JP2973484B2 - Method for growing high resistance InAlAs layer - Google Patents

Method for growing high resistance InAlAs layer

Info

Publication number
JP2973484B2
JP2973484B2 JP2186343A JP18634390A JP2973484B2 JP 2973484 B2 JP2973484 B2 JP 2973484B2 JP 2186343 A JP2186343 A JP 2186343A JP 18634390 A JP18634390 A JP 18634390A JP 2973484 B2 JP2973484 B2 JP 2973484B2
Authority
JP
Japan
Prior art keywords
inalas
layer
resistance
growth
inalas layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2186343A
Other languages
Japanese (ja)
Other versions
JPH0472720A (en
Inventor
正芳 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2186343A priority Critical patent/JP2973484B2/en
Publication of JPH0472720A publication Critical patent/JPH0472720A/en
Application granted granted Critical
Publication of JP2973484B2 publication Critical patent/JP2973484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信や光情報処理、光計測等で用いられ
る発光、受光素子や光電子集積素子に適用できる高抵抗
InAlAs層の成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a light emitting device used in optical communication, optical information processing, optical measurement, etc.
The present invention relates to a method for growing an InAlAs layer.

(従来の技術) InAlAsはInPに格子整合し、且つ、波長1μm帯の光
通信、光情報処理等に有用な材料である。特に、InAlAs
とInGaAsとのヘテロ構造を増倍層とする超格子アバラン
シェフォトダイオードAPD(第16回インターナショナル
シンポジウムオンGaAsアンドリレイテッドコンパウンズ
(16th Int.Symposium on GaAs and Related Compound
s,Karuizawa,LB−3(1989)に一例が記載されてい
る。)や共鳴トンネルバリアダイオード(ジャパニーズ
・ジャーナル・アプライド・フィジックス(Jpn.Appl.P
hys.28,ppL750−L753(1989)に記載されている。)等
に用いられている。高抵抗InP系の層の形成方法として
は、従来よりクロライド系VPE法では固定Feをハロゲン
系ガスにより塩化鉄として供給することによって、ま
た、MOVPE法ではフェロセン((C2H52Fe)をドーピン
グ原料とすることによって行っている。しかしながら、
これらの方法では成長系が汚染されて、次にノンドープ
層を形成するときに高品質の成長膜ができないという問
題点を有している。
(Prior Art) InAlAs is a material that is lattice-matched to InP and is useful for optical communication, optical information processing, and the like in a wavelength band of 1 μm. In particular, InAlAs
Superlattice Avalanche Photodiode APD (16th International Symposium on GaAs and Related Compounds (16th Int. Symposium on GaAs and Related Compound)
s, Karuizawa, LB-3 (1989) describes an example. ) And resonant tunnel barrier diodes (Japanese Journal Applied Physics (Jpn.Appl.P.)
hys.28, ppL750-L753 (1989). ) Etc. Conventionally, a high-resistance InP-based layer is formed by supplying fixed Fe as iron chloride with a halogen-based gas in the chloride-based VPE method, and ferrocene ((C 2 H 5 ) 2 Fe) in the MOVPE method. Is used as a doping material. However,
These methods have a problem that the growth system is contaminated and a high-quality grown film cannot be formed when a non-doped layer is next formed.

また、該InAlAsの高抵抗化の手法は確立されておら
ず、光電子集積回路または素子の集積化に不可欠な高抵
抗InAlAs層による素子分離は困難な状況にある。
In addition, a technique for increasing the resistance of the InAlAs has not been established, and it is difficult to separate elements using a high-resistance InAlAs layer that is indispensable for integration of optoelectronic integrated circuits or elements.

(発明が解決しようとする課題) 従来の技術の項で上述したようにInAlAs半導体層の高
抵抗化の手法はまだ確立されていない。本発明の目的は
前述の問題点を解決し、形成が容易な高抵抗InAlAs層を
形成する成長方法を提供することにある。
(Problems to be Solved by the Invention) As described above in the related art section, a technique for increasing the resistance of the InAlAs semiconductor layer has not yet been established. An object of the present invention is to solve the above-mentioned problems and to provide a growth method for forming a high-resistance InAlAs layer which is easy to form.

(課題を解決するための手段) 本発明の高抵抗InAlAs層の成長方法はIII族元素原料
として有機金属原料及びV族元素ガスとしてアルシンガ
スを用いるInAlAs層の成長方法において、InAlAs半導体
層成長時に、Znをドーピング、及びV族元素原料とIII
族元素原料の比(以下V/III比と略す)が100以下、の条
件で成長することを特徴とする。
(Means for Solving the Problems) The method for growing a high-resistance InAlAs layer of the present invention is a method for growing an InAlAs layer using an organometallic material as a group III element material and an arsine gas as a group V element gas. Doping Zn, Group V element material and III
It is characterized by growing under the condition that the ratio of group element raw materials (hereinafter abbreviated as V / III ratio) is 100 or less.

(作用) MOVPE法によるInAlAs成長におけるノンドープ成長層
のキャリア濃度はn型〜1016cm-3程度である。この条件
のもとでZnをドーピングし、且つ、V/III比を低下させ
ることによって、ZnとAs空孔の相互作用によりキャリア
トラップを形成、高抵抗InAlAs層を作製することができ
る。本発明のInAlAs高抵抗化の方法は、新たな装置を必
要とせず、且つ、成長系を汚染することなく容易に高抵
抗層を成長できるという特徴を持つ。
(Function) The carrier concentration of the non-doped growth layer in the growth of InAlAs by MOVPE is about n-type to about 10 16 cm -3 . By doping Zn under these conditions and lowering the V / III ratio, a carrier trap is formed by the interaction between Zn and As vacancies, and a high-resistance InAlAs layer can be manufactured. The method of increasing the resistance of InAlAs according to the present invention has a feature that a high-resistance layer can be easily grown without requiring a new device and without contaminating a growth system.

(実施例) 以下、本発明の実施例について詳細に説明する。第2
図には、成長に用いた有機金属気相成長(MOVPE)装置
の構成図を示す。III族元素原料としては、トリメチル
インジウム(TMI)1、トリメチルアルミニウム(TMA)
2を、V族元素原料としてはアルシンガス4を用いてい
る。Zn原料はジエチルジンク(DEZ)3である。第2図
には他の層を成長することを考えてホスフィンガス5も
用意されている。各原料を減圧(70Torr)の反応管8に
導入し、InAlAsをInP成長基板9上に成長した。成長温
度は700℃及び成長速度4.3A/secである。Znドーピング
は、0℃のDEZバフラーに5ccの水素を導入することによ
りDEZガスを得ている。DEZとIII族元素との比は0.272で
ある。第1図にはV/III比変化に対するホール(正孔)
濃度及びフォトルミネッセンス(PL)強度の関係を示し
ている。V/III比が低下するに従い、ホール濃度は低下
し、V/III比100においては、1015cm-3以下の高抵抗とな
った。またホール濃度により規格化PL強度もV/III比の
低下と共に減少した。これは、As圧低下にともなうV族
空孔とZnの相互作用によりInAlAs中にキャリアトラップ
が形成されたことを示している。これに起因して高抵抗
InAlAs層が形成される。この結果からV/III比100以下で
Znドーピングすることにより高抵抗化することがわか
る。
(Example) Hereinafter, an example of the present invention will be described in detail. Second
The figure shows the configuration of the metal organic chemical vapor deposition (MOVPE) apparatus used for the growth. Group III element raw materials include trimethylindium (TMI) 1, trimethylaluminum (TMA)
2 and arsine gas 4 as a group V element raw material. The Zn raw material is diethyl zinc (DEZ) 3. In FIG. 2, a phosphine gas 5 is also prepared in consideration of growing another layer. Each raw material was introduced into the reaction tube 8 under reduced pressure (70 Torr), and InAlAs was grown on the InP growth substrate 9. The growth temperature is 700 ° C. and the growth rate is 4.3 A / sec. In the Zn doping, a DEZ gas is obtained by introducing 5 cc of hydrogen into a DEZ buffer at 0 ° C. The ratio of DEZ to Group III element is 0.272. Fig. 1 shows holes (holes) with respect to V / III ratio change.
The relationship between the concentration and the photoluminescence (PL) intensity is shown. As the V / III ratio decreased, the hole concentration decreased. At a V / III ratio of 100, a high resistance of 10 15 cm −3 or less was obtained. The normalized PL intensity also decreased with the decrease in V / III ratio depending on the hole concentration. This indicates that a carrier trap was formed in InAlAs due to the interaction between Zn and the group V vacancy due to the decrease in As pressure. Due to this high resistance
An InAlAs layer is formed. From this result, V / III ratio of 100 or less
It can be seen that the resistance is increased by doping with Zn.

これにより光電子集積回路または素子の集積化におい
てもこの高抵抗InAlAs層を有効な絶縁層とすることが可
能となった。本発明の高抵抗InAlAs層の作製方法はMOVP
E法に限らず、CBE等の成長記述においても可能であり、
適用できる。また本実施例では縦型の成長装置を用いた
が、横型反応管の成長装置を用いても良い。
This has made it possible to use this high-resistance InAlAs layer as an effective insulating layer even in the integration of optoelectronic integrated circuits or elements. The method for producing the high-resistance InAlAs layer of the present invention is MOVP.
Not only in the E method, but also in growth descriptions such as CBE,
Applicable. Although a vertical growth apparatus is used in this embodiment, a horizontal reaction tube growth apparatus may be used.

(発明の効果) 本発明のInAlAs半導体層の高抵抗化の手法により、容
易に高抵抗層を形成することができる。更にこの方法に
よりヘテロ構造の積層時において、急峻な界面を有する
高抵抗InAlAs薄膜層を形成でき、かつ成長装置のZnによ
る汚染は小さいのでその後の成長層に影響を与える事が
ない。また、InAlAsはInPに格子整合するので、光電子
集積回路あるいは素子の集積化における素子分離のため
の絶縁層としても有用である。
(Effect of the Invention) By the technique of increasing the resistance of the InAlAs semiconductor layer of the present invention, a high resistance layer can be easily formed. Furthermore, this method can form a high-resistance InAlAs thin film layer having a steep interface when stacking a heterostructure, and does not affect subsequent growth layers because the Zn contamination of the growth apparatus is small. Further, since InAlAs lattice-matches with InP, it is also useful as an insulating layer for element isolation in optoelectronic integrated circuits or element integration.

【図面の簡単な説明】[Brief description of the drawings]

第1図はInAlAs成長時のV/III比とホール濃度及びフォ
トルミネッセンス強度の関係を示した図である。 第2図は、本発明の実施例で用いた有機金属気相成長装
置の構成図である。 図において 1……トリメチルインジウム、 2……トリメチルアルミニウム、 3……ジエチルジンク、4……アルシンガス、 5……ホスフィンガス、6……RFコイル、 7……サセプタ、8……反応管、9……成長基板
FIG. 1 is a diagram showing the relationship between the V / III ratio during the growth of InAlAs, the hole concentration, and the photoluminescence intensity. FIG. 2 is a configuration diagram of the metal organic chemical vapor deposition apparatus used in the embodiment of the present invention. In the figure, 1 ... trimethylindium, 2 ... trimethylaluminum, 3 ... diethyl zinc, 4 ... arsine gas, 5 ... phosphine gas, 6 ... RF coil, 7 ... susceptor, 8 ... reaction tube, 9 ... … Growth substrate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】III族元素原料として有機金属原料及びV
族元素原料としてアルシンガスを用いるInAlAs層の成長
方法において、InAlAs層成長時に、Znドーピング、及び
V族元素原料とIII族元素原料との比(V/III比)が100
以下、の条件で成長することを特徴とするInAlAs層の成
長方法。
An organometallic raw material and V as a group III element raw material.
In the method of growing an InAlAs layer using arsine gas as a group element material, Zn doping and the ratio of a group V element material to a group III element material (V / III ratio) are 100
A method for growing an InAlAs layer, comprising growing under the following conditions.
JP2186343A 1990-07-13 1990-07-13 Method for growing high resistance InAlAs layer Expired - Lifetime JP2973484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2186343A JP2973484B2 (en) 1990-07-13 1990-07-13 Method for growing high resistance InAlAs layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2186343A JP2973484B2 (en) 1990-07-13 1990-07-13 Method for growing high resistance InAlAs layer

Publications (2)

Publication Number Publication Date
JPH0472720A JPH0472720A (en) 1992-03-06
JP2973484B2 true JP2973484B2 (en) 1999-11-08

Family

ID=16186699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2186343A Expired - Lifetime JP2973484B2 (en) 1990-07-13 1990-07-13 Method for growing high resistance InAlAs layer

Country Status (1)

Country Link
JP (1) JP2973484B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716036B1 (en) * 1994-02-07 1997-07-11 Mitsubishi Electric Corp Semiconductor layer composed of high resistance and process for its crystal growth.
CN116705947B (en) * 2023-07-27 2023-10-17 江西兆驰半导体有限公司 LED epitaxial wafer based on silicon substrate, preparation method of LED epitaxial wafer and LED

Also Published As

Publication number Publication date
JPH0472720A (en) 1992-03-06

Similar Documents

Publication Publication Date Title
JP3760663B2 (en) Method for producing group III nitride compound semiconductor device
JPH0812844B2 (en) (III) -Group V compound semiconductor and method for forming the same
US20050221592A1 (en) Method of growing III-V compound semiconductor layer, substrate product, and semiconductor device
US6942731B2 (en) Method for improving the efficiency of epitaxially produced quantum dot semiconductor components
JP2973484B2 (en) Method for growing high resistance InAlAs layer
US5294565A (en) Crystal growth method of III - V compound semiconductor
JPH05175150A (en) Compound semiconductor and its manufacture
US5858818A (en) Formation of InGaSa p-n Junction by control of growth temperature
US5622559A (en) Method of preparing compound semiconductor
JP3155007B2 (en) Compound semiconductor and manufacturing method thereof
Chen et al. Effects of trimethylindium on the purity of In 0.5 Al 0.5 P and In 0.5 Al 0.5 as epilayers grown by metalorganic chemical vapor deposition
JP2945464B2 (en) Method for manufacturing semiconductor device
JP3156909B2 (en) Vapor growth method of semiconductor laminated structure
JP2946280B2 (en) Semiconductor crystal growth method
JP3149026B2 (en) Manufacturing method of semiconductor light receiving element
JP2991074B2 (en) Metalorganic vapor phase epitaxy
JP3109149B2 (en) Compound semiconductor crystal growth method
JPH0684805A (en) Compound semiconductor crystalline growth method
JPH0714785A (en) Semiconductor epitaxial substrate and production thereof
JPH0387019A (en) Manufacture of iii-v compound semiconductor element
JP3194327B2 (en) Metalorganic vapor phase epitaxy
JP3079591B2 (en) Vapor growth of compound semiconductors
JP2005536896A (en) Manufacturing method of semiconductor chip emitting electromagnetic radiation and semiconductor chip emitting electromagnetic radiation
JP3074846B2 (en) Method for manufacturing semiconductor device
JP3213551B2 (en) Method and apparatus for vapor phase growth of III-V compound semiconductors