JP2974936B2 - Method of joining metal and ceramic, joining structure and gas turbine provided with this joining structure - Google Patents

Method of joining metal and ceramic, joining structure and gas turbine provided with this joining structure

Info

Publication number
JP2974936B2
JP2974936B2 JP7150949A JP15094995A JP2974936B2 JP 2974936 B2 JP2974936 B2 JP 2974936B2 JP 7150949 A JP7150949 A JP 7150949A JP 15094995 A JP15094995 A JP 15094995A JP 2974936 B2 JP2974936 B2 JP 2974936B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
brazing
shaft
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7150949A
Other languages
Japanese (ja)
Other versions
JPH08319802A (en
Inventor
哲男 巽
悦朗 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP7150949A priority Critical patent/JP2974936B2/en
Publication of JPH08319802A publication Critical patent/JPH08319802A/en
Application granted granted Critical
Publication of JP2974936B2 publication Critical patent/JP2974936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属製の部材とセラミ
ック製の部材とを高い結合強度で接合できる金属とセラ
ミックの接合方法、この接合方法を用いて得られる金属
製の回転軸とセラミック製のタービンロータとの接合構
造およびこの回転軸とタービンロータの接合構造を備え
たガスタービンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of joining a metal member and a ceramic member with a high bonding strength between a metal member and a ceramic member, and a metal rotating shaft and a ceramic member obtained by using this joining method. The present invention relates to a gas turbine provided with a joint structure between a turbine rotor and a rotary shaft and a turbine rotor.

【0002】[0002]

【従来の技術】近年、セラミックの成形、焼成技術の急
速な進展によって、各種耐熱構造部品や高い精度を要求
される内燃機関ピストンなどの作動部品といった種々の
部品がセラミックで製作できるようになり、ガスタービ
ンにおいても、セラミック製部品の採用によって熱効率
のより一層の向上を図る試みがなされている。たとえ
ば、ガスタービンのノズル、タービンブレードおよびタ
ービンディスクなどをセラミックで製作して、燃焼室か
らの高温の燃焼ガスを、冷却せずにそのままセラミック
製スクロール内を通してノズルからタービンブレードに
導くようにしたガスタービンが提案されている。このガ
スタービンは、タービン入口温度の向上や前述の燃焼ガ
スの無冷却化などの種々の利点によって、タービン熱効
率を大幅に高めることが可能になった。
2. Description of the Related Art In recent years, with the rapid development of ceramic forming and firing techniques, various parts such as various heat-resistant structural parts and working parts such as internal combustion engine pistons that require high precision can be manufactured from ceramic. In gas turbines, attempts have been made to further improve thermal efficiency by using ceramic components. For example, a gas turbine nozzle, a turbine blade, a turbine disk, and the like are made of ceramic, and a high-temperature combustion gas from a combustion chamber is guided from the nozzle to the turbine blade through the ceramic scroll without cooling. Turbines have been proposed. With this gas turbine, various advantages such as an increase in turbine inlet temperature and the above-described non-cooling of combustion gas have made it possible to greatly increase turbine thermal efficiency.

【0003】しかし、セラミックを用いて製作可能な部
品には大きさや形状などに制約があるため、ガスタービ
ンでは、高温の燃焼ガスと直接接触する箇所にのみセラ
ミック製部品が使用されている。たとえば、比較的外径
の小さいガスジェネレータタービンのタービンロータは
セラミックで一体的に製造できるようになったが、この
タービンロータを取り付けるためのロータ軸は、その形
状からセラミックで製作するのに無理があるため、現在
では金属材料で製作されている。そこで、セラミック製
のタービンロータと金属製のロータ軸の先端部を一体に
結合する必要があるが、この両部材を単にろう付けした
だけでは所要の結合強度が得られない。一方、両部品を
焼ばめで結合した場合には、その結合部が使用中に高温
の燃焼ガスとの接触あるいは燃焼ガス雰囲気中で加熱さ
れたときに、セラミックと金属との熱膨張差によって結
合状態に緩みが生じ、或る温度以上になると結合強度が
急激に低下してしまう。
However, parts that can be manufactured using ceramics are limited in size, shape, and the like. Therefore, in gas turbines, ceramic parts are used only in locations that are in direct contact with high-temperature combustion gas. For example, the turbine rotor of a gas generator turbine with a relatively small outer diameter can be manufactured integrally with ceramic, but the rotor shaft for mounting this turbine rotor cannot be made of ceramic because of its shape. For this reason, it is currently made of metal materials. Therefore, it is necessary to integrally connect the ceramic turbine rotor and the tip of the metal rotor shaft. However, simply brazing these two members does not provide the required bonding strength. On the other hand, when both parts are joined by shrink fitting, when the joints are brought into contact with high-temperature combustion gas during use or heated in a combustion gas atmosphere, they are joined by the difference in thermal expansion between ceramic and metal. Looseness occurs in the state, and when the temperature exceeds a certain temperature, the bonding strength is rapidly reduced.

【0004】上記のような問題の解消を図ったものとし
て、金属製ロータ軸における先端の結合軸部のみを、高
強度、低膨張率および低ヤング率の特殊合金により別途
形成し、結合軸部とセラミック製のタービンロータとを
焼ばめなどの手段で結合したタービンが提案されている
(実開昭64−36601号公報参照)。このタービン
は、ロータ軸の結合軸部が低膨張率であって加熱されて
も膨張しにくいことから、高温にさらされたときの結合
強度の低下を防止できるものである。しかし、ロータ軸
の一部である結合軸部を高価な特殊合金で別途形成する
ことからコスト高となり、また、タービンロータと結合
軸部との接合の他に結合軸部とロータ軸の軸基部との接
合を必要とし、さらに、結合軸部は高い寸法精度を必要
とするなどの問題を残しており、実用化には不向きであ
る。
In order to solve the above problems, only the connecting shaft portion at the tip of the metal rotor shaft is separately formed of a special alloy having a high strength, a low expansion coefficient and a low Young's modulus. And a turbine rotor made of ceramic and a turbine rotor by means of shrink fitting or the like (see Japanese Utility Model Laid-Open No. 64-36601). In this turbine, since the coupling shaft portion of the rotor shaft has a low expansion coefficient and does not easily expand even when heated, it is possible to prevent a decrease in coupling strength when exposed to high temperatures. However, since the coupling shaft, which is a part of the rotor shaft, is separately formed of an expensive special alloy, the cost is high, and in addition to joining the turbine rotor to the coupling shaft, the coupling shaft and the shaft base of the rotor shaft are also increased. It is not suitable for practical use, because it still needs to be joined, and the connecting shaft portion needs high dimensional accuracy.

【0005】そこで、現在では、金属製ロータ軸とセラ
ミック製タービンロータの接合には以下のような方法が
一般に採用されている。すなわち、図6に示すように、
セラミックで一体成形したタービンロータ1のロータ軸
部2と金属製ロータ軸3とを、各々の接触面の間にろう
材4を挟み込んだ状態で金属製チューブ6内に挿入し
て、吸引口7からチューブ6内を真空引きする。この状
態を保持して、吸引口7を潰すか、あるいは電子ビーム
溶接により吸入口7に蓋板を溶着するかして、吸引口7
を密閉する。つぎに、金属チューブ6内に真空密封した
タービンロータ1とロータ軸3を高温、高圧ガス(例え
ば1000℃、200〜1000気圧)の作用する熱間
静水炉内に入れて熱間静水加圧〔以下、HIP(hot is
ostaticpressing)という〕処理を行う。それにより、
ろう材4が溶融するとともに高圧ガス圧が作用して、収
縮変形する金属チューブ6の圧縮力を受けて、ロータ軸
部2とロータ軸3とがろう付けされ、かつ、ろう材4と
ロータ軸部2およびロータ軸3との各界面に拡散接合層
が形成され、相互に高い結合強度で接合できる。
Therefore, at present, the following method is generally employed for joining a metal rotor shaft and a ceramic turbine rotor. That is, as shown in FIG.
The rotor shaft portion 2 of the turbine rotor 1 integrally formed of ceramic and the metal rotor shaft 3 are inserted into the metal tube 6 with the brazing material 4 sandwiched between respective contact surfaces, and the suction port 7 is formed. Then, the inside of the tube 6 is evacuated. While maintaining this state, the suction port 7 is crushed, or a lid plate is welded to the suction port 7 by electron beam welding.
Seal. Next, the turbine rotor 1 and the rotor shaft 3 vacuum-sealed in the metal tube 6 are placed in a hot isostatic furnace in which a high-temperature, high-pressure gas (for example, 1000 ° C., 200 to 1000 atm) acts, and hot isostatic pressing is performed. Hereinafter, HIP (hot is
ostaticpressing)]. Thereby,
When the brazing material 4 is melted and the high-pressure gas pressure acts thereon, the compressive force of the metal tube 6 that contracts and deforms is received, so that the rotor shaft portion 2 and the rotor shaft 3 are brazed, and the brazing material 4 and the rotor shaft A diffusion bonding layer is formed at each interface between the portion 2 and the rotor shaft 3, and can be bonded to each other with a high bonding strength.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記接
合方法では、タービンロータ1とロータ軸3とをろう材
4を挟み込んだ状態で金属チューブ6内に真空密封する
のが困難であり、非常に面倒な作業を行わなければなら
ない。しかも、上述の真空密封するのが困難であること
から、タービンロータ1とロータ軸3とを常に同一の圧
着力および位置関係で密接させることができず、結合強
度にばらつきが生じる。また、タービンロータ1の外周
部に一体形成されている多数のタービンブレード5は、
金属に比較して脆いセラミックで成形されていることか
ら、HIPの高圧ガス圧により収縮変形する金属チュー
ブ6の不均一な圧縮力を受けて、尖った部分などが欠損
され易い。
However, in the above joining method, it is difficult to vacuum seal the turbine rotor 1 and the rotor shaft 3 in the metal tube 6 with the brazing material 4 interposed therebetween, which is very troublesome. Work must be done. Moreover, since the above-mentioned vacuum sealing is difficult, the turbine rotor 1 and the rotor shaft 3 cannot always be brought into close contact with the same pressing force and the same positional relationship, and the bonding strength varies. In addition, a large number of turbine blades 5 integrally formed on the outer peripheral portion of the turbine rotor 1,
Since the metal tube 6 is formed of a ceramic which is more brittle than a metal, a sharp portion or the like is likely to be damaged due to the uneven compression force of the metal tube 6 which contracts and deforms due to the high gas pressure of the HIP.

【0007】なお、上述の種々の問題はいずれも真空密
封する工程に起因しているが、もしも、上記接合方法に
おいて真空密封する工程を省略してHIP処理すると、
以下のような問題が生じる。すなわち、タービンロータ
1のロータ軸部2とロータ軸3とを、それらの間にろう
材4を介在して接触させただけの状態、つまり完全に密
接されていない状態でHIP処理した場合には、HIP
処理炉内の高圧ガスが、ロータ軸部2およびロータ軸3
とろう材4との各間に存在する僅かなすき間に浸入して
しまい、ろう材18は溶融しても、タービンロータ1と
ロータ軸3の接触面を相互に押し付けあう圧力は殆ど加
わらず、ろう材を介した拡散接合を行えない結果とな
る。
[0007] Although the above-mentioned various problems are all caused by the vacuum sealing step, if the vacuum sealing step is omitted in the above bonding method and HIP processing is performed,
The following problems occur. That is, when the rotor shaft portion 2 and the rotor shaft 3 of the turbine rotor 1 are subjected to the HIP processing only in a state where the brazing material 4 is interposed therebetween and in contact with each other, that is, in a state where they are not completely in close contact with each other, , HIP
The high-pressure gas in the processing furnace is supplied to the rotor shaft 2 and the rotor shaft 3.
When the brazing material 18 melts, little pressure is exerted on the contact surfaces of the turbine rotor 1 and the rotor shaft 3 with each other. As a result, diffusion bonding through the brazing material cannot be performed.

【0008】そこで本発明は、真空密封する工程を要す
ることなくHIP処理を行って金属とセラミックを接合
できる方法、その接合方法によって得られる回転軸とタ
ービンロータの接合構造およびこの接合構造を備えたガ
スタービンを提供することを目的とするものである。
Accordingly, the present invention provides a method of joining metal and ceramic by performing HIP processing without requiring a vacuum sealing step, a joining structure of a rotating shaft and a turbine rotor obtained by the joining method, and the joining structure. It is an object to provide a gas turbine.

【0009】[0009]

【課題を解決しようとするための手段】上記目的を達成
するために、本発明の請求項1に係る金属とセラミック
の接合方法は、金属製の第1の部材と、セラミック製の
第2の部材と、これら部材の間に介挿されて前記金属と
セラミックの中間の熱膨張係数を持つ緩衝材とを、それ
らの接触面に介在させたろう材を真空中で溶融すること
によりろう付けし、つづいて、前記緩衝材を介してろう
付けで結合した第1および第2の部材を、前記ろう材が
再溶融しない程度の高温高圧ガスの雰囲気に直接さらす
ことにより、熱間静水加圧処理を行って前記緩衝材と前
記第1および第2の部材との界面に拡散接合層を形成す
るようにし、かつ、第2の部材における緩衝材との接触
面をあらかじめメタライズ処理しておく。
In order to achieve the above object, a method of joining a metal and a ceramic according to a first aspect of the present invention comprises a first metal member and a second ceramic member. A member and a buffer material inserted between these members and having a coefficient of thermal expansion intermediate between the metal and the ceramic are brazed by melting the brazing material interposed between their contact surfaces in a vacuum, Then , through the cushioning material
The first and second members joined together by the
Direct exposure to high-temperature, high-pressure gas atmosphere that does not cause re-melting
Thereby, a hot isostatic pressurizing process is performed to form a diffusion bonding layer at the interface between the cushioning material and the first and second members, and a contact surface of the second member with the cushioning material. Is previously metallized.

【0010】また、本発明の請求項2に係る金属とセラ
ミックの接合方法は、金属製の第1の部材に有底嵌合孔
を形成し、この嵌合孔に、セラミック製の第2の部材の
嵌合突部を挿入し、前記嵌合孔の底面と前記嵌合突部の
先端面との間に、前記金属とセラミックの中間の熱膨張
係数を持つ緩衝材を介挿し、これら第1および第2の部
材と前記緩衝材とをそれらの接触面に介在させたろう材
を真空中で溶融することによりろう付けし、つづいて、
前記緩衝材を介してろう付けで結合した第1および第2
の部材を、前記ろう材が再溶融しない程度の高温高圧ガ
スの雰囲気に直接さらすことにより、熱間静水加圧処理
を行って前記緩衝材と前記第1および第2の部材との界
面に拡散接合層を形成させるようにし、かつ、前記嵌合
突部の先端面をあらかじめメタライズ処理しておく。
According to a second aspect of the present invention, there is provided a method for joining a metal and a ceramic, wherein a bottomed fitting hole is formed in a first metal member, and a second ceramic fitting hole is formed in the fitting hole. The fitting protrusion of the member is inserted, and a cushioning material having a thermal expansion coefficient intermediate between that of the metal and the ceramic is interposed between the bottom surface of the fitting hole and the tip surface of the fitting protrusion. Brazing the first and second members and the cushioning material by interposing the brazing material interposed between the contact surfaces thereof in a vacuum, followed by brazing;
First and second brazed joints via the cushioning material
High-temperature and high-pressure gas that does not re-melt the brazing material.
Direct exposure to the atmosphere of the heat treatment , hot isostatic pressing is performed to form a diffusion bonding layer at the interface between the buffer material and the first and second members, and the fitting projection Is previously metallized.

【0011】請求項3に係る金属とセラミックの接合方
法は、請求項2における前記嵌合孔に前記嵌合突部を挿
入するにあたり、前記嵌合孔の内周面の少なくとも一部
と前記嵌合突部の対応する部分との間にすき間を形成し
ておき、前記拡散接合層形成後の冷却に伴う前記第1の
部材の収縮によって、前記嵌合孔の前記少なくとも一部
と前記嵌合突部との間に焼ばめを形成するようにした。
According to a third aspect of the present invention, in the method of joining a metal and a ceramic, when the fitting projection is inserted into the fitting hole according to the second aspect, the fitting is performed by fitting at least a part of an inner peripheral surface of the fitting hole. A gap is formed between the mating portion and the corresponding portion, and the first member shrinks due to cooling after the diffusion bonding layer is formed, and the fitting hole is fitted to the at least a part of the fitting hole. A shrink fit was formed between the protrusions.

【0012】請求項4に係る回転軸とタービンロータの
接合構造は、請求項2の接合方法によって、第1の部材
である金属製の回転軸の端部に、第2の部材であるセラ
ミック製のタービンロータを接合した構造であって、前
記回転軸の端部に形成された有底嵌合孔に、前記タービ
ンロータのロータ軸部が挿入されて接合されている。
According to a fourth aspect of the present invention, there is provided a joining structure for a rotating shaft and a turbine rotor, wherein the first member is a metal rotating shaft and the second member is a ceramic member. And a rotor shaft portion of the turbine rotor is inserted into and joined to a bottomed fitting hole formed at an end of the rotating shaft.

【0013】さらに、本発明の請求項5に係る回転軸と
タービンロータの接合構造は、請求項3の接合方法によ
って、第1の部材である金属製の回転軸の端部に、第2
の部材であるセラミック製のタービンロータを接合した
構造であって、前記回転軸の端部に形成された有底嵌合
孔に、前記タービンロータのロータ軸部が挿入されてろ
う付けされ、前記嵌合孔と前記ロータ軸部との間に焼き
ばめが形成されている。
According to a fifth aspect of the present invention, there is provided a joining structure for a rotating shaft and a turbine rotor, wherein the joining method according to the third aspect further comprises:
A structure in which a ceramic turbine rotor, which is a member, is joined, and a rotor shaft portion of the turbine rotor is inserted and brazed into a bottomed fitting hole formed at an end of the rotating shaft, and the brazing is performed. A shrink fit is formed between the fitting hole and the rotor shaft.

【0014】請求項6に係るガスタービンは、回転軸に
装着された圧縮機とタービンを有し、圧縮機から供給さ
れた圧縮空気を燃焼室で燃焼させて、タービンに供給す
るガスタービンであって、請求項4または5の回転軸と
タービンロータの接合構造を備え、前記回転軸を支持す
る軸受に潤滑油を供給する潤滑油通路を備え、前記回転
軸と前記タービンロータとの接合部が、前記潤滑油通路
の近傍に配置されている。
According to a sixth aspect of the present invention, there is provided a gas turbine having a compressor and a turbine mounted on a rotating shaft, wherein compressed air supplied from the compressor is burned in a combustion chamber and supplied to the turbine. And a lubricating oil passage for supplying lubricating oil to a bearing that supports the rotating shaft, wherein a joint between the rotating shaft and the turbine rotor is provided. , Disposed near the lubricating oil passage.

【0015】[0015]

【作用および効果】請求項1の金属とセラミックの接合
方法では、HIP処理に先立って、金属製の第1の部材
とセラミック製の第2の部材とこれら部材の間に介在さ
せた緩衝材とを、それらの接触面の間にろう材を介在さ
せて互いに接触させ、この状態において真空中でろう材
を溶融させることにより、緩衝材と第1の部材および第
2の部材とをそれぞれろう付けする。ここで、ろう付け
を真空中で行っていることにより、緩衝材と第1の部材
および第2の部材との各間は、溶融したろう材がボイド
をつぶしながら埋めつくすので、空気の存在しない完全
な密着状態となる。
In the method for joining metal and ceramic according to the first aspect, prior to the HIP processing, the first metal member, the second ceramic member, and the cushioning material interposed between these members. Are brought into contact with each other with a brazing material interposed between their contact surfaces, and the brazing material is melted in a vacuum in this state, so that the cushioning material and the first and second members are brazed, respectively. I do. Here, since the brazing is performed in a vacuum, there is no air between the cushioning material and the first member and the second member because the molten brazing material fills the voids while crushing the voids. It will be in perfect contact.

【0016】つぎに、緩衝材を介してろう付けで結合し
た第1および第2の部材をHIP処理炉内に入れ、この
炉内を、ろう付けが既に終了していることから、ろう材
が再溶融しない雰囲気に調整して、HIP処理を行う。
ここで、第1および第2の部材は緩衝材を介してろう付
けで密着されているため、第1および第2の部材と緩衝
材とは、高圧ガスの圧力を各々の接触面が互いに圧接す
る方向に受けて、徐々に加圧されていく。その結果、緩
衝材と第1および第2の部材との界面はろう材を介在し
て拡散接合されるので、緩衝材と第1および第2の部材
とが互いに高い結合強度で接合される。
Next, the first and second members joined by brazing via a cushioning material are put into a HIP processing furnace, and since the brazing has already been completed in this furnace, the brazing material is removed. The atmosphere is adjusted so as not to re-melt, and HIP processing is performed.
Here, since the first and second members are brought into close contact by brazing via the cushioning material, the contact surfaces of the first and second members and the cushioning material are press-contacted with each other by the pressure of the high-pressure gas. And then gradually pressurized. As a result, the interface between the cushioning material and the first and second members is diffusion-bonded with the brazing material therebetween, so that the cushioning material and the first and second members are joined to each other with high bonding strength.

【0017】この金属とセラミックの接合方法によれ
ば、従来の接合方法における金属とセラミックとの両部
材を金属チューブ内に真空密封することによって密接さ
せる工程が不要となり、この工程に伴う問題を一挙に解
消できる。すなわち、真空密封の面倒な作業を解消で
き、この困難な作業に伴い生じていた結合強度のばらつ
きがなくなり、さらに、金属チューブ6を介さずに、す
なわち直接HIPの高いガス圧を負荷させることができ
るため、脆いセラミックで形成された第2の部材にはこ
れの一部を欠損させるような不均一な圧力が加わらな
い。また、第1および第2の部材間にこれらの中間の熱
膨張係数を持つ緩衝材を介挿しているので、第1および
第2の部材間にこれらの熱膨張差により作用しようとす
る引っ張り応力を緩衝材で吸収することができ、脆いセ
ラミック製の第2の部材にダメージを与えたり、ろう材
が破壊されたりするのを防止できる。
According to the joining method of metal and ceramic, the step of bringing both the metal and ceramic members into close contact by vacuum sealing in a metal tube in the conventional joining method is unnecessary, and the problems involved in this step are all at once. Can be resolved. In other words, the troublesome work of vacuum sealing can be eliminated, the dispersion of the bonding strength caused by this difficult work is eliminated, and furthermore, the work can be performed without the metal tube 6 .
That is, since the high gas pressure of the HIP can be directly applied, the second member made of the brittle ceramic is not applied with an uneven pressure that causes a part of the second member to be lost. Further, since the cushioning material having a thermal expansion coefficient intermediate between the first and second members is interposed between the first and second members, the tensile stress between the first and second members due to the difference in thermal expansion between them. Can be absorbed by the cushioning material, and damage to the brittle ceramic second member and breakage of the brazing material can be prevented.

【0018】請求項2の金属とセラミックの接合方法で
は、第1の部材の有底嵌合孔内に、緩衝材をその両面側
にろう材を付着させて挿入したのちに、第2の部材の嵌
合突部を挿入して、嵌合孔の底面と嵌合突部の先端面と
の間に緩衝材を挟み込んで保持する。この状態で真空中
においてろう材を溶融させることによって、第1および
第2の部材と緩衝材とをそれぞれろう付けし、つぎに、
請求項1の接合方法と同様の条件でHIP処理して、第
1および第2の部材と緩衝材との界面に拡散接合層を形
成することにより、これらを相互に高い結合強度で接合
する。したがって、この接合方法によれば、請求項1と
同様の効果が得られる他に、第1および第2の部材のろ
う付けに際して、第2の部材の嵌合突部と緩衝材とろう
材とを第1の部材の嵌合孔内に安定して保持できる利点
がある。
In the method of joining a metal and a ceramic according to a second aspect, the buffer member is inserted into the bottomed fitting hole of the first member by attaching the brazing material to both sides thereof, and then the second member is inserted. Is inserted, and the cushioning material is sandwiched and held between the bottom surface of the fitting hole and the tip end surface of the fitting protrusion. In this state, the first and second members and the cushioning material are brazed by melting the brazing material in a vacuum, and then,
By performing HIP processing under the same conditions as in the bonding method of the first aspect, and forming a diffusion bonding layer at the interface between the first and second members and the cushioning material, these are bonded to each other with a high bonding strength. Therefore, according to this joining method, in addition to obtaining the same effect as the first aspect, when the first and second members are brazed, the fitting protrusion of the second member, the cushioning material, and the brazing material are used. Can be stably held in the fitting hole of the first member.

【0019】請求項3の金属とセラミックの接合方法で
は、真空中でろう材を溶融させてろう付けを行うとき
に、溶融したろう材が、嵌合孔の内周面の少なくとも一
部と嵌合突部の対応する部分との間のすき間に浸入し
て、すき間を埋める。つづいて、HIP処理を行って拡
散接合層を形成したのちに、時間の経過に伴ってHIP
処理炉内が常温に戻るときに、高熱膨張係数の第1の部
材は、冷えて徐々に収縮する。この第1の部材の嵌合孔
はその内径が縮小するよう収縮していき、嵌合孔の内周
面が嵌合突部の対応する部分にろう材を介して圧着し、
この部分に焼ばめが形成される。
According to the third aspect of the present invention, when the brazing material is melted in a vacuum to perform brazing, the molten brazing material fits at least a part of the inner peripheral surface of the fitting hole. Penetrate the gap between the corresponding part of the collision part and fill the gap. Subsequently, after performing a HIP process to form a diffusion bonding layer, the HIP process is performed with time.
When the inside of the processing furnace returns to normal temperature, the first member having a high thermal expansion coefficient cools and gradually contracts. The fitting hole of the first member shrinks so as to reduce its inner diameter, and the inner peripheral surface of the fitting hole is press-bonded to a corresponding portion of the fitting projection via a brazing material,
A shrink fit is formed in this area.

【0020】この接合方法によれば、第1および第2の
部材はろう付けと焼ばめの異なる接合手段で接合され
る。ろう付けは、結合強度の絶対値がさほど大きくない
が、結合強度が温度上昇に伴って直線的に徐々に低下す
る特性を有しており、一方、金属とセラミックとの焼ば
めは、或る温度以上の高温下における両者の熱膨張差に
よって結合強度が急激に低下するが、低温下での結合強
度の絶対値が大きい特性を有する。したがって、この接
合方法によって接合された金属とセラミックは、温度変
化に対して2種類の結合手段の特長が互いに補間しあう
とともに、拡散接合層によって強固に接合されているの
で、安定して結合状態を保持できる。
According to this joining method, the first and second members are joined by joining means different from brazing and shrink fitting. Brazing has the property that the absolute value of the bonding strength is not so large, but the bonding strength has a property of gradually decreasing linearly with increasing temperature, while shrink fitting of metal and ceramic has The bonding strength sharply decreases due to the difference in thermal expansion between the two at high temperatures above a certain temperature, but the absolute value of the bonding strength at low temperatures is large. Therefore, the metal and the ceramic joined by this joining method interpolate the characteristics of the two kinds of joining means against each other with respect to the temperature change and are firmly joined by the diffusion joining layer, so that the joining state is stable. Can be held.

【0021】また、焼ばめの形成時、第1の部材の収縮
による圧力は、すき間に介在したろう材の緩衝作用によ
り吸収されて、第2の部材に直接加わらない。そのた
め、脆いセラミック製の第2の部材は割れや破損が生じ
ないよう保護される。さらに、第1および第2の部材間
に形成する環状のすき間を、たとえば、嵌合孔の開口部
付近の内周面と嵌合突部の基端部分との間の箇所に設定
しておけば、焼ばめ部は、嵌合孔の底面と嵌合突部の先
端面の間に形成されるろう付け部に対し離間した箇所に
形成されることになる。このように、第1および第2の
部材の結合部は、離間した2箇所でろう付け部と焼ばめ
部とで接合されることによって、特に曲げ荷重を受けた
ときに高い強度を示す。
Further, when the shrink fit is formed, the pressure caused by the contraction of the first member is absorbed by the buffering action of the brazing material interposed in the gap, and is not directly applied to the second member. Therefore, the brittle ceramic second member is protected from cracking and breakage. Further, an annular gap formed between the first and second members can be set, for example, at a location between the inner peripheral surface near the opening of the fitting hole and the base end of the fitting projection. For example, the shrink fit portion is formed at a position separated from the brazing portion formed between the bottom surface of the fitting hole and the tip end surface of the fitting projection. As described above, the joint portion of the first and second members is joined by the brazing portion and the shrink-fitting portion at two separate locations, and thus exhibits high strength particularly when subjected to a bending load.

【0022】請求項4の回転軸とタービンロータの接合
構造では、回転軸の端部に形成した嵌合孔の底面と、タ
ービンロータのロータ軸部(嵌合突部)の先端面とが、
緩衝材を介在したろう付けで接合され、かつ、ろう材と
第1および第2の部材との間に拡散接合層が形成されて
いる。
In the joint structure of the rotating shaft and the turbine rotor according to a fourth aspect, the bottom surface of the fitting hole formed at the end of the rotating shaft and the tip end surface of the rotor shaft portion (fitting projection) of the turbine rotor are:
Bonding is performed by brazing with a buffer material interposed therebetween, and a diffusion bonding layer is formed between the brazing material and the first and second members.

【0023】この回転軸とタービンロータの接合構造に
よれば、これらを金属チューブ内で真空密封する工程を
省いて接合できるので、脆いセラミックで一体成形され
て周囲に多数のタービンブレードが配設されたタービン
ロータに、タービンブレードの壊れやすい尖った箇所な
どが欠損するといった不都合が生じない。また、タービ
ンの運転中に高温の燃焼ガスとの接触あるいは燃焼ガス
雰囲気中で加熱されても、回転軸とタービンロータと
は、ろう付けの他に拡散接合層により強固に結合されて
いるから、安定して結合状態を保持できる。さらに、回
転軸とタービンロータ間にこれらの熱膨張差により作用
しようとする引っ張り応力は、金属とセラミックの中間
の熱膨張係数を持つ緩衝材で吸収することができ、ター
ビンロータにダメージを与えたり、ろう材が破壊された
りするのを確実に防止できる。
According to the joining structure of the rotating shaft and the turbine rotor, these can be joined without the step of vacuum sealing in a metal tube, so that a large number of turbine blades are provided around the periphery by being integrally formed of brittle ceramic. There is no inconvenience such that the fragile pointed portion of the turbine blade is lost in the turbine rotor. In addition, even if the rotating shaft and the turbine rotor are firmly connected to the diffusion bonding layer in addition to brazing even if the rotating shaft and the turbine rotor are heated in contact with the high-temperature combustion gas or in the combustion gas atmosphere during operation of the turbine, Stability can be maintained in a connected state. In addition, the tensile stress between the rotating shaft and the turbine rotor, which tends to act due to the difference in thermal expansion, can be absorbed by a buffer material having a thermal expansion coefficient intermediate between that of metal and ceramic, causing damage to the turbine rotor or damaging the turbine rotor. Thus, the breakage of the brazing material can be reliably prevented.

【0024】また、請求項5の回転軸とタービンロータ
の接合構造によれば、ろう材を介在した拡散接合によっ
て回転軸とタービンが強固に結合されるのに加えて、ろ
う付けと焼ばめとの2種類の接合手段で接合されている
ので、タービンの運転中に加熱されても、ろう付け部と
焼ばめ部の各々の長所が互いに補間し合って、安定して
結合状態を保持する。また、焼ばめ部をろう付け部に対
し可及的に離間した箇所に形成すれば、回転軸とタービ
ンロータの接合部は特に曲げ荷重を受けたときに高い強
度を示すので、タービンロータは回転軸に安定に支持さ
れる。
According to the joint structure of the rotating shaft and the turbine rotor according to the fifth aspect, in addition to the fact that the rotating shaft and the turbine are firmly connected by diffusion bonding with a brazing material, brazing and shrink fitting are performed. Even if heated during operation of the turbine, the advantages of the brazing part and the shrink-fitting part interpolate with each other to maintain a stable connection state even when heated during operation of the turbine. I do. Also, if the shrink-fit part is formed as far as possible from the brazing part, the joint between the rotating shaft and the turbine rotor shows high strength especially when subjected to a bending load. Stablely supported by the rotating shaft.

【0025】請求項6のガスタービンによれば、請求項
4または請求項5の回転軸とタービンロータの接合構造
を備えているので、上述と同様の効果を得られる他に、
回転軸とタービンロータとの接合部が、回転軸を支持す
る軸受に対し潤滑油を供給する潤滑油通路の近傍に配置
されているため、ろう付け部またはこれと焼ばめ部は、
高温の燃焼ガスとの接触などにより温度が上昇しようと
するのを潤滑油による冷却効果によって抑制される。し
たがって、ろう付け部の温度上昇に伴う結合強度の低下
を阻止でき、あるいは、金属とセラミックとの熱膨張差
によって焼ばめの結合状態に緩みが生じるのを防止でき
る。
According to the gas turbine of the sixth aspect, since the joint structure of the rotary shaft and the turbine rotor of the fourth or fifth aspect is provided, the same effect as described above can be obtained.
Since the joint between the rotating shaft and the turbine rotor is arranged in the vicinity of the lubricating oil passage for supplying the lubricating oil to the bearing supporting the rotating shaft, the brazing portion or the shrink-fit portion is
An attempt to increase the temperature due to contact with a high-temperature combustion gas or the like is suppressed by the cooling effect of the lubricating oil. Therefore, it is possible to prevent a decrease in the bonding strength due to a rise in the temperature of the brazing portion, or it is possible to prevent the loosening of the shrink fit due to a difference in thermal expansion between the metal and the ceramic.

【0026】[0026]

【実施例】以下、本発明の好適な実施例について図面を
参照しながら説明する。図1〜図3は本発明の一実施例
に係る金属とセラミックの接合方法を工程順に示した縦
断面図であり、図1(a)〜(c)はろう付け工程、図
2はHIP処理工程、図3は接合完了状態をそれぞれ示
す。図1(a)において、金属製部材として、たとえば
Ni基耐熱超合金により軸状に形成した第1の部材10
を用いる。一方、セラミック製部材として、たとえばS
iN4 系セラミックにより基体12の一面から軸状の嵌
合突部13が突出する形状に一体成形した第2の部材1
1を用いる。この両部材10,11の間に介在させる緩
衝材14は、金属とセラミックの中間の低い熱膨張係数
を持つ、たとえばタングステン合金により円板状に形成
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are longitudinal sectional views showing a joining method of a metal and a ceramic according to one embodiment of the present invention in the order of steps. FIGS. 1 (a) to 1 (c) show a brazing step, and FIG. FIG. 3 shows the bonding process. In FIG. 1A, as a metal member, for example, a first member 10 formed in an axial shape by a Ni-base heat-resistant superalloy is used.
Is used. On the other hand, as a ceramic member, for example, S
A second member 1 integrally formed of an iN 4 -based ceramic into a shape in which a shaft-like fitting projection 13 projects from one surface of a base 12.
Use 1. The cushioning material 14 interposed between the two members 10 and 11 is formed in a disc shape with, for example, a tungsten alloy having a low coefficient of thermal expansion between metal and ceramic.

【0027】上記第1の部材10には、第2の部材11
との接合側の端部に、軸心に沿った有底嵌合孔17が形
成されており、この嵌合孔17は底面側の小径孔部17
aと開口側の大径孔部17bとからなり、小径孔部17
aにおける底面近傍の周面に環状の逃げ溝17cが形成
されている。上記緩衝材14は小径孔部17aに嵌合す
る径を有する円板形になっている。一方、第2の部材1
1の嵌合突部13は、嵌合孔17の小径孔部17aに嵌
合する径を有する小径軸部13aと、大径孔部17bに
挿入時にこれの内周面との間に環状のすき間を形成でき
る径を有する軸基部13bとが形成されており、小径軸
部13aの先端面は、後述するろう材18との間で拡散
接合を容易に行わせるために、メタライズ処理されてい
る。また、緩衝材12の両面側には、嵌合孔17への挿
入に先立ってろう材18が付着される。このろう材18
には、ろう付けの影響によるセラミックの残留応力をで
きるだけ小さくするために、比較的ろう付け温度の低い
金属、たとえばAgの合金が用いられている。
The first member 10 includes a second member 11
A bottomed fitting hole 17 is formed along the axis at the end on the joining side with the bottom surface, and this fitting hole 17 is a small-diameter hole 17 on the bottom side.
a and a large-diameter hole 17b on the opening side.
An annular relief groove 17c is formed on the peripheral surface near the bottom surface in FIG. The cushioning member 14 has a disk shape having a diameter that fits into the small-diameter hole 17a. On the other hand, the second member 1
The first fitting projection 13 has an annular shape between a small-diameter shaft portion 13a having a diameter fitting into the small-diameter hole portion 17a of the fitting hole 17 and an inner peripheral surface thereof when inserted into the large-diameter hole portion 17b. A shaft base 13b having a diameter capable of forming a gap is formed, and the distal end surface of the small-diameter shaft 13a is metallized to facilitate diffusion bonding with a brazing material 18 described later. . Also, a brazing material 18 is attached to both sides of the cushioning material 12 prior to insertion into the fitting hole 17. This brazing material 18
In order to minimize the residual stress of the ceramic due to the effect of brazing, a metal having a relatively low brazing temperature, for example, an alloy of Ag is used.

【0028】嵌合孔17内に緩衝材14および第2の部
材11の嵌合突部13を挿入して、嵌合孔17の底面と
嵌合突部13の先端面との間に緩衝材14を挟み込む。
したがって、緩衝材14およびろう材18を両部材1
0,11の間に介在させて保持するのが容易となり、か
つ所要の位置に安定に保持できる。また、上述の嵌合孔
17に嵌合突部13を挿入したときに、嵌合孔17の大
径孔部17bの内周面と嵌合突部13の軸基部13bの
外周面との間に、(b)に示すような断面リング状の小
幅のすき間19が形成される。
The cushioning material 14 and the fitting projection 13 of the second member 11 are inserted into the fitting hole 17, and the cushioning material is inserted between the bottom surface of the fitting hole 17 and the tip end surface of the fitting projection 13. 14 is inserted.
Accordingly, the cushioning material 14 and the brazing material 18 are
It is easy to hold it between 0 and 11 and it is possible to stably hold it at a required position. When the fitting projection 13 is inserted into the fitting hole 17, the gap between the inner peripheral surface of the large-diameter hole portion 17 b of the fitting hole 17 and the outer peripheral surface of the shaft base 13 b of the fitting projection 13 is formed. Then, a narrow gap 19 having a ring-shaped cross section as shown in FIG.

【0029】つぎに、上記のように組み合わせた両部材
10,11を真空炉20に入れて内部を真空引きしたの
ちに、真空炉20内をヒーティングコイル(図示せず)
などにより加熱しながら両部材10,11にこれらが互
いに近接する方向に加圧手段(図示せず)で圧力を加え
る。両部材10,11における嵌合孔17の底面と嵌合
突部13の先端面との間の接合箇所の空気は、上記の真
空引きによって嵌合孔17の小径孔部17aと嵌合突部
13の小径軸部13aとの間の僅かな空隙を通って上記
すき間19からほぼ完全に排出される。さらに、真空炉
20内が上記の加熱によりろう材18の溶融温度以上の
高温雰囲気になると、緩衝材14と嵌合孔17の底面お
よび嵌合突部13の先端面とが、溶融したろう材18に
より真空中でそれぞれろう付けされる。
Next, the two members 10 and 11 combined as described above are put into a vacuum furnace 20 to evacuate the inside, and then the inside of the vacuum furnace 20 is heated by a heating coil (not shown).
Pressure is applied to both members 10 and 11 by a pressurizing means (not shown) in a direction in which these members approach each other while being heated by, for example. The air at the joint between the bottom surface of the fitting hole 17 and the distal end face of the fitting projection 13 in both members 10 and 11 is reduced by the above-described vacuum evacuation to the small diameter hole 17a of the fitting hole 17 and the fitting projection. 13 is almost completely discharged from the gap 19 through a small gap between the small diameter shaft portion 13a and the small diameter shaft portion 13a. Further, when the inside of the vacuum furnace 20 is heated to a high temperature higher than the melting temperature of the brazing material 18 by the above-mentioned heating, the buffer material 14 and the bottom surface of the fitting hole 17 and the tip end surface of the fitting projection 13 are melted. 18 in a vacuum.

【0030】(c)はろう付けが終了した状態を示す。
上記のろう付け時に、溶融したろう材18がボイドを潰
しながら第1および第2の部材10,11における上記
接合箇所内に充満していくので、この接合箇所の空気は
完全に排出される。すなわち、緩衝材14と第1および
第2の部材10,11との各間は、ろう付け部18aを
介して密着される。また、両部材10,11の熱膨張差
によって、嵌合孔17の小径孔部17aと嵌合突部13
の小径軸部13aとの間に僅かな環状の空隙ができるの
で、ろう材18は、逃げ溝17cに入り込んだのちに、
上記空隙内を通ってすき間19に入り込む。
(C) shows a state where the brazing has been completed.
During the brazing, the molten brazing material 18 fills the joints of the first and second members 10 and 11 while crushing the voids, so that the air at the joints is completely exhausted. That is, the space between the cushioning member 14 and the first and second members 10 and 11 is closely attached via the brazing portion 18a. Also, the small-diameter hole portion 17a of the fitting hole 17 and the fitting protrusion 13
Since a slight annular gap is formed between the brazing material 18 and the small diameter shaft portion 13a, the brazing material 18
The air enters the gap 19 through the space.

【0031】つぎに、上記のろう付け部18aで接合し
た第1および第2の部材10,11を、図2に示すよう
に、HIP処理炉21内に入れて、アルゴンのような不
活性ガス22を封入してヒーティングコイル23により
加熱した高温・高圧ガスの雰囲気にさらしてHIP処理
を行う。HIP処理炉21内は、上記図1(a)〜
(c)の工程によりろう付けが終了していることから、
ろう材が再溶融しない雰囲気(例えば、800〜900
℃、1000〜2000気圧)に調整する。第1および
第2の部材10,11は、矢印で示すように高温、高圧
ガスにより周囲から均一な高圧力を受けるが、この両部
材10,11間は、緩衝材14を介在したろう付け部1
8aで完全に密着されていて、高温・高圧ガスが侵入し
ないため、両部材10,11が互いに近接する方向に徐
々に加圧されていく。その結果、HIP処理の完了状態
を示す図3のように、緩衝材14と第1および第2の部
材10,11との界面に、ろう材18とこれに接触する
部材10,11,14とが互いに拡散して一体化した拡
散接合層24が形成されて、第1および第2の部材1
0,11は緩衝材14を介して相互に高い結合強度で接
合される。
Next, as shown in FIG. 2, the first and second members 10 and 11 joined at the brazing portion 18a are put into an HIP processing furnace 21 and an inert gas such as argon is supplied thereto. The HIP process is performed by enclosing the heating chamber 22 and exposing it to an atmosphere of a high-temperature and high-pressure gas heated by a heating coil 23. The inside of the HIP processing furnace 21 is shown in FIGS.
Since the brazing has been completed by the step (c),
Atmosphere in which the brazing material does not remelt (for example, 800 to 900
° C, 1000-2000 atm). The first and second members 10 and 11 receive a uniform high pressure from the surroundings by a high temperature and high pressure gas as shown by arrows, and a brazing portion between the two members 10 and 11 with a buffer material 14 interposed therebetween. 1
8a, the members 10 and 11 are gradually pressurized in a direction approaching each other because they are completely in contact with each other and a high-temperature and high-pressure gas does not enter. As a result, as shown in FIG. 3 showing the completed state of the HIP processing, the brazing material 18 and the members 10, 11, 14 in contact with the brazing material 18 are provided at the interface between the cushioning material 14 and the first and second members 10, 11. Are diffused with each other to form an integrated diffusion bonding layer 24, and the first and second members 1
Numerals 0 and 11 are joined to each other with a high bonding strength via the buffer material 14.

【0032】上記HIP処理が終了したのちに、時間の
経過に伴ってHIP処理炉21内が常温にもどるとき
に、高い熱膨張率を有する第1の部材10は冷えて徐々
に収縮していき、この第1の部材10の先端部分は、大
径孔部17bの孔径を縮小させるように収縮して、その
内周面が嵌合突部13の基軸部13bにろう材18を介
して接合し、この部分に、焼ばめ部27が自然に形成さ
れる。ここで、焼ばめ部27はろう材18を介在して形
成されるため、第1の部材10の収縮力は、ヤング率の
低いろう材18の塑性変形による緩衝効果により吸収さ
れて、第2の部材11に直接的に作用しない。それによ
り、脆いセラミック製の第2の部材11を破損しないよ
う保護できる。なお、上記実施例では嵌合孔17の小径
孔部17aと嵌合突部13の小径軸部13aとの間にも
ろう材18を介在した補助的な焼ばめ部が形成される。
After the completion of the HIP processing, when the inside of the HIP processing furnace 21 returns to room temperature with the lapse of time, the first member 10 having a high coefficient of thermal expansion cools and gradually contracts. The distal end portion of the first member 10 contracts so as to reduce the diameter of the large-diameter hole portion 17b, and its inner peripheral surface is joined to the base shaft portion 13b of the fitting projection 13 via the brazing material 18. Then, the shrink fit portion 27 is naturally formed in this portion. Here, since the shrink-fit portion 27 is formed with the brazing material 18 interposed therebetween, the shrinking force of the first member 10 is absorbed by the buffering effect due to the plastic deformation of the brazing material 18 having a low Young's modulus. It does not act directly on the second member 11. Thereby, the brittle ceramic second member 11 can be protected from being damaged. In the above embodiment, an auxiliary shrink-fit portion having a brazing material 18 interposed between the small-diameter hole portion 17a of the fitting hole 17 and the small-diameter shaft portion 13a of the fitting projection 13 is also formed.

【0033】上記の金属とセラミックの接合方法では、
HIP処理に先立って真空中でろう付けを行うことによ
って、図1(c)の第1および第2の部材10,11を
緩衝材14を介在したろう付け部18aによって完全に
密着するようにしたので、従来の接合方法における金属
とセラミックとの両部材を金属チューブ内に真空密封す
ることによって密接させる工程が不要となり、この工程
に起因する種々の不都合を解消できる。すなわち、金属
チューブに封入する困難で面倒な作業を解消でき、この
作業に伴う結合強度のばらつきがなくなり、さらに、脆
いセラミックで形成された第2の部材11の一部が欠損
するといった不都合は生じない。
In the above-described method of joining a metal and a ceramic,
By performing brazing in a vacuum prior to the HIP process, the first and second members 10 and 11 of FIG. 1C are completely adhered to each other by the brazing portion 18a with the buffer material 14 interposed therebetween. This eliminates the need for a step of bringing both the metal and ceramic members into close contact by vacuum sealing in a metal tube in the conventional joining method, and can eliminate various inconveniences caused by this step. That is, it is possible to eliminate the difficult and troublesome work of enclosing in the metal tube, eliminate the variation in the bonding strength involved in this work, and further cause the disadvantage that a part of the second member 11 made of brittle ceramic is damaged. Absent.

【0034】図4は上記の接合方法によって接合したタ
ービンロータ31と回転軸30の結合構造を備えたガス
タービンを示す要部の縦断面図である。まず、タービン
ロータ31と回転軸30の接合構造について説明する。
上記接合方法での第1の部材10に相当する回転軸30
は、その金属製軸本体32の先端部に金属製継手軸33
をねじ結合により一体回転するよう連結して構成されて
いる。継手軸33には、上記接合方法で設けたと同じ小
径孔部17aと大径孔部17bからなる有底嵌合孔17
が形成されている。一方、上記接合方法での第2の部材
11に相当するタービンロータ31は、円盤状のタービ
ンディスク34と、このタービンディスク34の周囲に
多数設けられたタービンブレード37と、タービンディ
スク34から突出したロータ軸部38とが、セラミック
により一体成形されている。ロータ軸部38は、上記接
合方法での嵌合突部13と同等のものであって、軸基部
38bの先端に小径軸部38aが形成されている。
FIG. 4 is a longitudinal sectional view of a main part showing a gas turbine provided with a coupling structure of the turbine rotor 31 and the rotating shaft 30 joined by the above-mentioned joining method. First, a joint structure between the turbine rotor 31 and the rotating shaft 30 will be described.
The rotating shaft 30 corresponding to the first member 10 in the above joining method
The metal joint shaft 33 is attached to the tip of the metal shaft main body 32.
Are connected so as to be integrally rotated by a screw connection. The joint shaft 33 has a bottomed fitting hole 17 having the same small-diameter hole 17a and large-diameter hole 17b as provided by the above-described joining method.
Are formed. On the other hand, the turbine rotor 31 corresponding to the second member 11 in the above-described joining method protrudes from the disk disk-shaped turbine disk 34, a large number of turbine blades 37 provided around the turbine disk 34, and the turbine disk 34. The rotor shaft 38 is integrally formed with ceramic. The rotor shaft portion 38 is equivalent to the fitting projection 13 in the above-described joining method, and has a small-diameter shaft portion 38a formed at the tip of a shaft base portion 38b.

【0035】回転軸30の継手軸33とタービンロータ
31とは上記の接合方法によって予め接合されている。
すなわち、継手軸33に設けた嵌合孔17にタービンロ
ータ31のロータ軸部38を挿入して、嵌合孔17の底
面とロータ軸部38の先端面との間に緩衝材14を介挿
し、継手軸33およびロータ軸部38と緩衝材14と
を、それらの接触面に介在させたろう材18を真空中で
溶融することによりろう付けして接合する。つづいて、
ろう材18が再溶融しない雰囲気でHIP処理を行って
緩衝材14と継手軸33およびロータ軸部38との界面
に拡散接合層24を形成させるとともに、嵌合孔17の
大径孔部17bとロータ軸部38の軸基部38bとの間
に焼ばめ部27を形成させる。この接合過程には従来の
ような金属チューブ内に密封する工程が存在しないこと
から、円盤状のタービンディスク34の周囲に多数形成
されたタービンブレード37は、壊れやすい尖った部分
を有しているにもかかわらず、上記接合過程において欠
損されるおそれが全くない。
The joint shaft 33 of the rotary shaft 30 and the turbine rotor 31 are previously joined by the above-mentioned joining method.
That is, the rotor shaft 38 of the turbine rotor 31 is inserted into the fitting hole 17 provided in the joint shaft 33, and the cushioning material 14 is inserted between the bottom surface of the fitting hole 17 and the tip end surface of the rotor shaft 38. , The joint shaft 33 and the rotor shaft portion 38 and the cushioning material 14 are brazed and joined by melting the brazing material 18 interposed between the contact surfaces thereof in a vacuum. Then,
HIP processing is performed in an atmosphere in which the brazing material 18 does not re-melt to form the diffusion bonding layer 24 at the interface between the cushioning material 14, the joint shaft 33 and the rotor shaft 38, and the large-diameter hole 17 b of the fitting hole 17 is formed. The shrink fit 27 is formed between the rotor shaft 38 and the shaft base 38b. Since there is no conventional process of sealing in a metal tube in this joining process, a large number of turbine blades 37 formed around the disc-shaped turbine disk 34 have fragile sharp portions. Nevertheless, there is no possibility of being lost during the joining process.

【0036】こうしてタービンロータ31に接合された
継手軸33を、軸本体32にねじ結合することにより、
回転軸30に組み付ける。この回転軸30の後部は以下
のように支持されている。すなわち、回転軸30の継手
軸33は、スリーブ39に対し挿入され、かつスプライ
ン40を介して噛み合うことにより、一体回転するよう
に結合されている。一方、回転軸30の軸本体32は、
圧縮機41の羽根車42に隙間を存して挿入されてお
り、羽根車42と上記スリーブ39とがフェース歯車4
3で噛み合って結合されている。回転軸30を挿入させ
た羽根車42およびスリーブ39は、軸本体32の前端
部(図の左側)に螺合されたナット(図示せず)の締め
付けによって、ロータ軸部31の近傍に配したスペーサ
44およびラビリンスリング51を介して、継手軸33
の外周面に突出したつば状係止部33aに押し付けられ
て固定されている。それにより、回転軸30にタービン
ロータ31と圧縮機41の羽根車42とが一体回転する
よう装着されている。
The joint shaft 33 thus joined to the turbine rotor 31 is screwed to the shaft main body 32,
Assemble to the rotating shaft 30. The rear part of the rotating shaft 30 is supported as follows. That is, the joint shaft 33 of the rotary shaft 30 is inserted into the sleeve 39 and meshes via the spline 40 so as to be integrally rotated. On the other hand, the shaft body 32 of the rotating shaft 30
The compressor 41 is inserted into the impeller 42 with a gap, and the impeller 42 and the sleeve 39 are
3 are engaged with each other. The impeller 42 and the sleeve 39 into which the rotating shaft 30 is inserted are arranged near the rotor shaft 31 by tightening a nut (not shown) screwed to the front end (left side in the figure) of the shaft main body 32. Through the spacer 44 and the labyrinth ring 51, the joint shaft 33
Is fixed by being pressed against a brim-shaped locking portion 33a protruding from the outer peripheral surface of the main body. Thereby, the turbine rotor 31 and the impeller 42 of the compressor 41 are mounted on the rotating shaft 30 so as to rotate integrally.

【0037】上記タービンロータ31から羽根車42に
及ぶ回転系は、圧縮機41側の軸受(図示せず)とター
ビンロータ31側の軸受47とによって回転自在に支持
されており、タービンロータ31側の軸受47は、スリ
ーブ39の外周面に固定されたインナーレース47aと
ケーシングC側に固定されたアウターレース47cとの
間でローラ47bが転動して、上記回転系を回転自在に
支持する。この軸受47には、潤滑油供給管48からケ
ーシングC内の潤滑油通路49を介して潤滑油OLが供
給されており、供給された潤滑油OLは、ラビリンスシ
ール52で封止されていることによって軸受48の周囲
に充満される。回転軸30の嵌合孔17とタービンロー
タ31のロータ軸部38との接合部は、潤滑油通路49
に近接して配置されていることにより、スリーブ39を
介して潤滑油OLで冷却される。
The rotating system extending from the turbine rotor 31 to the impeller 42 is rotatably supported by a bearing (not shown) on the compressor 41 side and a bearing 47 on the turbine rotor 31 side. In the bearing 47, the roller 47b rolls between an inner race 47a fixed to the outer peripheral surface of the sleeve 39 and an outer race 47c fixed to the casing C side to rotatably support the rotating system. The bearing 47 is supplied with lubricating oil OL from a lubricating oil supply pipe 48 via a lubricating oil passage 49 in the casing C, and the supplied lubricating oil OL is sealed with a labyrinth seal 52. Is filled around the bearing 48. The joint between the fitting hole 17 of the rotating shaft 30 and the rotor shaft 38 of the turbine rotor 31 is
Is cooled by the lubricating oil OL via the sleeve 39.

【0038】次に図4のガスタービンの作用について説
明する。圧縮機41から供給される圧縮空気Aを燃焼室
(図示せず)で燃焼させ、それにより発生する高温、高
圧の燃焼ガスGは、セラミック製スクロール53内のガ
ス通路を経てセラミック製ノズル54からセラミック製
タービンブレード37に導かれる。
Next, the operation of the gas turbine shown in FIG. 4 will be described. The compressed air A supplied from the compressor 41 is burned in a combustion chamber (not shown), and the high-temperature, high-pressure combustion gas G generated by the combustion is passed from a ceramic nozzle 54 through a gas passage in a ceramic scroll 53. It is guided to a ceramic turbine blade 37.

【0039】金属製回転軸30とセラミック製タービン
ロータ31はろう付け部18aと焼ばめ部27との2種
の接合手段で接合されている。この金属とセラミックの
接合おいて、ろう付け部18aは、図5のPの特性曲線
で示すように、温度上昇に伴って溶融点温度Tnに至る
まで接合強度が直線的に徐々に低下する温度特性を有
し、焼ばめ部27は、同図のQの特性曲線で示すよう
に、低温領域においてろう付け部18aよりも大きな結
合強度を維持するとともに、700〜800℃程度にな
ると、金属とセラミックの熱膨張差によって結合が緩ん
で結合強度が急激に低下する温度特性を有している。し
たがって、上記回転軸30とタービンロータ31の結合
構造では、比較的低い温度領域でのろう付け部18aの
みでは不足する結合強度を焼ばめ部27で補足するとと
もに、700℃付近での焼ばめ部27の結合強度の低下
をろう付け部18aで補足しており、さらに、ろう付け
部18a付近は、強固な接合手段である拡散接合層24
によって結合強度が強化されている。
The rotating shaft 30 made of metal and the turbine rotor 31 made of ceramic are joined by two kinds of joining means of the brazing portion 18a and the shrink-fitting portion 27. In the joining of the metal and the ceramic, the brazing portion 18a has a temperature at which the joining strength linearly gradually decreases to the melting point temperature Tn as the temperature rises, as shown by the characteristic curve P in FIG. As shown by the characteristic curve Q in FIG. 3, the shrink-fit portion 27 maintains the bonding strength larger than that of the brazing portion 18a in the low-temperature region, and when the temperature reaches about 700 to 800 ° C. It has a temperature characteristic in which the bond is loosened due to the difference in thermal expansion between the ceramic and the ceramic, and the bond strength is rapidly reduced. Therefore, in the coupling structure of the rotating shaft 30 and the turbine rotor 31, the shrink-fit portion 27 supplements the joint strength that is insufficient only with the brazing portion 18a in a relatively low temperature range, and reduces the shrinkage at around 700 ° C. The lowering of the bonding strength of the brazing portion 27 is supplemented by the brazing portion 18a, and the vicinity of the brazing portion 18a is a diffusion bonding layer 24 which is a strong bonding means.
The bonding strength is thus enhanced.

【0040】しかも、ろう付け部18aは、スリーブ3
9の潤滑油通路49の近傍に位置しているので、潤滑油
OLによる冷却で温度上昇を抑制されて結合強度の低下
が防止される。一方、焼ばめ部27は、スリーブ39に
おける潤滑油OLとの接触箇所の近傍に形成されている
ことから、燃焼ガスGによる温度上昇を抑制される。し
たがって、回転軸30とタービンロータ31の接合構造
は、ろう付け部18aと焼ばめ部27との異なる接合手
段による相互の補間作用と、ろう付け部18aと焼ばめ
部27の潤滑油OLによる冷却と、拡散接合層24の形
成とにより、ガスタービンの一般的な駆動温度である7
00℃付近でも常に安定した結合強度を維持する。
In addition, the brazing portion 18a is
Since the lubricating oil passage 49 is located near the lubricating oil passage 49, the cooling by the lubricating oil OL suppresses a rise in temperature, thereby preventing a decrease in bonding strength. On the other hand, since the shrink fit portion 27 is formed near the portion of the sleeve 39 that comes into contact with the lubricating oil OL, the temperature rise due to the combustion gas G is suppressed. Therefore, the joining structure of the rotating shaft 30 and the turbine rotor 31 is based on the mutual interpolating action of the brazing portion 18a and the shrink-fitting portion 27 by different joining means, and the lubricating oil OL of the brazing portion 18a and the shrink-fitting portion 27. And the formation of the diffusion bonding layer 24, which is a general driving temperature of the gas turbine 7.
A stable bonding strength is always maintained even at around 00 ° C.

【0041】さらに、ろう付け部18aと焼ばめ部27
とは、嵌合孔17とロータ軸部38との嵌合部分の両端
であって互いに離間した箇所に形成されている。そのた
め、継手軸33とロータ軸部38の接合部は特に曲げ荷
重に対して高い強度を持っているので、タービンロータ
31は回転軸30の先端部に安定して保持される。ま
た、金属製継手軸33とセラミック製ロータ軸部38と
は、金属とセラミックの中間の熱膨張係数を有する緩衝
材14を介在して、ろう材18でろう付けされているた
め、温度上昇や急激な温度変化における継手軸33の熱
膨張や収縮に伴う変形力を、緩衝材14やろう材18で
吸収または緩和させることができ、タービンロータ31
のロータ軸部38を割れなどが生じないよう保護でき
る。
Further, the brazing portion 18a and the shrink fit portion 27
Are formed at both ends of the fitting portion between the fitting hole 17 and the rotor shaft portion 38 and at positions separated from each other. Therefore, the joint between the joint shaft 33 and the rotor shaft 38 has high strength particularly against bending load, so that the turbine rotor 31 is stably held at the tip of the rotating shaft 30. Further, since the metal joint shaft 33 and the ceramic rotor shaft portion 38 are brazed with the brazing material 18 with the buffer material 14 having a thermal expansion coefficient intermediate between that of metal and ceramic, the temperature rise and the The deformation force caused by the thermal expansion and contraction of the joint shaft 33 due to a rapid temperature change can be absorbed or moderated by the cushioning material 14 and the brazing material 18.
The rotor shaft portion 38 can be protected from cracks and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る金属とセラミックの接
合方法におけるろう付け工程を示す縦断面図で、(a)
は金属製の第1の部材とセラミック製の第2の部材を互
いに接触させる前の状態、(b)は両部材をろう付けす
る状態、(c)はろう付け完了状態をそれぞれ示す。
FIG. 1 is a longitudinal sectional view showing a brazing step in a method for joining a metal and a ceramic according to one embodiment of the present invention, and FIG.
Shows a state before the first metal member and the second ceramic member are brought into contact with each other, (b) shows a state in which both members are brazed, and (c) shows a brazed state.

【図2】ろう付け工程に続くHIP処理工程を示す縦断
面図である。
FIG. 2 is a longitudinal sectional view showing a HIP process following a brazing process.

【図3】上記HIP処理工程の終了による接合完了状態
を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a joining completed state by the end of the HIP processing step.

【図4】本発明の一実施例に係るタービンと回転軸の接
合構造を備えたガスタービンを示す要部の縦断面図であ
る。
FIG. 4 is a longitudinal sectional view of a main part showing a gas turbine provided with a turbine and a rotating shaft joint structure according to one embodiment of the present invention.

【図5】金属とセラミックとにおけるろう付けおよび焼
ばめの温度と結合強度との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing the relationship between brazing and shrink-fitting temperatures and bonding strength between metal and ceramic.

【図6】従来の金属とセラミックの接合方法の一工程を
示す縦断面図である。
FIG. 6 is a longitudinal sectional view showing one step of a conventional method for joining a metal and a ceramic.

【符号の説明】[Explanation of symbols]

10…第1の部材、11…第2の部材、14…緩衝材、
17…有底嵌合孔、18…ろう材、18a…ろう付け
部、19…すき間、24…拡散接合層、27…焼ばめ
部、30…回転軸、31…タービン、34…ディスク、
37…ブレード、38…ロータ軸部、41…圧縮機、4
9…潤滑油通路、A…圧縮空気,G…燃焼ガス、OL…
潤滑油。
10 first member, 11 second member, 14 cushioning material,
17: bottomed fitting hole, 18: brazing material, 18a: brazing portion, 19: gap, 24: diffusion bonding layer, 27: shrink fit portion, 30: rotating shaft, 31: turbine, 34: disk,
37: blade, 38: rotor shaft, 41: compressor, 4
9: lubricating oil passage, A: compressed air, G: combustion gas, OL ...
Lubricant.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−102877(JP,A) 特開 昭62−224494(JP,A) 特開 昭63−139075(JP,A) 特開 平4−162957(JP,A) 実開 平6−1701(JP,U) 実開 昭62−148701(JP,U) 実開 平2−72329(JP,U) (58)調査した分野(Int.Cl.6,DB名) F01D 5/02 F01D 25/00 F02C 7/06 F16B 11/00 C04B 37/02 F02B 39/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-102877 (JP, A) JP-A-62-224494 (JP, A) JP-A-63-139075 (JP, A) JP-A-4- 162957 (JP, A) Japanese Utility Model 61-1701 (JP, U) Japanese Utility Model 62-148701 (JP, U) Japanese Utility Model Utility Model 2-72329 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) F01D 5/02 F01D 25/00 F02C 7/06 F16B 11/00 C04B 37/02 F02B 39/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属製の第1の部材と、セラミック製の
第2の部材と、これら部材の間に介挿されて前記金属と
セラミックの中間の熱膨張係数を持つ緩衝材とを、それ
らの接触面に介在させたろう材を真空中で溶融すること
によりろう付けし、 つづいて、前記緩衝材を介してろう付けで結合した第1
および第2の部材を、前記ろう材が再溶融しない程度の
高温高圧ガスの雰囲気に直接さらすことにより、熱間静
水加圧処理を行って前記緩衝材と前記第1および第2の
部材との界面に拡散接合層を形成する金属とセラミック
の接合方法であって、 前記第2の部材における緩衝材との接触面をあらかじめ
メタライズ処理しておく方法。
A first member made of metal, a second member made of ceramic, and a cushioning material interposed between these members and having a coefficient of thermal expansion intermediate between the metal and ceramic. The brazing material interposed between the contact surfaces of the first and second brazing materials is brazed by melting in a vacuum, and then the first brazing material is connected by brazing via the cushioning material.
And the second member is of such a degree that the brazing material does not re-melt.
A metal / ceramic bonding method for forming a diffusion bonding layer at an interface between the cushioning material and the first and second members by performing hot isostatic pressing by directly exposing to a high-temperature high-pressure gas atmosphere. And a method of previously metallizing a contact surface of the second member with the cushioning material.
【請求項2】 金属製の第1の部材に有底嵌合孔を形成
し、 この嵌合孔に、セラミック製の第2の部材の嵌合突部を
挿入し、 前記嵌合孔の底面と前記嵌合突部の先端面との間に、前
記金属とセラミックの中間の熱膨張係数を持つ緩衝材を
介挿し、 これら第1および第2の部材と前記緩衝材とをそれらの
接触面に介在させたろう材を真空中で溶融することによ
りろう付けし、 つづいて、前記緩衝材を介してろう付けで結合した第1
および第2の部材を、前記ろう材が再溶融しない程度の
高温高圧ガスの雰囲気に直接さらすことにより、熱間静
水加圧処理を行って前記緩衝材と前記第1および第2の
部材との界面に拡散接合層を形成させる金属とセラミッ
クの接合方法であって、 前記嵌合突部の先端面をあらかじめメタライズ処理して
おく方法。
2. A bottomed fitting hole is formed in a first member made of metal, and a fitting projection of a second member made of ceramic is inserted into the fitting hole. A buffer having a thermal expansion coefficient intermediate between that of the metal and the ceramic is interposed between the first and second members and the tip of the fitting projection. Is brazed by melting the brazing material interposed in the vacuum in a vacuum, and then the first brazing material joined by brazing via the cushioning material.
And the second member is of such a degree that the brazing material does not re-melt.
A metal / ceramic bonding method for forming a diffusion bonding layer at an interface between the cushioning material and the first and second members by performing hot isostatic pressing by directly exposing to a high-temperature high-pressure gas atmosphere. And a method of previously metallizing the distal end surface of the fitting projection.
【請求項3】 請求項2において、前記嵌合孔に前記嵌
合突部を挿入するにあたり、前記嵌合孔の内周面の少な
くとも一部と前記嵌合突部の対応する部分との間にすき
間を形成しておき、 前記拡散接合層形成後の冷却に伴う前記第1の部材の収
縮によって、前記嵌合孔の前記少なくとも一部と前記嵌
合突部との間に焼ばめを形成する金属とセラミックの接
合方法。
3. The fitting projection according to claim 2, wherein the fitting projection is inserted into the fitting hole between at least a part of an inner peripheral surface of the fitting hole and a corresponding part of the fitting projection. A shrink fit between the at least a part of the fitting hole and the fitting projection due to shrinkage of the first member accompanying cooling after forming the diffusion bonding layer. The method of joining the metal and ceramic to be formed.
【請求項4】 請求項2の接合方法によって、第1の部
材である金属製の回転軸の端部に、第2の部材であるセ
ラミック製のタービンロータを接合した構造であって、 前記回転軸の端部に形成された有底嵌合孔に、前記ター
ビンロータのロータ軸部が挿入されて接合されている回
転軸とタービンの接合構造。
4. A structure in which a ceramic turbine rotor as a second member is joined to an end of a metal rotary shaft as a first member by the joining method according to claim 2, A joint structure between a rotary shaft and a turbine, wherein a rotor shaft portion of the turbine rotor is inserted and joined to a bottomed fitting hole formed at an end of the shaft.
【請求項5】 請求項3の接合方法によって、第1の部
材である金属製の回転軸の端部に、第2の部材であるセ
ラミック製のタービンロータを接合した構造であって、 前記回転軸の端部に形成された有底嵌合孔に、前記ター
ビンロータのロータ軸部が挿入されてろう付けされ、 前記嵌合孔と前記ロータ軸部との間に焼きばめが形成さ
れている回転軸とタービンロータの接合構造。
5. A structure in which a ceramic turbine rotor as a second member is joined to an end of a metal rotating shaft as a first member by the joining method according to claim 3. A rotor shaft of the turbine rotor is inserted into a bottomed fitting hole formed at an end of the shaft and brazed, and a shrink fit is formed between the fitting hole and the rotor shaft. Connection structure between the rotating shaft and the turbine rotor.
【請求項6】 回転軸に装着された圧縮機とタービンを
有し、圧縮機から供給された圧縮空気を燃焼室で燃焼さ
せて、タービンに供給するガスタービンであって、 請求項4または5の回転軸とタービンロータの接合構造
を備え、 前記回転軸を支持する軸受に潤滑油を供給する潤滑油通
路を備え、 前記回転軸と前記タービンロータとの接合部が、前記潤
滑油通路の近傍に配置されているガスタービン。
6. A gas turbine having a compressor and a turbine mounted on a rotating shaft, wherein the compressed air supplied from the compressor is burned in a combustion chamber and supplied to the turbine. A joint structure between the rotating shaft and the turbine rotor, a lubricating oil passage for supplying lubricating oil to a bearing that supports the rotating shaft, and a joint between the rotating shaft and the turbine rotor near the lubricating oil passage. Gas turbines located in
JP7150949A 1995-05-24 1995-05-24 Method of joining metal and ceramic, joining structure and gas turbine provided with this joining structure Expired - Lifetime JP2974936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7150949A JP2974936B2 (en) 1995-05-24 1995-05-24 Method of joining metal and ceramic, joining structure and gas turbine provided with this joining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7150949A JP2974936B2 (en) 1995-05-24 1995-05-24 Method of joining metal and ceramic, joining structure and gas turbine provided with this joining structure

Publications (2)

Publication Number Publication Date
JPH08319802A JPH08319802A (en) 1996-12-03
JP2974936B2 true JP2974936B2 (en) 1999-11-10

Family

ID=15507948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7150949A Expired - Lifetime JP2974936B2 (en) 1995-05-24 1995-05-24 Method of joining metal and ceramic, joining structure and gas turbine provided with this joining structure

Country Status (1)

Country Link
JP (1) JP2974936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491568B2 (en) 2016-09-30 2022-11-08 Hitachi Metals, Ltd. Method for manufacturing solenoid sleeve

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102877A (en) * 1982-11-29 1984-06-14 株式会社東芝 Ceramics metal bonding method
JPH0350241Y2 (en) * 1986-03-14 1991-10-28
JPH0638996B2 (en) * 1986-03-26 1994-05-25 東洋ラジエ−タ−株式会社 Copper brazing filler metal for vacuum brazing of stainless steel
JPS63139075A (en) * 1986-12-02 1988-06-10 日本碍子株式会社 Ceramic-metal joined body, manufacture and joining apparatus
JPH0272329U (en) * 1988-11-21 1990-06-01
JPH04162957A (en) * 1990-10-25 1992-06-08 Mitsubishi Heavy Ind Ltd Hard facing method for hardly weldable high-temperature resistant member
JPH061701U (en) * 1992-06-11 1994-01-14 川崎重工業株式会社 Joining structure of metal rotating shaft and ceramic rotating body

Also Published As

Publication number Publication date
JPH08319802A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP5538401B2 (en) Assembly of titanium and steel members by diffusion welding
JP5202175B2 (en) Heater with shaft
JPS6272578A (en) Method of connecting ceramic stub shaft to metal shaft and rotor shaft device thereby
JPH0427363B2 (en)
JPH0415361B2 (en)
US20060177316A1 (en) Shrink-fit stress coupling for a shaft of differing materials
JP3213623B2 (en) Rotating device stator
JP2974936B2 (en) Method of joining metal and ceramic, joining structure and gas turbine provided with this joining structure
JP2002529368A (en) How to join ceramic to metal
JP4946295B2 (en) Thruster
JPS6191073A (en) Structure for bonding ceramic axis and metal axis
US5855313A (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPS60201002A (en) Turbine rotor
GB2106016A (en) Gas turbine rotor assembly
GB2106425A (en) Gas turbine engine rotor assembly
JPS58214018A (en) Power transmission method
WO2001016051A1 (en) Joining of cvd diamond bodies to metal structures
JP2508823B2 (en) How to connect a ceramic rotor to a metal shaft
JPH0351321Y2 (en)
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPH02149479A (en) Method for joining ceramic member and metallic member
JPH0447101A (en) Moving blade of turbo machine
JPS61219766A (en) Joint structure of ceramic shaft and metal shaft
JPH03128166A (en) Arc welding method for steel sheet
JP2759754B2 (en) Ceramic gas turbine rotor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 14

EXPY Cancellation because of completion of term