JP2975037B2 - Temperature compensated crystal oscillator - Google Patents
Temperature compensated crystal oscillatorInfo
- Publication number
- JP2975037B2 JP2975037B2 JP2016434A JP1643490A JP2975037B2 JP 2975037 B2 JP2975037 B2 JP 2975037B2 JP 2016434 A JP2016434 A JP 2016434A JP 1643490 A JP1643490 A JP 1643490A JP 2975037 B2 JP2975037 B2 JP 2975037B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- crystal oscillator
- temperature sensor
- crystal
- oscillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Description
【発明の詳細な説明】 (発明の技術分野) 本発明は、温度変化による発振周波数の変化を補償し
て発振周波数を安定化する温度補償型の水晶発振器に係
わり、特に温度センサと水晶振動子の熱結合の改良に関
する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-compensated crystal oscillator that stabilizes an oscillation frequency by compensating for a change in the oscillation frequency due to a temperature change, and particularly relates to a temperature sensor and a crystal resonator. The improvement of the thermal coupling.
(発明の技術的背景とその問題点) 近時、周波数、時間等の基準として水晶発振器が広く
用いられている。ところで水晶発振器に用いる水晶振動
子は一般に温度係数を持ち、温度の変化によって周波数
も変化する。たとえば、数MHzないし十数MHz程度の周波
数で使用する一般的なATカットの水晶振動子は、略3次
曲線状の温度係数を示し、その特性は切断角度に応じて
微細に変化し、変曲点は25℃前後になる。(Technical Background of the Invention and Problems Thereof) In recent years, a crystal oscillator has been widely used as a reference for frequency, time, and the like. By the way, a crystal oscillator used for a crystal oscillator generally has a temperature coefficient, and the frequency changes with a change in temperature. For example, a general AT-cut crystal unit used at a frequency of several MHz to several tens of MHz has a temperature coefficient substantially in the form of a cubic curve, and its characteristics change minutely according to the cutting angle. The inflection point is around 25 ° C.
一方、電子機器の高精度化がすすむにつれて水晶発振
器にあっても発振周波数は、より安定なことを要求され
る傾向にある。On the other hand, as the accuracy of electronic devices increases, the oscillation frequency tends to be required to be more stable even in a crystal oscillator.
このような要求を満たす水晶発振器としては、たとえ
ば温度センサの検出出力に応じて温度補償電圧を得てこ
れを水晶振動子に直列に接続した電圧容量可変素子に印
加して発振周波数を微細に制御し安定化するようにした
ものがある。As a crystal oscillator that satisfies such requirements, for example, a temperature compensation voltage is obtained according to the detection output of a temperature sensor, and this is applied to a voltage capacitance variable element connected in series to the crystal unit to finely control the oscillation frequency. There is one that is stabilized.
第3図はこのような発振器の一例を示す回路図で、ト
ランジスタ1を用いてコルピッツ型の水晶発振器を構成
している。そしてトランジスタ1のベースにコンデンサ
2、水晶振動子3及び電圧容量可変素子、たとえばバリ
キャップダイオード4を直列に接続している。そして温
度センサ5の検出値を、補償電圧発生回路6へ与えて温
度補償電圧Vtを発生して上記バリキャップ4に印加して
発生周波数を微細に可変して安定化するようにしてい
る。FIG. 3 is a circuit diagram showing an example of such an oscillator. A Colpitts-type crystal oscillator is formed using the transistor 1. A capacitor 2, a crystal resonator 3, and a variable voltage capacity element, for example, a varicap diode 4, are connected in series to the base of the transistor 1. Then, the detection value of the temperature sensor 5 is supplied to a compensation voltage generation circuit 6 to generate a temperature compensation voltage Vt, which is applied to the varicap 4 so that the generated frequency is finely varied and stabilized.
ところでこのような温度補償型の水晶発振器では温度
センサによって水晶振動子の温度を正確に測定して、温
度変化による水晶振動子の共振周波数の変化を正確に補
償する必要がある。By the way, in such a temperature-compensated crystal oscillator, it is necessary to accurately measure the temperature of the crystal resonator using a temperature sensor and accurately compensate for a change in the resonance frequency of the crystal resonator due to a temperature change.
しかるに第3図に示すような構成の発振器においては
水晶振動子と温度センサとは電気的に直接接続されてい
ないので熱伝導に大きな割合を占めるリード線からの熱
伝導に関しては互いに遮断された状況になる。したがっ
て、これの回路素子のリード線からの熱伝導の条件が異
なり水晶振動子の温度を正確に測定できない問題があっ
た。However, in the oscillator having the structure shown in FIG. 3, since the crystal oscillator and the temperature sensor are not electrically connected directly, heat conduction from the lead wire which accounts for a large proportion of heat conduction is cut off from each other. become. Therefore, the conditions of heat conduction from the lead wires of these circuit elements are different, and there has been a problem that the temperature of the crystal unit cannot be measured accurately.
(発明の目的) 本発明は、上記の事情に鑑みてなされたもので、簡単
な構成で水晶振動子の温度を正確に測定することが可能
でそれによって正確な温度補償を行うことができる温度
補償型の水晶発振器を提供することを目的とするもので
ある。(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and has a simple configuration, in which a temperature of a crystal resonator can be accurately measured, and thereby a temperature can be accurately compensated. It is an object of the present invention to provide a compensation type crystal oscillator.
(発明の概要) 本発明は、温度を検出する温度センサの検出値に応じ
た温度補償電圧を水晶振動子に接続した電圧容量可変素
子に印加して温度補償を行うものにおいて、温度センサ
と水晶振動子とを電気的かつ熱的に接続するとともにこ
こを基準電位としたことを特徴とするものである。(Summary of the Invention) The present invention relates to an apparatus for performing temperature compensation by applying a temperature compensation voltage corresponding to a detection value of a temperature sensor for detecting a temperature to a variable voltage capacity element connected to a crystal unit. It is characterized in that the vibrator is electrically and thermally connected, and that this is used as a reference potential.
(実施例) 以下、本発明の一実施例を、第1図に示すブロック図
を参照して詳細に説明する。Embodiment An embodiment of the present invention will be described below in detail with reference to the block diagram shown in FIG.
すなわちトランジスタ11を用いてコルピッツ型の水晶
発振器を構成している。そしてトランジスタ11のベース
にはコンデンサ12、電圧容量可変素子13たとえばバリキ
ャップおよび水晶振動子14を直列に接続して基準電位に
接地している。そして温度センサ15の一端を水晶振動子
14の接地側の一端に接続し、この温度センサの他端は補
償電圧発生回路16に接続して検出値を与えるようにして
いる。That is, a Colpitts-type crystal oscillator is configured using the transistor 11. A capacitor 12 and a variable voltage capacity element 13 such as a varicap and a quartz oscillator 14 are connected in series to the base of the transistor 11, and are grounded to a reference potential. And one end of the temperature sensor 15 is a crystal oscillator
14 is connected to one end on the ground side, and the other end of this temperature sensor is connected to a compensation voltage generating circuit 16 so as to give a detection value.
補償電圧発生回路16は上記温度センサ15の検出値に応
じた温度補償電圧Vtを発生してバリキャップ13のカソー
ド側へ印加する。なおバリキャップ13のアノードと水晶
振動子14の接続点を抵抗17を介して基準電位に接続して
温度補償電圧Vtの帰路を形成している。The compensation voltage generation circuit 16 generates a temperature compensation voltage Vt according to the value detected by the temperature sensor 15 and applies the temperature compensation voltage Vt to the cathode side of the varicap 13. A connection point between the anode of the varicap 13 and the crystal unit 14 is connected to a reference potential via a resistor 17 to form a return path of the temperature compensation voltage Vt.
第2図は第1図に示す回路図の要部の具体的な構成を
示す側面図で、絶縁基板18の板面に形成した比較的短い
距離の導電パターン19を介して水晶振動子14の一端と温
度センサ15の一端とを直列に接続して電気的な接続をな
し、かつこの導電パターン19は基準電位になるようにし
ている。そして水晶振動子14の一端と温度センサ15の一
端とは上記導電パターンを介して熱的にも接続するよう
にしている。FIG. 2 is a side view showing a specific configuration of a main part of the circuit diagram shown in FIG. 1, in which a quartz oscillator 14 is formed through a relatively short distance conductive pattern 19 formed on a plate surface of an insulating substrate 18. One end and one end of the temperature sensor 15 are connected in series to make an electrical connection, and the conductive pattern 19 is set to a reference potential. One end of the quartz oscillator 14 and one end of the temperature sensor 15 are also thermally connected via the conductive pattern.
このような構成であれば、水晶振動子14の一端と温度
センサ15の一端とは電気的に直列に接続される。そし
て、それぞれの熱の伝導路として大きな割合を占めるリ
ード線は熱的にも直列に接続されているために、両者に
熱的な落差を生じてもリード線を介して熱伝導が行われ
速やかに平衡状態に移行する。したがって水晶振動子14
と温度センサ15の両者は速やか、かつ常にほぼ等しい温
度に保たれる。With such a configuration, one end of the crystal resonator 14 and one end of the temperature sensor 15 are electrically connected in series. And, since the lead wires which occupy a large proportion as heat conduction paths of each are thermally connected in series, even if a thermal drop occurs between the two, heat conduction is performed via the lead wires and quick. To an equilibrium state. Therefore, crystal oscillator 14
Both the temperature and the temperature sensor 15 are kept quickly and always at substantially the same temperature.
したがって温度センサ15は水晶振動子14の温度を正確
に測定し、かつその変化にも速やかに追従することがで
き正確な温度補償を行うことができる。Therefore, the temperature sensor 15 can accurately measure the temperature of the crystal unit 14 and can quickly follow the change, thereby performing accurate temperature compensation.
なお、本発明は上記実施例に限定されるものではな
く、たとえば上記実施例では導電パターン19を介して水
晶振動子14と温度センサの熱的な接続を行うようにした
が、直接両者を機械的に接続するような構成としてもよ
いことが勿論である。Note that the present invention is not limited to the above embodiment. For example, in the above embodiment, the crystal resonator 14 and the temperature sensor are thermally connected via the conductive pattern 19, but both are directly connected to the mechanical device. Needless to say, a configuration may be used in which the connection is made.
(発明の効果) 以上詳述したように、本発明によれば水晶振動子と温
度センサとの熱的な結合を密に保て、それによって水晶
振動子の温度を正確に測定可能でしかも温度変化に対し
て速やかに追従することができ正確な温度補償を行うこ
とができる温度補償型を水晶発振器を提供することがで
きる。(Effects of the Invention) As described in detail above, according to the present invention, the thermal coupling between the crystal unit and the temperature sensor can be kept tight, whereby the temperature of the crystal unit can be measured accurately, and It is possible to provide a temperature-compensated crystal oscillator that can quickly follow a change and perform accurate temperature compensation.
第1図は本発明の一実施例を示す回路図、 第2図は第1図に示す実施例の要部の具体例を示す側面
図、 第3図は従来の温度補償型の水晶発振器の一例を示す回
路図である。 11……トランジスタ 13……電圧容量変換素子 14……水晶振動子 15……温度センサ 16……補償電圧発生回路FIG. 1 is a circuit diagram showing one embodiment of the present invention, FIG. 2 is a side view showing a specific example of a main part of the embodiment shown in FIG. 1, and FIG. 3 is a conventional temperature-compensated crystal oscillator. It is a circuit diagram showing an example. 11 Transistor 13 Voltage capacity conversion element 14 Crystal oscillator 15 Temperature sensor 16 Compensation voltage generation circuit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−75790(JP,A) 特開 昭55−123205(JP,A) 特開 昭57−91005(JP,A) (58)調査した分野(Int.Cl.6,DB名) H03B 5/30 - 5/42 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-75790 (JP, A) JP-A-55-123205 (JP, A) JP-A-57-91005 (JP, A) (58) Field (Int.Cl. 6 , DB name) H03B 5/30-5/42
Claims (1)
た温度補償電圧を水晶振動子に接続した電圧容量可変素
子に印加して温度補償を行うものにおいて、 温度センサの一端と水晶振動子の一端を電気および熱的
に接続するとともに接続点を基準電位としたことを特徴
とする温度補償型の水晶発振器。A temperature compensation device for applying a temperature compensation voltage corresponding to a detection value of a temperature sensor for detecting a temperature to a variable voltage capacitance element connected to a crystal resonator to perform temperature compensation. Characterized in that one end of the crystal oscillator is electrically and thermally connected and the connection point is used as a reference potential.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016434A JP2975037B2 (en) | 1990-01-26 | 1990-01-26 | Temperature compensated crystal oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016434A JP2975037B2 (en) | 1990-01-26 | 1990-01-26 | Temperature compensated crystal oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03220905A JPH03220905A (en) | 1991-09-30 |
JP2975037B2 true JP2975037B2 (en) | 1999-11-10 |
Family
ID=11916128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016434A Expired - Lifetime JP2975037B2 (en) | 1990-01-26 | 1990-01-26 | Temperature compensated crystal oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2975037B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4855087B2 (en) * | 2005-03-28 | 2012-01-18 | 日本電波工業株式会社 | Constant temperature crystal oscillator |
JP5308879B2 (en) | 2009-03-13 | 2013-10-09 | 日本電波工業株式会社 | Constant temperature crystal oscillator |
JP6081286B2 (en) * | 2012-07-09 | 2017-02-15 | 日本電波工業株式会社 | Crystal oscillator with temperature chamber |
-
1990
- 1990-01-26 JP JP2016434A patent/JP2975037B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03220905A (en) | 1991-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5214668A (en) | Temperature detector and a temperature compensated oscillator using the temperature detector | |
US5200714A (en) | Crystal oscillator with quartz vibrator having temperature detecting faculty, quartz vibrator for use therein, and method of measuring temperature using quartz vibrator | |
EP2062361B1 (en) | Apparatus and method for temperature compensation of crystal oscillators | |
US4039969A (en) | Quartz thermometer | |
TWI430571B (en) | Crystal oscillator | |
US20100123522A1 (en) | Constant-temperature type crystal oscillator | |
JP5218169B2 (en) | Piezoelectric oscillator and method for measuring ambient temperature of this piezoelectric oscillator | |
JP6123979B2 (en) | Oscillator and electronic device | |
TW201240329A (en) | Temperature control crystal vibrator and crystal oscillator | |
US5407276A (en) | Diamond temperature and radiation sensor | |
JP3174910B2 (en) | Frequency generation method and circuit | |
US4558248A (en) | Temperature-compensated quartz oscillator | |
JP2748740B2 (en) | Temperature compensated oscillator and temperature detector | |
JP2975037B2 (en) | Temperature compensated crystal oscillator | |
US4051446A (en) | Temperature compensating circuit for use with a crystal oscillator | |
CA1057828A (en) | Temperature compensated surface acoustic wave oscillator | |
US6121848A (en) | Integrated accurate thermal frequency reference | |
US3774089A (en) | Temperature indicating apparatus using oppositely varying capacitors | |
JP6610641B2 (en) | Electronics | |
JP2002135051A (en) | Piezoelectric oscillator | |
RU166742U1 (en) | CONSTRUCTION OF A THERMAL COMPENSATED QUARTZ GENERATOR | |
JP2975386B2 (en) | Digital temperature compensated oscillator | |
JP2000136903A (en) | Nonlinear current mirror for loop gain control | |
JP3234397B2 (en) | Manufacturing method of piezoelectric oscillator | |
JP2524478Y2 (en) | Crystal oscillator |