JP2975275B2 - Copper foil surface treatment method for printed circuit by submerged current collection method - Google Patents

Copper foil surface treatment method for printed circuit by submerged current collection method

Info

Publication number
JP2975275B2
JP2975275B2 JP6279731A JP27973194A JP2975275B2 JP 2975275 B2 JP2975275 B2 JP 2975275B2 JP 6279731 A JP6279731 A JP 6279731A JP 27973194 A JP27973194 A JP 27973194A JP 2975275 B2 JP2975275 B2 JP 2975275B2
Authority
JP
Japan
Prior art keywords
copper foil
treatment
current
electrolytic
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6279731A
Other languages
Japanese (ja)
Other versions
JPH08120499A (en
Inventor
育夫 阿子島
英太 新井
俊雄 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO MATERIARUZU KK
Original Assignee
NITSUKO MATERIARUZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO MATERIARUZU KK filed Critical NITSUKO MATERIARUZU KK
Priority to JP6279731A priority Critical patent/JP2975275B2/en
Publication of JPH08120499A publication Critical patent/JPH08120499A/en
Application granted granted Critical
Publication of JP2975275B2 publication Critical patent/JP2975275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、銅箔を電気化学的に表
面処理する場合に於いて、集電ロールを用いずに電流を
集電する液中集電法によるプリント回路用銅箔表面処理
方法に関するものであり、集電ロールの表面への金属電
析をなくし、これに起因する銅箔品質の低下(押傷又は
打痕、転写等)を解消することのできるプリント回路用
銅箔表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface of a copper foil for a printed circuit by a submerged current collecting method in which a current is collected without using a current collecting roll in a case where the copper foil is subjected to an electrochemical surface treatment. The present invention relates to a treatment method, and eliminates metal electrodeposition on the surface of a current collecting roll, thereby eliminating a decrease in copper foil quality (press, dent, transfer, etc.) due to the metal deposition. It relates to a surface treatment method.

【0002】[0002]

【従来の技術】銅及び銅合金箔(以下、銅箔と称する)
は、電器・電子関連産業の発展に大きく寄与しており、
特に印刷回路材として不可欠の存在となっている。銅箔
には電解銅箔と圧延銅箔とがあるが、プリント回路用と
して使用される銅箔は、品質要求に応じて、樹脂基材と
接着される粗化面(接着面)と光沢面(非接着面)とで
それぞれに多くの表面処理がなされる。一般に、例えば
粗化面では、銅のふしこぶ状の電着を行う粗化処理、
電着粒子の脱落を防止するためのかぶせ層を形成する薄
い銅めっき処理及び必要に応じ金属乃至合金層を形成す
るトリート処理、更に防錆処理が行われる。
2. Description of the Related Art Copper and copper alloy foils (hereinafter referred to as copper foils)
Has contributed greatly to the development of the electrical and electronics related industries,
In particular, it is indispensable as a printed circuit material. Copper foils include electrolytic copper foils and rolled copper foils. Copper foils used for printed circuits have a roughened surface (adhesive surface) and a glossy surface that adhere to the resin base according to quality requirements. (Non-adhesive surface) and many surface treatments are performed on each. In general, for example, on a roughened surface, a roughening process of performing copper-like bumpy electrodeposition,
In order to prevent the electrodeposited particles from falling off, a thin copper plating process for forming a cover layer, a treat process for forming a metal or alloy layer as needed, and a rust prevention process are performed.

【0003】従来のプリント回路用銅箔表面処理プロセ
スにおいては、電流の集電を行なうために、集電ロール
(コンタクトロール又はコンダクターロール)を必要と
していた。すなわち、銅箔製造表面処理ラインにおける
表面洗浄、電着等を行う工程では銅箔を所定の行路に沿
って高速で走行せしめるために数多くのロールが使用さ
れているが、ライン途中に数個の集電ロールが使用され
ている。図8は集電ロールの使用概念図であり、銅箔1
は、電解液中に集電ロール12を回り込んで垂直下方に
入りそして浸漬ロール13、13’により向きを変えて
垂直上方に上昇し、案内ロール14を介して引き出さ
れ、次工程へと送られる。集電ロール12は直流電源1
5と直結されている。電解液中には直流電源15と直結
した陽極板16が銅箔と対面して浸漬され、直流電源の
正極から印加された電流は陽極から銅箔を通して集電ロ
ールに流れそこから直流電源の負極へと流れて回路を完
結する。例えば、集電ロールには1〜3万Aの大電流が
かけられる場合がある。
In a conventional copper foil surface treatment process for a printed circuit, a current collecting roll (contact roll or conductor roll) is required to collect current. That is, in the step of performing surface cleaning, electrodeposition, etc. in the copper foil production surface treatment line, a number of rolls are used to make the copper foil run at a high speed along a predetermined path, but several rolls are used in the middle of the line. Current collector rolls are used. FIG. 8 is a conceptual view of the use of a current collecting roll, and shows a copper foil 1.
Is wrapped around the current collecting roll 12 into the electrolytic solution, goes vertically downward, turns upward by the immersion rolls 13 and 13 ′, rises vertically upward, is pulled out through the guide roll 14, and is sent to the next step. Can be The current collecting roll 12 is a DC power source 1
It is directly connected to 5. An anode plate 16 directly connected to the DC power supply 15 is immersed in the electrolyte facing the copper foil, and the current applied from the positive electrode of the DC power supply flows from the anode to the current collector roll through the copper foil to the negative electrode of the DC power supply. To complete the circuit. For example, a large current of 1 to 30,000 A may be applied to the current collecting roll.

【0004】従来の集電ロールにおいては、ステンレス
鋼材料を圧延加工にて平板状とし、そこに銅板を張り合
せたクラッド平板を円筒状にベンディングし、その継目
を溶接することによりロール胴を製作していた。しか
し、こうした溶接継目のある集電ロールでは、溶接継目
に起因する銅箔製品品質の低下が起こった。例えば、溶
接継目で電流が不均一となりやすく、また溶接継目と接
触する銅箔を傷つける他に、溶接欠陥部に局部的に電析
する金属粒により銅箔にピンホール、押傷等の不良を発
生させ、また電析金属粒が脱落して銅箔表面に付着する
等の問題を呈した。そこで、ステンレス鋼材料を鍛造
し、押出加工によりシームレスパイプとし、そこに銅パ
イプを焼き嵌めした構造のシームレス集電ロールが提唱
された(特開平4−66696号)。
In a conventional collector roll, a stainless steel material is formed into a flat plate by rolling, and a clad flat plate having a copper plate bonded thereto is bent into a cylindrical shape, and the joint is welded to form a roll cylinder. Was. However, in the current collector roll having such a welded seam, the quality of the copper foil product deteriorated due to the welded seam. For example, the current tends to be non-uniform at the weld seam, and in addition to damaging the copper foil that comes into contact with the weld seam, metal holes that are locally deposited on the weld defect may cause defects such as pinholes and press damage on the copper foil. In addition, there was a problem that the metal particles were generated and the electrodeposited metal particles fell off and adhered to the copper foil surface. Therefore, a seamless current collector roll having a structure in which a stainless steel material is forged and formed into a seamless pipe by extrusion processing, and a copper pipe is shrink-fitted therein has been proposed (Japanese Patent Laid-Open No. 4-66696).

【0005】集電ロールは一般的に銅箔が十分に乾燥し
ている場所に配置する必要がある。それは、銅箔には水
洗液と共に若干の電解液が付着しているのが通例であ
り、電解液等が付着している場合、集電ロールと銅箔と
の接触部分で金属等の電解析出反応やスパーク等が起こ
り、銅箔品質へ悪影響を及ぼすからである。実際の銅箔
表面処理ラインは、数回の表面処理を高速で行なう必要
があり、ライン途中に数個の集電ロールが配置され夫々
集電されている。ライン途中に於いては銅箔を熱風炉等
で十分に乾燥させることはできないため、金属表面上で
の金属電析、スパーク等の問題を発生し易く、シームレ
ス集電ロールを使用した場合でも、電析する金属粒によ
り銅箔にピンホール、押傷等の不良を発生させ、また電
析金属粒が脱落して銅箔表面に付着する等の問題を呈す
ることになる。
The current collecting roll generally needs to be placed in a place where the copper foil is sufficiently dry. It is customary that some electrolytic solution adheres to the copper foil along with the washing solution, and when the electrolytic solution or the like adheres, electrolysis of metal or the like occurs at the contact point between the current collector roll and the copper foil. This is because a discharge reaction, a spark, or the like occurs, which adversely affects the copper foil quality. In an actual copper foil surface treatment line, it is necessary to perform several times of surface treatment at high speed, and several current collecting rolls are arranged in the middle of the line to collect current respectively. In the middle of the line, since the copper foil cannot be sufficiently dried in a hot air oven or the like, problems such as metal deposition on the metal surface and sparks are likely to occur, and even when a seamless current collector roll is used, Deposited metal particles cause defects such as pinholes and dents in the copper foil, and also cause problems such as the deposited metal particles falling off and adhering to the copper foil surface.

【0006】[0006]

【発明が解決しようとする課題】この問題を回避するた
め、現状に於いては、集電ロール上での液切りを目的と
して絞りロールを設置したり、銅箔張力コントロールの
適正化を計ったり、或いは、集電ロールの材料、表面粗
度等の最適化を行っているが、いずれも問題を本質的に
解決するに到っていない。また、集電ロール自体のコス
トが非常に高いことも大きな問題となっている。本発明
は上記の集電ロールに発生する不都合を根本的に解消す
ることを課題とする。
In order to avoid this problem, at present, a squeezing roll is installed for the purpose of draining the liquid on the current collecting roll, or an appropriate control of the copper foil tension is performed. Alternatively, the material and the surface roughness of the current collecting roll are optimized, but none of them has essentially solved the problem. Another problem is that the cost of the current collecting roll itself is extremely high. An object of the present invention is to fundamentally eliminate the inconvenience occurring in the above-mentioned current collecting roll.

【0007】[0007]

【課題を解決するための手段】集電ロールに起因する問
題を排除するためには、集電ロール自体を排除し、集電
ロールを用いないで銅箔からの集電を行なう技術を確立
することが必要であるとの結論に達し、検討を重ねた結
果、液中集電法を確立することに成功した。液中集電法
とは、銅箔に印加する陽極板と銅箔から集電する陰極板
を直流電源に直結した状態でいずれも電解液中に配置
し、集電ロールを用いずに必要とする電流を銅箔に印加
集電する方法であり、銅箔の表面処理プロセスに好適に
応用できることが判明したものである。この知見に基づ
いて、本発明は、銅箔に電流を印加するために電源に直
結される陽極板と銅箔から電流を集電するために電源に
直結される陰極板とをいずれも電解浴中に銅箔に対面し
て配置し、集電ロールを用いずに必要とする電流を銅箔
に印加集電して銅箔が陽極となる電気化学反応と銅箔が
陰極となる電気化学反応を併用しながら銅箔を電気化学
的に表面処理することを特徴とする液中集電法によるプ
リント回路用銅箔表面処理方法を提供するものである。
その適用例として、第1の電解槽において陰極板を配置
して銅箔粗化面の電解処理を行いそして後第2の電解槽
において陽極板を配置して銅箔粗化面の表面粗化を行う
組合せや、単独の電解槽において陽極板を使用して銅箔
粗化面の表面粗化を行い、そして陰極板を使用して銅箔
光沢面の電解処理を行う組合せを挙げることができる。
後者の場合、陰極板を陰イオン交換膜により隔離するの
が好都合である。
In order to eliminate the problem caused by the current collecting roll, a technique of eliminating the current collecting roll itself and establishing a technique for collecting current from a copper foil without using the current collecting roll is established. It was concluded that it was necessary, and as a result of repeated studies, we succeeded in establishing a submerged current collection method. With the submerged current collection method, both the anode plate applied to the copper foil and the cathode plate collecting current from the copper foil are directly connected to the DC power supply and placed in the electrolytic solution, and it is necessary to use the current collector roll without using This method applies a current to the copper foil and collects the current, and it has been found that the method can be suitably applied to a surface treatment process of the copper foil. Based on this finding, the present invention provides both an anode plate directly connected to a power supply for applying a current to a copper foil and a cathode plate directly connected to a power supply for collecting a current from the copper foil. Apply the required current to the copper foil without using a current collector roll, facing the copper foil inside, an electrochemical reaction where the copper foil becomes an anode and an electrochemical reaction where the copper foil becomes a cathode The present invention also provides a method for treating the surface of a copper foil for a printed circuit by a submerged current collection method, wherein the surface of the copper foil is electrochemically treated while using the same.
As an application example, a cathode plate is arranged in a first electrolytic cell to perform electrolytic treatment on a copper foil roughened surface, and then an anode plate is arranged in a second electrolytic bath to roughen the copper foil roughened surface. Or a combination in which the surface of the copper foil roughened surface is roughened using an anode plate in a single electrolytic cell, and the electrolytic treatment of the copper foil glossy surface is performed using a cathode plate. .
In the latter case, it is advantageous to separate the cathode plate by an anion exchange membrane.

【0008】[0008]

【作用】図1は、液中集電法を銅箔1に対して処理Aを
行う電解槽2と処理Bを行う電解槽3とに応用した場合
の概念図である。直流電源4の正極に直結された陽極板
5と直流電源4の負極に直結された陰極板6とが銅箔に
対面して配列される。矢印が電流の流れを示す。図1に
おいて、処理Aでは銅箔が陽極、そして処理Bでは銅箔
が陰極となるような電気化学反応が成立する。従って、
処理Aでは、電解処理すなわち電解研磨や電解脱脂のよ
うな銅箔から銅や付着物を離脱する電解反応をもたらし
そして処理Bでは表面粗化やめっきのような電着反応を
もたらすことができる。一方、図3又は図5の様に単独
槽に陽極板5と陰極板6を配置することにより、図3に
おいては処理Aと処理Bを銅箔の両面において同時に行
うことができ、又図5においては、銅箔の片面に処理A
と処理Bを連続して行うこともできる。銅箔の表面処理
は多数の工程が関与するので、そのうちから銅箔が陽極
となる電気化学反応処理Aと、銅箔が陰極となるような
電気化学反応処理Bとを上記の様に適宜組合せることに
より、液中集電方式での種々の銅箔表面処理が可能とな
る。
FIG. 1 is a conceptual view in which the submerged current collection method is applied to an electrolytic cell 2 for performing a process A on a copper foil 1 and an electrolytic cell 3 for performing a process B. An anode plate 5 directly connected to the positive electrode of the DC power supply 4 and a cathode plate 6 directly connected to the negative electrode of the DC power supply 4 are arranged facing the copper foil. Arrows indicate current flow. In FIG. 1, an electrochemical reaction is established in which the copper foil becomes an anode in the treatment A and the copper foil becomes the cathode in the treatment B. Therefore,
Treatment A can result in an electrolytic treatment, such as electrolytic polishing or electrolytic degreasing, that removes copper or deposits from the copper foil, and treatment B can result in an electrodeposition reaction, such as surface roughening or plating. On the other hand, by arranging the anode plate 5 and the cathode plate 6 in a single tank as shown in FIG. 3 or 5, the treatment A and the treatment B can be performed simultaneously on both surfaces of the copper foil in FIG. In the above, treatment A on one side of copper foil
And the process B can be performed continuously. Since the surface treatment of the copper foil involves a number of steps, the electrochemical reaction treatment A in which the copper foil becomes the anode and the electrochemical reaction treatment B in which the copper foil becomes the cathode are appropriately combined as described above. This makes it possible to perform various copper foil surface treatments by a submerged current collection method.

【0009】[0009]

〔銅粗化処理条件〕(Copper roughening treatment conditions)

Cu :5〜50g/l H2 SO4 :10〜100g/l As :0.01〜5g/l 液温 :室温〜50℃ Dk :5〜80A/dm2 時間 :1〜30秒 Cu: 5~50g / l H 2 SO 4: 10~100g / l As: 0.01~5g / l liquid temperature: room temperature ~50 ℃ D k: 5~80A / dm 2 Time: 1-30 seconds

【0010】粗化処理後に、粒子の脱落を防止するため
のかぶせ層として薄い銅めっき(正常めっき)が行われ
る。例えば次の条件が採用され得る。 〔かぶせ銅薄層めっき条件〕 Cu :30〜100g/l H2 SO4 :10〜200g/l 液温 :室温〜75℃ Dk :5〜60A/dm2 時間 :1〜30秒
After the roughening treatment, thin copper plating (normal plating) is performed as a covering layer for preventing the particles from falling off. For example, the following conditions can be adopted. [Cover thin copper layer plating conditions] Cu: 30~100g / l H 2 SO 4: 10~200g / l liquid temperature: room temperature ~75 ℃ D k: 5~60A / dm 2 Time: 1-30 seconds

【0011】粗化面にCu、Cr、Ni、Fe、Co及
びZnから選択される金属から成る金属層もしくはこれ
ら金属の2種以上の合金から成る合金層を形成するトリ
ート処理を行なうことが好ましい。合金めっきの例とし
ては、Cu−Ni、Cu−Co、Cu−Ni−Co、C
u−Znその他を挙げることが出来る(詳細は、特公昭
56−9028号、特開昭54−13971号、特開平
2−292895号、特開平2−292894号、特公
昭51−35711号、特公昭54−6701号等を参
照のこと)。こうしたトリート処理層は、銅箔の最終性
状を決定するものとしてまた障壁層としての役割を果た
す。
It is preferable to perform a treatment for forming a metal layer composed of a metal selected from Cu, Cr, Ni, Fe, Co and Zn or an alloy layer composed of an alloy of two or more of these metals on the roughened surface. . Examples of alloy plating include Cu-Ni, Cu-Co, Cu-Ni-Co, C
Examples thereof include u-Zn and the like (for details, see JP-B-56-9028, JP-A-54-13971, JP-A-2-292895, JP-A-2-292894, JP-B-51-35711, See Japanese Patent Publication No. 54-6701). Such a treated layer serves as a final property of the copper foil and also functions as a barrier layer.

【0012】他方、光沢面には、耐食性及び耐熱酸化性
(大気中、160℃以上×30分、好ましくは200℃
以上×30分、特に好ましくは240℃以上×30分の
条件の下で酸化等の変色を防止すること)を付与するた
めの処理を施す。この様な処理は、公知の方法のいずれ
をも使用することができる。例えば、Znめっきがその
代表例である。その電解条件を挙げておく。 〔Znめっき条件〕 ZnSO4 ・7H2 O:50〜35g/l pH(硫酸) :2.5〜4.5 液温 :40〜60℃ Dk :0.05〜0.4A/dm2 時間 :10〜30秒 Zn付着量は一般に30〜250μg/dm2 とされる。
On the other hand, the glossy surface has a corrosion resistance and a heat oxidation resistance (160 ° C. or more × 30 minutes in air, preferably 200 ° C.
(For preventing discoloration such as oxidation under the conditions of at least 30 minutes, particularly preferably at least 240 ° C. for 30 minutes). For such a treatment, any of known methods can be used. For example, Zn plating is a typical example. The electrolysis conditions are given. [Zn plating conditions] ZnSO 4 · 7H 2 O: 50~35g / l pH ( sulfate): 2.5 to 4.5 Liquid temperature: 40~60 ℃ D k: 0.05~0.4A / dm 2 hours : 10 to 30 seconds The amount of deposited Zn is generally 30 to 250 µg / dm 2 .

【0013】そして、耐熱酸化性を高めるために、必要
に応じ、Znめっきに替え、ZnとNi、Co、V、
W、Mo、Sn、Cr等から選択される1種以上の金属
よりなるZn合金めっき処理を行うことができる。例え
ば、Zn−Ni合金処理を例にとると、これは、好まし
くはZn−Ni電解めっき浴を使用して、好ましくは5
0〜97重量%Zn及び3〜50重量%Niの組成のZ
n−Ni合金層を100〜500μg/dm2 の付着量で
ごく薄く形成するようにして実施される。Ni量が3重
量%未満では耐熱酸化性の所要の向上が得られない。他
方Ni量が50重量%を超えると、半田濡れ性が悪化す
ると共に、耐熱酸化性もまた悪化する。Zn−Ni合金
層の付着量が100μg/dm2 未満では、耐熱酸化性の
向上が得られない。他方500μg/dm2 を超えると、
Zn等の拡散により導電性が悪化する。Zn−Ni合金
層は銅箔光沢面の耐熱酸化性を高め、しかも半田濡れ
性、レジスト密着性といった他の特性を損なうことはな
い。付着量は外観が銅色とあまり変わらないようにする
ためにも上記のような薄いものとされる。Zn−Co合
金処理についても同様である。Zn−Niめっき浴及び
Zn−Coめっき浴の組成及び条件例は次の通りであ
る: 〔Zn−Ni(乃至Zn−Co)めっき浴条件〕 Zn :5〜50g/l Ni(乃至Co):1〜50g/l pH :2.5〜4 温度 :30〜60℃ 電流密度 :0.5〜5A/dm2 めっき時間 :0.1〜10秒
Then, in order to enhance the thermal oxidation resistance, Zn and Ni, Co, V,
A Zn alloy plating treatment made of one or more metals selected from W, Mo, Sn, Cr and the like can be performed. For example, taking a Zn-Ni alloy treatment as an example, this is preferably performed using a Zn-Ni electroplating bath, and preferably using a Zn-Ni electroplating bath.
Z having a composition of 0 to 97 wt% Zn and 3 to 50 wt% Ni
The n-Ni alloy layer is formed so as to be extremely thin with an adhesion amount of 100 to 500 μg / dm 2 . If the Ni content is less than 3% by weight, the required improvement in thermal oxidation resistance cannot be obtained. On the other hand, if the Ni content exceeds 50% by weight, the solder wettability deteriorates, and the thermal oxidation resistance also deteriorates. If the amount of the Zn—Ni alloy layer is less than 100 μg / dm 2 , the improvement in thermal oxidation resistance cannot be obtained. On the other hand, when it exceeds 500 μg / dm 2 ,
The conductivity deteriorates due to the diffusion of Zn or the like. The Zn-Ni alloy layer enhances the thermal oxidation resistance of the glossy surface of the copper foil, and does not impair other properties such as solder wettability and resist adhesion. The amount of adhesion is made thin as described above so that the appearance is not so different from the copper color. The same applies to the Zn—Co alloy treatment. Examples of the composition and conditions of the Zn—Ni plating bath and the Zn—Co plating bath are as follows: [Zn—Ni (or Zn—Co) plating bath conditions] Zn: 5 to 50 g / l Ni (or Co): 1 to 50 g / l pH: 2.5 to 4 Temperature: 30 to 60 ° C. Current density: 0.5 to 5 A / dm 2 Plating time: 0.1 to 10 seconds

【0014】その後、粗化面及び光沢面にCr系防錆処
理が施される。Cr系防錆層とは、(1)クロム酸化物
の単独皮膜処理或いは(2)クロム酸化物と亜鉛及び
(又は)亜鉛酸化物との混合皮膜処理或いは(3)それ
らを組合せにより形成されたクロム酸化物を主体とする
防錆層を云う。
Thereafter, the roughened surface and the glossy surface are subjected to a Cr-based antirust treatment. The Cr-based rust-preventive layer is formed by (1) a single coating treatment of chromium oxide, (2) a mixed coating treatment of chromium oxide and zinc and / or zinc oxide, or (3) a combination thereof. Rust prevention layer mainly composed of chromium oxide.

【0015】クロム酸化物の単独皮膜処理に関しては、
浸漬クロメートも使用しうるが、電解クロメートが多く
使用される。耐候性が要求されるときには、電解クロメ
ートが好ましい。例えば、電解クロメート処理の条件例
は次の通りである: (電解クロメート処理): K2 Cr27 :0.2〜20g/l (Na2 Cr27 、CrO3 ) 酸 :りん酸、硫酸、有機酸 pH :1.0〜3.5 液温 :20〜40℃ Dk :0.1〜0.5A/dm2 時間 :10〜60秒 Cr付着量は50μg/dm2 以下、好ましくは15〜3
0μg/dm2 である。
Regarding the single coating treatment of chromium oxide,
Immersion chromate may be used, but electrolytic chromate is often used. When weather resistance is required, electrolytic chromate is preferred. For example, conditions Examples of the electrolytic chromate treatment is as follows: (electrolytic chromate treatment): K 2 Cr 2 O 7 : 0.2~20g / l (Na 2 Cr 2 O 7, CrO 3) acid: phosphoric acid Sulfuric acid, organic acid pH: 1.0 to 3.5 Liquid temperature: 20 to 40 ° C. D k : 0.1 to 0.5 A / dm 2 hours: 10 to 60 seconds Cr adhesion amount is 50 μg / dm 2 or less, Preferably 15 to 3
0 μg / dm 2 .

【0016】クロム酸化物と亜鉛/亜鉛酸化物との混合
物皮膜処理とは、亜鉛塩又は酸化亜鉛とクロム酸塩とを
含むめっき浴を用いて電気めっきにより亜鉛又は酸化亜
鉛とクロム酸化物とより成る亜鉛−クロム基混合物の防
錆層を被覆する処理であり、電解亜鉛・クロム処理と呼
ばれる。めっき浴としては代表的に、K2 Cr27
Na2 Cr27 等の重クロム酸塩やCrO3 等の少な
くとも一種と、水溶性亜鉛塩、例えばZnO、ZnSO
4 ・7H2 O等の少なくとも一種と、水酸化アルカリと
の混合水溶液が用いられる。代表的なめっき浴組成と電
解条件例は次の通りである: (電解亜鉛・クロム処理): K2 Cr27 (Na2 Cr27 又はCrO3 ) :2〜10g/l NaOH又はKOH :10〜50g/l ZnO又は ZnSO4 ・7H2 O:0.05〜10g/l pH :7〜13 浴温 :20〜80℃ 電流密度 :0.05〜5A/dm2 時間 :5〜30秒 アノード :Pt−Ti板、ステンレス鋼板
等 クロム酸化物はクロム量として15μg/dm2 以上そし
て亜鉛は30μg/dm2以上の被覆量が要求される。粗
化面側と光沢面側とで厚さを異ならしめても良い。こう
した防錆方法は、特公昭58−7077、61−339
08、62−14040等に記載されている。クロム酸
化物単独の皮膜処理及びクロム酸化物と亜鉛/亜鉛酸化
物との混合物皮膜処理の組合せも有効である。
[0016] The coating treatment of a mixture of chromium oxide and zinc / zinc oxide means that zinc or zinc oxide and chromium oxide are formed by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. This is a process for coating the anticorrosive layer of the zinc-chromium group mixture thus formed, and is called electrolytic zinc-chromium treatment. As a plating bath, typically, K 2 Cr 2 O 7 ,
At least one of dichromate such as Na 2 Cr 2 O 7 or CrO 3 and a water-soluble zinc salt such as ZnO, ZnSO
4 - at least one 7H 2 O, etc., a mixed aqueous solution of alkali hydroxide is used. Typical plating bath compositions and examples of electrolysis conditions are as follows: (electrolytic zinc / chromium treatment): K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / l NaOH or KOH: 10 to 50 g / l ZnO or ZnSO 4 · 7H 2 O: 0.05~10g / l pH: 7~13 bath temperature: 20 to 80 ° C. current density: 0.05~5A / dm 2 Time: 5 Anode: Pt-Ti plate, stainless steel plate, etc. Chromium oxide is required to have a coating amount of 15 μg / dm 2 or more, and zinc is required to have a coating amount of 30 μg / dm 2 or more. The thickness may be different between the roughened side and the glossy side. Such a rust prevention method is disclosed in JP-B-58-7077, 61-339.
08, 62-14040 and the like. It is also effective to combine chromium oxide alone and a mixture of chromium oxide and zinc / zinc oxide.

【0017】このように、銅箔の粗化面は、電解脱脂
(圧延銅箔の場合のみ)−表面粗化−かぶせ銅薄層めっ
き−トリート処理−防錆処理等の工程を経由し、他方銅
箔の光沢面も、アルカリ脱脂(圧延銅箔の場合のみ)−
耐食性・耐熱酸化処理−防錆処理等の工程を経由する。
以下、銅箔のいくつかの処理例について液中集電方式を
説明する。
As described above, the roughened surface of the copper foil passes through the steps of electrolytic degreasing (only in the case of rolled copper foil), surface roughening, covering copper thin-layer plating, treating, and rustproofing. The glossy surface of copper foil is also alkaline degreasing (only for rolled copper foil)
Through processes such as corrosion resistance / heat oxidation treatment-rust prevention treatment.
Hereinafter, a submerged current collecting method will be described for some examples of processing of a copper foil.

【0018】(実施例1):電解処理と粗化処理との組
合せ例 本例は、圧延銅箔の電解処理と粗化処理とを2つの別個
の電解槽で実施する例を示す。ここでは、図1の処理A
が電解処理(具体的には電解脱脂)にそして処理Bが粗
化処理に相当する。図2に示すように、電解槽2には電
解処理のためのアルカリ系溶液、例えば30〜50℃の
NaOH:5〜50g/lの水酸化ナトリウム水溶液が
収納される。電解槽3には銅箔粗化のために用いられる
一般的な硫酸銅溶液(例えば、Cu:10〜50g/
l、H2 SO4 :50〜100g/l)が収納される。
更に、電解槽2には、直流電源4の負極に直結されたス
テンレス鋼板のような電解処理用陰極が陰極板6として
設置される。電解槽3には、直流電源4の正極に直結さ
れた可溶性陽極又は不溶性陽極である粗化用陽極が陽極
板5として設置される。直流電源4から、電解槽3にお
いて電流密度5〜50A/dm2 となるような電流が流
される。銅箔1は、その粗化面において、電解槽2内で
電解処理(具体的には電解脱脂)された後、電解槽3内
で銅のふしこぶ状の電着を行う粗化処理を受ける。上記
条件にて、プリント回路用銅箔の粗化処理を実施したと
ころ全表面にわたり均質な表面処理と良好なピール特性
を得る事が出来た。
(Example 1): Combination example of electrolytic treatment and roughening treatment This example shows an example in which the electrolytic treatment and the roughening treatment of a rolled copper foil are performed in two separate electrolytic tanks. Here, the processing A in FIG.
Corresponds to electrolytic treatment (specifically, electrolytic degreasing), and treatment B corresponds to roughening treatment. As shown in FIG. 2, the electrolytic cell 2 contains an alkaline solution for electrolytic treatment, for example, NaOH at 30 to 50 ° C .: an aqueous sodium hydroxide solution of 5 to 50 g / l. In the electrolytic cell 3, a general copper sulfate solution (for example, Cu: 10 to 50 g /
1, H 2 SO 4 : 50-100 g / l).
Further, in the electrolytic cell 2, a cathode for electrolytic treatment such as a stainless steel plate directly connected to a negative electrode of the DC power supply 4 is provided as a cathode plate 6. In the electrolytic cell 3, a roughening anode, which is a soluble anode or an insoluble anode directly connected to the positive electrode of the DC power supply 4, is provided as an anode plate 5. A current is supplied from the DC power supply 4 in the electrolytic cell 3 so as to have a current density of 5 to 50 A / dm 2 . The copper foil 1 is subjected to an electrolytic treatment (specifically, electrolytic degreasing) in the electrolytic cell 2 on the roughened surface, and then subjected to a roughening treatment for performing copper-like electrodeposition in the electrolytic cell 3. . Under the above conditions, when the copper foil for a printed circuit was subjected to a roughening treatment, it was possible to obtain a uniform surface treatment and good peel properties over the entire surface.

【0019】(実施例2):表面処理槽単独での銅箔両
面処理例(その1) 図3に示すように、直流電源4の正極を陽極板5にそし
てその負極を陰極板6に夫々接続する。陽極板5と陰極
板6とは、電解槽7内で銅箔1の行路に対向して配置さ
れ、陰極板6はカウンター陰極を構成する。電解槽7内
には、銅箔粗化のために用いられる一般的な硫酸銅溶液
(例えば、Cu:10〜50g/l、H2 SO4 :50
〜100g/l)が収納される。これにより粗化面で
は、陽極板5による銅粗化処理反応が行われ、他方光沢
面では陰極板6による電解処理(具体的には電解研磨)
反応が夫々形成され、集電ロールを用いずに良好で且つ
均質な処理面と、ピール特性を有する銅箔を製造するこ
とができた。
(Example 2): Example of double-sided copper foil treatment using a surface treatment tank alone (No. 1) As shown in FIG. 3, the positive electrode of the DC power supply 4 is connected to the anode plate 5, and the negative electrode is connected to the cathode plate 6, respectively. Connecting. The anode plate 5 and the cathode plate 6 are arranged in the electrolytic cell 7 so as to face the path of the copper foil 1, and the cathode plate 6 forms a counter cathode. A general copper sulfate solution (for example, Cu: 10 to 50 g / l, H 2 SO 4 : 50) used for roughening a copper foil is provided in the electrolytic cell 7.
100100 g / l). Thereby, on the roughened surface, a copper roughening treatment reaction is performed by the anode plate 5, while on the glossy surface, an electrolytic treatment (specifically, electrolytic polishing) by the cathode plate 6 is performed.
Each reaction was formed, and a copper foil having a good and uniform treated surface and peeling properties could be produced without using a current collecting roll.

【0020】従来の集電ロールを用いると、集電ロール
に電析する金属物の転写、押傷等により数ケ〜10数ケ
/kmの不良発生率であったものが、不良発生率を完全
に0ケ/kmに維持することが可能となった。この場
合、光沢面の電解研磨反応により、表面の特性や外観の
変化等が懸念されたが、この問題は、陰極板6の電流密
度を最適化すること等により完全に解決することができ
た。すなわち、陰極板6を一部マスキングし電流密度を
上昇させることにより、意外にもあまり電解研磨されな
いことも判明した。その理由としては、光沢面の比較的
尖っている所等に電流が集中し、光沢面を全体的に平滑
化させているものと推定される。
When a conventional current collecting roll is used, the defect occurrence rate of several to several tens of km / km due to the transfer of metal objects deposited on the current collecting roll, the pressing damage, etc. is reduced. It has become possible to completely maintain 0 pcs / km. In this case, there were concerns about changes in surface characteristics and appearance due to the electropolishing reaction of the glossy surface, but this problem could be completely solved by optimizing the current density of the cathode plate 6 and the like. . That is, it was also found that by partially masking the cathode plate 6 to increase the current density, the electropolishing was not surprisingly performed so much. It is presumed that the reason is that the current is concentrated on a relatively sharp portion of the glossy surface or the like, and the glossy surface is entirely smoothed.

【0021】(実施例3):表面処理槽単独での銅箔両
面処理例(その2) 実施例2の不都合として、陰極板6に銅析出反応が形成
されるため、定期的にその取替作業を必要とする。そこ
でこの問題を解決するために、図4に示すように、陰極
板6と銅箔1との間に陰イオン交換膜8を配置した例で
ある。実用的には、陰極板6全体を陰イオン交換膜8で
覆い、その内部を硫酸のみとすることが好ましい。実施
条件は実施例2に準じる。
(Example 3): Example of double-sided copper foil treatment using a surface treatment tank alone (No. 2) As a disadvantage of Example 2, a copper deposition reaction is formed on the cathode plate 6, so that it is periodically replaced. Need work. Therefore, in order to solve this problem, as shown in FIG. 4, an example in which an anion exchange membrane 8 is arranged between the cathode plate 6 and the copper foil 1 is shown. Practically, it is preferable that the entire cathode plate 6 is covered with the anion exchange membrane 8, and the inside thereof is made only of sulfuric acid. The working conditions are the same as in the second embodiment.

【0022】(実施例4):表面処理槽単独での銅箔片
面連続処理例 図5に示すように、直流電源4からの陽極板5と陰極板
6とを銅箔の粗化面のみに対して配置し、陰極板6にお
いて電解処理(具体的には電解研磨)そして陽極板5に
おいて銅粗化処理反応を行った。陰極板6と銅箔1との
間に陰イオン交換膜8を配置した。光沢面には何ら特性
上、外観上の変化を与えることなく非常に良好なピール
特性を持つプリント回路用銅箔を得ることが出来た。
(Example 4): Example of single-sided continuous processing of copper foil using only a surface treatment tank As shown in FIG. 5, the anode plate 5 and the cathode plate 6 from the DC power supply 4 are only applied to the roughened surface of the copper foil. The cathode plate 6 was subjected to an electrolytic treatment (specifically, electrolytic polishing), and the anode plate 5 was subjected to a copper roughening treatment reaction. An anion exchange membrane 8 was arranged between the cathode plate 6 and the copper foil 1. It was possible to obtain a copper foil for a printed circuit having very good peel characteristics without giving any change in characteristics or appearance on the glossy surface.

【0023】(実施例5):表面処理槽単独での銅箔両
面処理例(その3) 本例は銅箔両面連続処理例である。図6に示すように、
直流電源4からの陽極板5と陰極板6そして直流電源
4’からの陽極板5’と陰極板6’とを銅箔1に対して
配置し、陰極板6において銅箔粗化面の電解処理(具体
的には、電解研磨)そして陽極板5において銅箔光沢面
に銅の電着反応を行うと共に、陰極板6’において銅箔
光沢面の電解処理(具体的には、電解研磨)そして陽極
板5’において銅箔粗化面に粗化処理反応を行った。な
お、陰極板6と銅箔1との間及び陰極板6’の周りに陰
イオン交換膜8を配置した。
(Example 5): Example of double-sided copper foil treatment using a surface treatment tank alone (part 3) This example is an example of continuous double-sided copper foil treatment. As shown in FIG.
The anode plate 5 and the cathode plate 6 from the DC power supply 4 and the anode plate 5 'and the cathode plate 6' from the DC power supply 4 'are arranged with respect to the copper foil 1, and the electrolytic treatment of the roughened surface of the copper foil in the cathode plate 6 The treatment (specifically, electrolytic polishing) and the electrodeposition reaction of copper on the glossy surface of the copper foil on the anode plate 5, and the electrolytic treatment (specifically, electrolytic polishing) of the glossy surface of the copper foil on the cathode plate 6 ′ Then, a roughening treatment reaction was performed on the roughened surface of the copper foil on the anode plate 5 '. The anion exchange membrane 8 was arranged between the cathode plate 6 and the copper foil 1 and around the cathode plate 6 '.

【0024】具体的には、陽極板5に10A/dm2 ×
28秒そして陰極板6に80A/dm2 ×3.5秒、ま
た陽極板5’に70A/dm2 ×4秒そして陰極板6’
に320A/dm2 ×0.88秒、通電した後、粗化面
に30A/dm2 ×7.2秒正常めっきを施したもの
は、2.25kg/cmの常態ピール強度を示し、光沢
面は何ら特性上、外観の変化はなかった。
Specifically, 10 A / dm 2 ×
28 A and 80 A / dm 2 × 3.5 seconds on the cathode plate 6 and 70 A / dm 2 × 4 seconds on the anode plate 5 ′ and the cathode plate 6 ′
After applying a current of 320 A / dm 2 × 0.88 seconds to the roughened surface, the roughened surface was subjected to normal plating at 30 A / dm 2 × 7.2 seconds, showing a normal peel strength of 2.25 kg / cm and a glossy surface. Had no change in appearance due to any characteristics.

【0025】一方、図7に示すように、集電ロールを用
いた従来法により、銅箔の粗化面に2段処理により粗化
処理を行った。陽極板16に70A/dm2 ×2秒、陰
極板16’に70A/dm2 ×2秒通電した後、粗化面
に30A/dm2 ×7.2秒正常めっきを施したもの
は、2.11kg/cmの常態ピール強度であった。
On the other hand, as shown in FIG. 7, the roughened surface of the copper foil was subjected to a two-step roughening treatment by a conventional method using a current collecting roll. After applying a current of 70 A / dm 2 × 2 seconds to the anode plate 16 and a current of 70 A / dm 2 × 2 seconds to the cathode plate 16 ′, the roughened surface was subjected to normal plating at 30 A / dm 2 × 7.2 seconds. The normal peel strength was 0.11 kg / cm.

【0026】この例からも判る様に、本発明の液中集電
方式を持ちいた場合、粗化処理前の電解研磨は、常態ピ
ール強度に対して少なくとも悪影響を及ぼさず、集電ロ
ールに起因する金属物の転写、押傷等による不良発生を
完全に防止でき、非常に有効である。
As can be seen from this example, when the current collecting method in a liquid according to the present invention is used, the electropolishing before the roughening treatment has at least no adverse effect on the normal peel strength, but is caused by the current collecting roll. This is very effective because it can completely prevent the occurrence of defects due to the transfer of metal objects and the damage caused by pressing.

【0027】[0027]

【発明の効果】【The invention's effect】

1.押傷、打痕等のない無欠陥銅箔の製造を可能にす
る。 2.集電ロールを必要としない低コストの表面処理を可
能とする。
1. It enables the production of defect-free copper foil without any indentation or dents. 2. It enables low-cost surface treatment that does not require a current collecting roll.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液中集電法を銅箔に対して処理Aを行う電解槽
と処理Bを行う電解槽とに応用した場合の概念図であ
る。
FIG. 1 is a conceptual diagram in a case where a submerged current collection method is applied to an electrolytic cell for performing a process A on a copper foil and an electrolytic cell for performing a process B.

【図2】本発明により電解処理と粗化処理とを2つの別
個の電解槽で実施する例を示す。
FIG. 2 shows an example in which the electrolytic treatment and the roughening treatment are performed in two separate electrolytic cells according to the present invention.

【図3】本発明による表面処理槽単独での銅箔両面処理
例を示す。
FIG. 3 shows an example of a double-sided copper foil treatment using the surface treatment tank alone according to the present invention.

【図4】本発明による陰イオン交換膜を使用する表面処
理槽単独での銅箔両面処理例を示す。
FIG. 4 shows an example of a copper foil double-sided treatment in a surface treatment tank alone using an anion exchange membrane according to the present invention.

【図5】本発明による陰イオン交換膜を使用する表面処
理槽単独での銅箔片面連続処理例を示す。
FIG. 5 shows an example of single-sided continuous processing of copper foil in a surface treatment tank using the anion exchange membrane according to the present invention alone.

【図6】本発明による陰イオン交換膜を使用する表面処
理槽単独での銅箔両面処理例の別の連続処理の具体例を
示す。
FIG. 6 shows a specific example of another continuous treatment of a copper foil double-side treatment example using only a surface treatment tank using an anion exchange membrane according to the present invention.

【図7】従来法での銅箔片面連続処理例を示す。FIG. 7 shows an example of single-sided continuous processing of copper foil by a conventional method.

【図8】銅箔製造表面処理ラインの一部における従来か
らの集電ロールの使用概念図である。
FIG. 8 is a conceptual view showing the use of a conventional current collecting roll in a part of a copper foil production surface treatment line.

【符号の説明】[Explanation of symbols]

1 銅箔 2、3、7 電解槽 4、4’ 直流電源 5、5’ 陽極板 6、6’ 陰極板 8 陰イオン交換膜 9、9’、9”、9’” 案内ロール 10、10’ 浸漬ロール 12、12’ 集電ロール 13、13’ 浸漬ロール 14 案内ロール 15、15’ 直流電源 16、16’ 陽極板 Reference Signs List 1 Copper foil 2, 3, 7 Electrolyzer 4, 4 'DC power supply 5, 5' Anode plate 6, 6 'Cathode plate 8 Anion exchange membrane 9, 9', 9 ", 9 '" Guide roll 10, 10' Immersion roll 12, 12 'Current collecting roll 13, 13' Immersion roll 14 Guide roll 15, 15 'DC power supply 16, 16' Anode plate

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅箔に電流を印加するために電源に直結
される陽極板と銅箔から電流を集電するために電源に直
結される陰極板とをいずれも電解浴中に銅箔に対面して
配置し、集電ロールを用いずに必要とする電流を銅箔に
印加集電して銅箔が陽極となる電気化学反応と銅箔が陰
極となる電気化学反応を併用しながら銅箔を電気化学的
に表面処理することを特徴とする液中集電法によるプリ
ント回路用銅箔表面処理方法。
1. An anode plate directly connected to a power supply for applying a current to a copper foil and a cathode plate directly connected to a power supply for collecting a current from the copper foil are both connected to the copper foil in an electrolytic bath. Apply the required current to the copper foil without using a current collector roll, and collect the copper while using the electrochemical reaction in which the copper foil becomes the anode and the electrochemical reaction in which the copper foil becomes the cathode. A surface treatment method for a copper foil for a printed circuit by a submerged current collection method, wherein the foil is subjected to an electrochemical surface treatment.
【請求項2】 第1の電解槽において陰極板を配置して
銅箔粗化面の電解処理を行いそして後第2の電解槽にお
いて陽極板を配置して銅箔粗化面の表面粗化を行う請求
項1のプリント回路用銅箔表面処理方法。
2. A roughened surface of a copper foil is subjected to electrolytic treatment by disposing a cathode plate in a first electrolytic cell, and thereafter, a roughened surface of the copper foil is disposed by disposing an anode plate in a second electrolytic bath. 2. The method for treating a copper foil surface for a printed circuit according to claim 1, wherein:
【請求項3】 単独の電解槽において陽極板を使用して
銅箔粗化面の表面粗化を行い、そして陰極板を使用して
銅箔光沢面の電解処理を行う請求項1のプリント回路用
銅箔表面処理方法。
3. The printed circuit according to claim 1, wherein the surface of the copper foil roughened surface is roughened using an anode plate in a single electrolytic cell, and the copper foil glossy surface is electrolytically processed using a cathode plate. Copper foil surface treatment method.
【請求項4】 陰極板を陰イオン交換膜により隔離する
請求項3のプリント回路用銅箔表面処理方法。
4. The method according to claim 3, wherein the cathode plate is separated by an anion exchange membrane.
JP6279731A 1994-10-20 1994-10-20 Copper foil surface treatment method for printed circuit by submerged current collection method Expired - Fee Related JP2975275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279731A JP2975275B2 (en) 1994-10-20 1994-10-20 Copper foil surface treatment method for printed circuit by submerged current collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279731A JP2975275B2 (en) 1994-10-20 1994-10-20 Copper foil surface treatment method for printed circuit by submerged current collection method

Publications (2)

Publication Number Publication Date
JPH08120499A JPH08120499A (en) 1996-05-14
JP2975275B2 true JP2975275B2 (en) 1999-11-10

Family

ID=17615107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279731A Expired - Fee Related JP2975275B2 (en) 1994-10-20 1994-10-20 Copper foil surface treatment method for printed circuit by submerged current collection method

Country Status (1)

Country Link
JP (1) JP2975275B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401340B1 (en) * 2001-11-16 2003-10-10 엘지전선 주식회사 The surface treatment of electrodeposited copper foil for Printed Circuit Board
KR100559933B1 (en) * 2002-11-29 2006-03-13 엘에스전선 주식회사 Low Roughness Copper Foil Electropolishing Method And Electropolishing Device Thereof And Copper Foil Thereof
JP4698957B2 (en) * 2004-02-27 2011-06-08 Jx日鉱日石金属株式会社 Electrolytic copper foil and electrolytic polishing method for electrolytic copper foil glossy surface
JP4531777B2 (en) * 2007-01-18 2010-08-25 日本メクトロン株式会社 Pre-plating method for printed wiring boards
JP2008218777A (en) * 2007-03-06 2008-09-18 Bridgestone Corp Production process of light-permeable electromagnetic wave shielding material
CN105578776A (en) * 2008-12-26 2016-05-11 吉坤日矿日石金属株式会社 Rolled copper foil or electrolytic copper foil for electronic circuit and method of forming electronic circuit using same
JP2010059547A (en) * 2009-10-01 2010-03-18 Nippon Mining & Metals Co Ltd Electrolytic copper foil and method of electropolishing glossy surface of the electrolytic copper foil
JP2010047842A (en) * 2009-10-01 2010-03-04 Nippon Mining & Metals Co Ltd Electrolytic copper foil and method for electropolishing glossy surface of electrolytic copper foil
JP5448710B2 (en) * 2009-10-19 2014-03-19 古河電気工業株式会社 Method and apparatus for producing surface roughened copper sheet
WO2016075828A1 (en) * 2014-11-14 2016-05-19 合同会社ナポレ企画 Surface electrolytic treatment method for clothing accessory components, clothing accessories, and production method therefor
EP3042985B1 (en) * 2015-07-22 2019-04-10 Dipsol Chemicals Co., Ltd. Zinc alloy plating method
CN105483812B (en) * 2015-12-24 2017-07-07 中色奥博特铜铝业有限公司 A kind of degreasing method in rolled copper foil surface treatment process
CA3028938C (en) * 2016-06-30 2020-06-09 Nippon Steel & Sumitomo Metal Corporation Threaded connection for pipe and method for producing threaded connection for pipe
EP3531001A4 (en) * 2016-10-18 2020-06-10 Nippon Steel Corporation Threaded joint for pipe and method for manufacturing threaded joint for pipe
IL266910B (en) * 2019-05-27 2020-11-30 Addionics Il Ltd Electrochemically produced three-dimensional structures for battery electrodes

Also Published As

Publication number Publication date
JPH08120499A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
JP2975275B2 (en) Copper foil surface treatment method for printed circuit by submerged current collection method
US3998601A (en) Thin foil
KR100407732B1 (en) Composite foil containing nodular copper / nickel alloy coating, printed circuit board containing it and method of electrodeposition of nodular copper / nickel alloy coating
US4601957A (en) Method for producing a thin tin and nickel plated steel sheet for welded can material
JPH08158100A (en) Roughening of copper foil surface
JPH07233497A (en) Non-cyan copper-zinc electroplating bath, surface treatment of copper foil for printed circuit board using the bath, and the copper foil for printed circuit board
US20040108211A1 (en) Surface treatment for a wrought copper foil for use on a flexible printed circuit board (FPCB)
US4816348A (en) Surface treated steel sheet for welded can material
JPH052744B2 (en)
GB2158842A (en) Surface-treated steel sheets
US4549941A (en) Electrochemical surface preparation for improving the adhesive properties of metallic surfaces
CN104593842B (en) Method for preparing metal coating on molybdenum substrate
KR910005239B1 (en) Method for manufacturing electrolytically chromated steel sheet
KR910005240B1 (en) Method for manufacturing electrolytically chromated steel sheet
JPS596393A (en) Preparation of tin plated steel plate for welded can
US4608130A (en) Method of producing metallic chromium, tin or tin-nickel, and hydrated chromium oxide electroplated steel
EP1415021A1 (en) Copper on invar composite and method of making
JP2624079B2 (en) Method and apparatus for zinc-based electroplating on aluminum strip
JPH06293992A (en) Method for electroplating aluminum and aluminum alloy with zn plating excellent in adhesion and lubricity
JPH0369996B2 (en)
JPH0220720B2 (en)
JPH0841682A (en) Electrogalvanization of aluminum strip, method therefor and product therefrom
CN118461091A (en) Production process of reverse copper foil and reverse copper foil
JPS6032122Y2 (en) Electrolytic treatment equipment for single-sided plated steel plate non-plated side
GB2180257A (en) Thin tin and nickel plated steel sheet for welded can material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees