to each other in the plane of the artificial lattice film. The measurement temperature is room temperature. Table 1 shows the results.

【0011】[0011]

【表1】 ─────────────────────────────────── サンプル 表面状態 磁気抵抗曲線 ヒステリシス (形状) ─────────────────────────────────── (A) 平坦 直線的に減少 無 (B) 凹凸大 曲線 有 (C) 凹凸大 曲線 有 ───────────────────────────────────[Table 1] ─────────────────────────────────── Sample surface condition Magnetoresistance curve Hysteresis (shape) ─ ────────────────────────────────── (A) Flat Decrease linearly No (B) Large irregularities Curve Yes (C) Large unevenness Yes

【0012】ここで磁気抵抗曲線の形状およびヒステリ
シスの有無については、具体的には、サンプル(A)で
は図3、サンプル(B)、(C)では図4のようであっ
た。図中、矢印は磁場の掃引方向を示している。また磁
気抵抗変化率(%)は、(抵抗変化量/無磁場下での抵
抗)×100で与えられる。
The shape of the magnetoresistance curve and the presence / absence of hysteresis are as shown in FIG. 3 for the sample (A) and FIG. 4 for the samples (B) and (C). In the figure, the arrows indicate the sweep direction of the magnetic field. The magnetoresistance change rate (%) is given by (resistance change / resistance under no magnetic field) × 100.

【0013】次に図2のマグネトロンスパッタガン12
a、12bにCoならびにCuのターゲットを設置し、
ガラス基板上にCo/Cu人工格子を作製した実施例に
ついて説明する。CoならびにCuスパッタ時の基板温
度を室温とし、スパッタステージ15上にあるガラス基
板に蒸着速度2オングストローム/秒でスパッタした例
について説明する。作製した人工格子は、Coを30オ
ングストローム、Cuを20オングストロームを1周期
とし、これを30周期積層したものである([Co(3
0オングストローム)/Cu(20オングストロー
ム)]30と記す。)。なおスパッタガスはアルゴンと
し、スパッタ圧は、5mTorrとした。用いたCoお
よびCuターゲットの純度は、それぞれ3N、4Nであ
る。まずスパッタステージ15上の基板にCoを上記の
条件で30オングストロームスパッタする。次に基板を
基板加熱ステージ8に移動し、200℃、10分間の熱
処理を行う。この後、基板を基板冷却ステージ9へ移動
し基板を急冷する。基板冷却ステージ9は液体窒素によ
り冷却されているので、基板は数分で室温以下に冷却さ
れる。この後再び基板をスパッタステージ15へ搬送
し、Cuを上記の条件で20オングストローム蒸着し、
基板を基板加熱ステージ8上で、200℃、5分間の熱
処理を行った後、基板を基板冷却ステージ9において急
冷する。以下、上述した一連の工程を30周期繰り返す
ことによって設計通りのCo/Cu人工格子(D)を得
た。
Next, the magnetron sputtering gun 12 shown in FIG.
a and 12b are provided with Co and Cu targets,
An example in which a Co / Cu artificial lattice is formed on a glass substrate will be described. An example in which the substrate temperature during Co and Cu sputtering is set to room temperature and the glass substrate on the sputtering stage 15 is sputtered at a deposition rate of 2 Å / sec will be described. The manufactured artificial lattice is formed by stacking 30 cycles of Co with 30 angstrom and 20 angstrom of Cu with one cycle ([Co (3
0 Å) / Cu (20 Angstroms)] referred to as 30. ). The sputtering gas was argon and the sputtering pressure was 5 mTorr. The purity of the used Co and Cu targets is 3N and 4N, respectively. First, 30 Å of Co is sputtered on the substrate on the sputtering stage 15 under the above conditions. Next, the substrate is moved to the substrate heating stage 8 and heat-treated at 200 ° C. for 10 minutes. Thereafter, the substrate is moved to the substrate cooling stage 9 to rapidly cool the substrate. Since the substrate cooling stage 9 is cooled by liquid nitrogen, the substrate is cooled to room temperature or less in a few minutes. Thereafter, the substrate is transported to the sputtering stage 15 again, and Cu is vapor-deposited at 20 angstrom under the above conditions.
After the substrate is subjected to a heat treatment at 200 ° C. for 5 minutes on the substrate heating stage 8, the substrate is rapidly cooled in the substrate cooling stage 9. Hereinafter, the above-described series of steps were repeated for 30 cycles to obtain a Co / Cu artificial lattice (D) as designed.

【0014】比較のため、第3の比較例として、ガラス
上に基板温度100℃の一定温度で上と同一設計構造の
Co/Cu人工格子(E)を作製した。また第4の比較
例として、ガラス上に基板温度室温の一定温度で同一設
計構造のCo/Cu人工格子を作製した後、200℃、
20分間の熱処理を行ったサンプル(F)を作製した。
以上3つのサンプルについて表面の凹凸の状態を走査ト
ンネル顕微鏡により測定するとともに、直流4端子法に
より5キロエルステッドの磁場までの磁気抵抗を測定
し、磁気抵抗曲線の形状ならびにヒステリシスの有無を
調べた。磁場と電流の印加方向は表1の場合と同様であ
る。測定温度は室温である。この結果を表2に示す。
For comparison, as a third comparative example, a Co / Cu artificial lattice (E) having the same design structure as above was produced on glass at a constant substrate temperature of 100 ° C. As a fourth comparative example, a Co / Cu artificial lattice having the same design structure was formed on glass at a constant substrate temperature of room temperature, and then 200 ° C.
A sample (F) subjected to a heat treatment for 20 minutes was produced.
The surface irregularities of the three samples were measured by a scanning tunneling microscope, and the magnetoresistance up to a magnetic field of 5 kOe was measured by a DC four-terminal method to examine the shape of the magnetoresistance curve and the presence or absence of hysteresis. The directions in which the magnetic field and the current are applied are the same as those in Table 1. The measurement temperature is room temperature. Table 2 shows the results.

【0015】[0015]

【表2】 ─────────────────────────────────── サンプル 表面状態 磁気抵抗曲線 ヒステリシス (形状) ─────────────────────────────────── (D) 平坦 直線的に減少 無 (E) 凹凸大 曲線 有 (F) 凹凸大 曲線 有 ───────────────────────────────────[Table 2] ─────────────────────────────────── Sample surface condition Magnetoresistance curve Hysteresis (shape) ─ ────────────────────────────────── (D) Flat Linearly reduced No (E) Large unevenness Curved (F) Large unevenness Yes

【0016】ここで磁気抵抗曲線の形状およびヒステリ
シスの有無については、具体的には、サンプル(D)で
は図5、サンプル(E)、(F)では図6のようであっ
た。図中、矢印は磁場の掃引方向を示している。また磁
気抵抗変化率(%)の定義は表1の場合と同様である。
以上の実施例においては、コバルトと銅とからなる人工
格子について説明したが、他の金属元素あるいは合金よ
りなる人工格子においても平坦な界面構造を有する人工
格子膜を作製することができた。
Here, the shape of the magnetoresistive curve and the presence or absence of hysteresis are as shown in FIG. 5 for the sample (D) and FIG. 6 for the samples (E) and (F). In the figure, the arrows indicate the sweep direction of the magnetic field. The definition of the magnetoresistance ratio (%) is the same as in Table 1.
In the above-described embodiment, the artificial lattice made of cobalt and copper has been described. However, an artificial lattice film having a flat interface structure can be produced even with an artificial lattice made of another metal element or alloy.

【0017】[0017]

【発明の効果】以上、説明したように、本発明によれば
平坦な界面構造を有する人工格子膜を迅速に作製するこ
とが可能であり、その結果、磁気抵抗が磁場に対して直
線的に変化し、かつヒステリシスのない人工格子膜が得
られる。このため、高性能の磁気センサなどのデバイス
を作製することが可能になる。
As described above, according to the present invention, it is possible to rapidly produce an artificial lattice film having a flat interface structure, and as a result, the magnetoresistance becomes linear with respect to the magnetic field. An artificial lattice film that changes and has no hysteresis is obtained. Therefore, a device such as a high-performance magnetic sensor can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の人工格子膜の製造装置の一例の構成図
である。
FIG. 1 is a configuration diagram of an example of an apparatus for producing an artificial lattice film of the present invention.

【図2】本発明の人工格子膜の製造装置の一例の構成図
である。
FIG. 2 is a configuration diagram of an example of an apparatus for manufacturing an artificial lattice film of the present invention.

【図3】本発明により作製した平坦な界面構造を有する
[Co(20オングストローム)/Cu(15オングス
トローム)]50人工格子の磁気抵抗曲線を示す図であ
る。
[3] having a flat interface structure manufactured according to this invention [Co (20 Å) / Cu (15 Å) is a graph showing a magnetoresistance curve of 50 artificial lattice.

【図4】従来の方法で作製した図3と同一設計構造のC
o/Cu人工格子の磁気抵抗曲線を示す図である。
FIG. 4 shows a C having the same design structure as FIG. 3 manufactured by a conventional method.
It is a figure showing the magnetoresistance curve of o / Cu artificial lattice.

【図5】本発明により作製した平坦な界面構造を有する
[Co(30オングストローム)/Cu(20オングス
トローム)]30人工格子の磁気抵抗曲線を示す図であ
る。
[5] having a flat interface structure manufactured according to this invention [Co (30 Å) / Cu (20 Å) is a graph showing a magnetoresistance curve of 30 artificial lattice.

【図6】従来の方法で作製した図5と同一設計構造のC
o/Cu人工格子の磁気抵抗曲線を示す図である。
FIG. 6 shows a C having the same design structure as that of FIG. 5 manufactured by a conventional method.
It is a figure showing the magnetoresistance curve of o / Cu artificial lattice.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 2 電子ビーム蒸着源 3 分子線セル 4 水晶振動子膜厚計 5 蒸着ステージ 6 ゲートバルブ 7 真空チャンバ 8 基板加熱ステージ 9 基板冷却ステージ 10 基板ホルダ 11 直線導入機 12a,12b マグネトロンスパッタガン 13a,13b 仕切板 14 シャッタ 15 スパッタステージ DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Electron beam evaporation source 3 Molecular beam cell 4 Quartz crystal film thickness meter 5 Evaporation stage 6 Gate valve 7 Vacuum chamber 8 Substrate heating stage 9 Substrate cooling stage 10 Substrate holder 11 Linear introduction machine 12a, 12b Magnetron sputter gun 13a , 13b Partition plate 14 Shutter 15 Sputter stage

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2種類の金属を交互に積層させ、積層方
向に人工的な周期構造を有しめた人工格子の製造方法に
おいて、第1の金属を低温で成長させた後熱処理を行う
工程と、第2の金属を低温で成長させた後熱処理を行う
工程とを交互に繰り返し、2種類の金属を積層させるこ
とを特徴とする人工格子膜の製造方法。
1. A method of manufacturing an artificial lattice in which two kinds of metals are alternately stacked and having an artificial periodic structure in a stacking direction, a step of performing a heat treatment after growing the first metal at a low temperature. And a step of performing a heat treatment after growing the second metal at a low temperature, and alternately repeating the steps of stacking two kinds of metals.
【請求項2】 2種類の金属膜の成長に必要な分子線流
を発生させる機構と、2種類の金属を決められた膜厚で
積層する膜厚制御機構と、金属膜の成長温度に保たれた
基板保持機構と、基板に金属膜の成長温度よりも高い温
度を付与する基板加熱機構と、基板に金属膜の成長温度
よりも低い温度を付与する基板冷却機構とを備え、前記
基板保持機構と前記基板加熱機構と前記基板冷却機構と
の間を相互に基板移動させる搬送機構を備えたことを特
徴とする人工格子膜の製造装置。
2. A mechanism for generating a molecular beam flow required for growing two kinds of metal films, a film thickness control mechanism for laminating two kinds of metals with a predetermined film thickness, and maintaining a growth temperature of the metal films. A substrate holding mechanism for applying a temperature higher than the growth temperature of the metal film to the substrate; and a substrate cooling mechanism for applying a temperature lower than the growth temperature of the metal film to the substrate. An apparatus for manufacturing an artificial lattice film, comprising: a transport mechanism for mutually moving a substrate between a mechanism, the substrate heating mechanism, and the substrate cooling mechanism.
JP4121041A 1992-04-16 1992-04-16 Method and apparatus for manufacturing artificial lattice film Expired - Fee Related JP2976694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121041A JP2976694B2 (en) 1992-04-16 1992-04-16 Method and apparatus for manufacturing artificial lattice film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121041A JP2976694B2 (en) 1992-04-16 1992-04-16 Method and apparatus for manufacturing artificial lattice film

Publications (2)

Publication Number Publication Date
JPH05295565A JPH05295565A (en) 1993-11-09
JP2976694B2 true JP2976694B2 (en) 1999-11-10

Family

ID=14801358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121041A Expired - Fee Related JP2976694B2 (en) 1992-04-16 1992-04-16 Method and apparatus for manufacturing artificial lattice film

Country Status (1)

Country Link
JP (1) JP2976694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607470B2 (en) * 2010-09-14 2014-10-15 公益財団法人かずさDna研究所 Substrate surface hydrophilization treatment method and workpiece manufacturing apparatus

Also Published As

Publication number Publication date
JPH05295565A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
Krupanidhi et al. Multi‐ion‐beam reactive sputter deposition of ferroelectric Pb (Zr, Ti) O3 thin films
US6478931B1 (en) Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom
DE69936610T2 (en) Two-chamber system for ion beam sputter coating
JP5351140B2 (en) Manufacturing method of magnetic tunnel junction device
WO2009157064A1 (en) Method and equipment for manufacturing tunnel magnetoresistive element
US7985713B2 (en) Superconducting magnesium boride thin-film and process for producing the same
US20030054133A1 (en) Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom
JP2976694B2 (en) Method and apparatus for manufacturing artificial lattice film
US20170117074A1 (en) Mn-X-BASED MAGNETIC MATERIAL
TWI718479B (en) Method for forming antiferromagnetic film and method for magnetic memory element
US20190318860A1 (en) Iron-aluminum alloy magnetic thin film
CN113322514A (en) Method for preparing (00l) preferred orientation low melting point bismuth film by molecular beam epitaxy technology
Brückner et al. Interdiffusion, stress, and microstructure evolution during annealing in Co/Cu/Co trilayers
RU2818990C1 (en) Method of producing monocrystalline thin-film multicomponent semiconductor
JP2871990B2 (en) Magnetoresistive element thin film
JP2003069112A (en) Manufacturing method of ferromagnetic tunnel junction element
CN113036034B (en) Regulatable Co 2 FeX alloy perpendicular magnetic anisotropic magnetic film material and method
Sandström et al. Structure evolution in Ag/Ni multilayers grown by ultra high vacuum DC magnetron sputtering
Jeong et al. Controlling the crystallographic orientation in ultrathin L1/sub 0/FePt [111] films on MgO [111] underlayer
Gushchina et al. Radiation Stability of Fe/Cr and СоFe/Cu Superlattices upon Irradiation with Argon Ions (Е= 10 keV)
US6190763B1 (en) Magnetooptic thin film, magnetoopic record medium
KR950005968B1 (en) Multlayer thin film type hall device and manufacturing method thereof
JP2537993B2 (en) Thin film superconductor and method and apparatus for manufacturing the same
JPH01183496A (en) Production of single crystal oxide superconducting thin film
JP2611976B2 (en) Method for manufacturing magneto-optical recording film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees