JP2973466B2 - Optical fiber fusion splicer - Google Patents

Optical fiber fusion splicer

Info

Publication number
JP2973466B2
JP2973466B2 JP13009590A JP13009590A JP2973466B2 JP 2973466 B2 JP2973466 B2 JP 2973466B2 JP 13009590 A JP13009590 A JP 13009590A JP 13009590 A JP13009590 A JP 13009590A JP 2973466 B2 JP2973466 B2 JP 2973466B2
Authority
JP
Japan
Prior art keywords
optical fiber
discharge current
circuit
selection
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13009590A
Other languages
Japanese (ja)
Other versions
JPH0424603A (en
Inventor
真弘 浜田
啓司 大阪
公 柳
洋一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13009590A priority Critical patent/JP2973466B2/en
Publication of JPH0424603A publication Critical patent/JPH0424603A/en
Application granted granted Critical
Publication of JP2973466B2 publication Critical patent/JP2973466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信等において光ファイバを放電加熱によ
り融着接続する装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an apparatus for fusion splicing an optical fiber by discharge heating in optical communication or the like.

(従来の技術及び解決しようとする課題) 従来の外径125μmの光ファイバを融着接続する装置
では、接続損失が小さくなる最適放電電流値を1ヶの可
変抵抗を用いて調整プリセットが可能である。しかし、
外径125μmの光ファイバにも、その構造上シングルモ
ード光ファイバ、マルチモード光ファイバ等があり、各
々最適放電電流値が異なる。又近年光ファイバ心線を複
数まとめたテープ構造とし、これら複数の心線を一括接
続する技術が確立されている。この場合、一括接続する
心線数によって最適放電電流値が異なる。このような最
適放電電流値の異なる光ファイバを一台の装置で可能と
するでは、適用光ファイバの種類の数だけ電流調整用VR
を設け、接続する光ファイバの種類を選択するすると、
その光ファイバに合うようにリセットされたVRを自動的
にリレーなどを用いて選択するようになっている。
(Conventional technology and problems to be solved) In a conventional device for fusion splicing an optical fiber having an outer diameter of 125 μm, it is possible to adjust and preset an optimum discharge current value at which connection loss is reduced by using one variable resistor. is there. But,
Optical fibers having an outer diameter of 125 μm also include single-mode optical fibers and multi-mode optical fibers due to their structures, each having a different optimum discharge current value. In recent years, a technique has been established in which a plurality of optical fiber cores are formed into a tape structure and these plural cores are collectively connected. In this case, the optimum discharge current value differs depending on the number of core wires connected collectively. In order to enable such optical fibers having different optimum discharge current values to be realized by one device, the number of VRs for current adjustment is the same as the number of applicable optical fibers.
And select the type of optical fiber to be connected,
A VR reset to match the optical fiber is automatically selected using a relay or the like.

第3図は従来の共用型融着接続装置の電流選択回路図
である。図面において、(1′)は選択用VR,(2′)
は切換用のリレー、(4)はCPU、(5)は光ファイバ
種別選択回路、(6)はメモリ、(7)はバッファ(D
−FF)である。
FIG. 3 is a circuit diagram of a current selection circuit of a conventional shared type fusion splicer. In the drawing, (1 ') is a VR for selection, (2')
Is a switching relay, (4) is a CPU, (5) is an optical fiber type selection circuit, (6) is a memory, (7) is a buffer (D
−FF).

この共用型融着装置は、放電電流設定用VRを選択する
のに、図に示すようにリレー接点(2′)で切換えてい
たので、適用光ファイバが2種類の時はVR数2ヶ、リレ
ー接点構成2C、光ファイバが4種類のときはVR4ヶ、リ
レー接点6Cとなりn種類の光ファイバを共用する場合
は、VR数nヶ、リレー接点構成2(n−1)Cとなる。
このため、これらの部品を制御基板に実装する場合、実
装面積が大きくなって基板の小型化が不可能である。又
調整時にもVRのため微調整が難しく、さらに設定値の再
現性も悪いという問題点があった。
In this common-type fusion splicer, the selection of the discharge current setting VR is switched by the relay contact (2 ') as shown in the figure, so when there are two types of applicable optical fibers, two VRs are required. The relay contact configuration 2C, when there are four types of optical fibers, there are four VRs, the relay contacts 6C, and when n types of optical fibers are shared, the number of VRs is n, and the relay contact configuration 2 (n-1) C.
For this reason, when mounting these components on a control board, the mounting area becomes large and it is impossible to reduce the size of the board. In addition, there is a problem that it is difficult to make fine adjustments due to VR during the adjustment, and that the reproducibility of the set values is also poor.

(課題を解決するための手段) 本発明は上述の問題点を解消した光ファイバの融着接
続装置を提供するもので、その特徴は、上述のような装
置において、接続する光ファイバの種類を選択するとCP
Uが信号を送信して値を切換える回路に直列接続した固
定抵抗とアナログスイッチ(マルチプレクサ)を備えて
おり放電電流値の設定レベルが8段以上必要な電流切換
回路の場合、放電電流選択部を粗選択を行なう第1段回
路と微選択を行なう第2段回路構成となし、固定抵抗と
アナログスイッチの部品数を低減させたことにある。
(Means for Solving the Problems) The present invention provides an optical fiber fusion splicing apparatus which has solved the above-mentioned problems. Select and CP
In the case of a current switching circuit in which U has a fixed resistor and an analog switch (multiplexer) connected in series to a circuit for transmitting a signal and switching a value, and requires a discharge current value setting level of eight or more stages, a discharge current selection unit is provided. A first-stage circuit for performing a coarse selection and a second-stage circuit for performing a fine selection are provided, and the number of components of a fixed resistor and an analog switch is reduced.

(実施例) 第1図は本発明の融着接続装置における放電電流選
択、制御回路の具体例の回路図である。
(Embodiment) FIG. 1 is a circuit diagram of a specific example of a discharge current selection and control circuit in a fusion splicing apparatus according to the present invention.

第1図において、A部は放電電流選択部であって、粗
選択を行なう第1段回路と微選択を行なう第2段回路よ
り成っている。図面において、(1)は選択用抵抗、
(2)はマルチプレクサであって、(2)のマルチプレ
クサによって選択用抵抗を選択する。(4)はCPU、
(5)は光ファイバ種別選択回路、(6)はメモリ、
(7)はD−FFであり、CPU(4)の信号によりマルチ
プレクサ(2)を制御する。
In FIG. 1, a section A is a discharge current selection section, which comprises a first stage circuit for performing a coarse selection and a second stage circuit for performing a fine selection. In the drawing, (1) is a selection resistor,
A multiplexer (2) selects a selection resistor by the multiplexer (2). (4) is CPU,
(5) is an optical fiber type selection circuit, (6) is a memory,
(7) is a D-FF, which controls the multiplexer (2) by a signal from the CPU (4).

一方Bは放電電流制御部であって、(8)は電流制御
回路、(9)は放電電極、(10)は接続する光ファイバ
である。この放電電流制御部は既存の回路であり、前段
の放電電流選択された抵抗(1)の電位がB点を通じて
制御回路(8)にフィードバックされ、一定放電電流と
なるように制御される。
On the other hand, B is a discharge current control unit, (8) is a current control circuit, (9) is a discharge electrode, and (10) is an optical fiber to be connected. This discharge current control unit is an existing circuit, and the potential of the resistor (1) selected in the previous stage of the discharge current is fed back to the control circuit (8) through the point B, and is controlled so as to be a constant discharge current.

前記放電電流選択部Aにおいては、第1段回路でCPU
(4)データ3bitにより1ヶのマルチプレクサ(2)が
制御され、第1段回路にて選択した抵抗の両端の電圧が
8ヶのシリーズ抵抗(1)により8段階に分圧され、そ
の電圧がB点に出力される。従って、第1段回路で8段
階、さらに第2段回路で8段階に選択されるので、最終
的には64段階にB点電位が切換えられることになる。
In the discharge current selection unit A, a CPU
(4) One multiplexer (2) is controlled by 3 bits of data, and the voltage at both ends of the resistor selected in the first stage circuit is divided into eight levels by eight series resistors (1), and the voltage is divided. Output to point B. Accordingly, eight stages are selected in the first stage circuit and eight stages are selected in the second stage circuit, so that the potential at the point B is finally switched to 64 stages.

即ち、64レベルの放電電流値が6bit信号によって任意
に設定可能となる。
That is, a discharge current value of 64 levels can be arbitrarily set by a 6-bit signal.

第2図は放電電流選択部が1段構成の一例の回路図で
ある。この場合、CPU(4)の4bitによりマルチプレク
サ(2)2ヶを制御することによって16レベルの放電電
流値の設定が可能である。例えば、単心光ファイバの融
着接続装置等では、その適用光ファイバの構造の相違に
より最適放電電流値が異なるので、各々電流値の調節、
設定が必要であるが、各電流値の差は大きくても5mA程
度であるので、第2図に示すような16レベルの放電電流
選択回路で十分である。
FIG. 2 is a circuit diagram showing an example of a single-stage discharge current selection unit. In this case, 16 levels of discharge current values can be set by controlling two multiplexers (2) with 4 bits of the CPU (4). For example, in a single-core optical fiber fusion splicing device, etc., the optimum discharge current value differs due to the difference in the structure of the applied optical fiber.
Although a setting is necessary, the difference between the respective current values is at most about 5 mA, so that a 16-level discharge current selection circuit as shown in FIG. 2 is sufficient.

しかし、多心一括融着接続装置では、例えば、最小適
用心線数を1心、最大適用心線を12心とした場合、最適
放電電流値の設定範囲は約20mAとなる。この場合、第2
図に示す16レベル選択回路では1mA以下の微調設定が不
可能となるので、第1図に示した64レベル選択回路を採
用する必要がある。
However, in the multi-core batch fusion splicer, for example, when the minimum applicable core number is 1 core and the maximum applicable core number is 12 cores, the setting range of the optimum discharge current value is about 20 mA. In this case, the second
In the 16-level selection circuit shown in the figure, fine adjustment setting of 1 mA or less is impossible, so it is necessary to employ the 64-level selection circuit shown in FIG.

(発明の効果) 以上説明したように、本発明の融着装置によれば、光
ファイバの種類が異なっても1台の装置で接続可能とな
り、装置の小型を図ることが出来る。特にアナログスイ
ッチ(マルチプレクサ)を利用した放電電流多段階切換
回路を有する融着接続装置は、適用光ファイバが増加し
ても同一の小型回路で各放電電流値の設定が可能で、か
つ電流値の設定再現性も良好である。
(Effect of the Invention) As described above, according to the fusion splicing device of the present invention, even if the type of optical fiber is different, it is possible to connect with one device, and the size of the device can be reduced. In particular, a fusion splicer having a multi-stage discharge current switching circuit using an analog switch (multiplexer) can set each discharge current value with the same small circuit even if the number of applied optical fibers increases, and can set the current value. The setting reproducibility is also good.

従って、構造、心線数の異なる多種多様な光ファイバ
に対していわゆる共用型融着接続装置を利用する場合、
回路が小型であるので、装置の小型が図られる。
Therefore, when using a so-called shared fusion splicer for a variety of optical fibers having different structures and the number of cores,
Since the circuit is small, the size of the device can be reduced.

第4図は適用光ファイバの種類と選択回路実装面積の
関係図である。本発明によれば、回路は光ファイバの種
類に関係なく一定でよいので、例えば光ファイバの種類
16に対応する場合、従来の約1/4の実装面積で回路が構
成される。
FIG. 4 is a diagram showing the relationship between the type of the applied optical fiber and the mounting area of the selection circuit. According to the present invention, the circuit may be constant regardless of the type of optical fiber.
In the case of 16 circuits, the circuit is configured with a mounting area of about 1/4 of the conventional mounting area.

又放電電流値の微調設定が容易であるので、従来電流
値の調整がシビアであった分散シフト型多心光ファイバ
の接続に利用するとき効果的である。第5図は所望の電
流値を再設定した場合の繰返し再現性を示した図で、従
来方式と比較して示したθが約1/3に減少し、高再現性
を実現した。
Further, since the fine adjustment of the discharge current value is easy, the adjustment of the current value is effective when used for connection of a dispersion-shifted multi-core optical fiber, which has conventionally been severe. FIG. 5 is a diagram showing the repetition reproducibility when the desired current value is reset, and θ shown in the conventional method is reduced to about 1/3, thereby realizing high reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の融着接続装置における放電選択部制御
回路の他の具体例の回路図である。 第2図は放電電流選択部が1段構成の一例の回路図であ
る。 第3図は従来の共用型融着接続装置の電流選択回路図で
ある。 第4図は適用光ファイバの種類と選択回路実装面積の関
係図である。 第5図は電流設定値の繰返し再現性を示す図である。 1……選択用抵抗、2……アナログスイッチ(マルチプ
レクサ)、3……電流阻止用アンプ、4……CPU、5…
…光ファイバ種別選択回路、6……メモリ、7……D−
FF(バッファ)、A……放電電流選択部、B……放電電
流制御部。
FIG. 1 is a circuit diagram of another specific example of the discharge selection unit control circuit in the fusion splicing apparatus of the present invention. FIG. 2 is a circuit diagram showing an example of a single-stage discharge current selection unit. FIG. 3 is a circuit diagram of a current selection circuit of a conventional shared type fusion splicer. FIG. 4 is a diagram showing the relationship between the type of the applied optical fiber and the mounting area of the selection circuit. FIG. 5 is a diagram showing the reproducibility of the current set value repeatedly. 1 ... selection resistor, 2 ... analog switch (multiplexer), 3 ... current blocking amplifier, 4 ... CPU, 5 ...
... Optical fiber type selection circuit, 6 ... Memory, 7 ... D-
FF (buffer), A: discharge current selection unit, B: discharge current control unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 洋一 神奈川県横浜市栄区田谷町1番地 住友 電気工業株式会社横浜製作所内 (56)参考文献 特開 平2−129606(JP,A) 特開 昭64−91508(JP,A) 特開 昭64−98322(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 6/255 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoichi Okamoto 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yokohama Works (56) References JP-A-2-129606 (JP, A) JP-A Sho 64-91508 (JP, A) JP-A-64-98322 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G02B 6/255

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】接続する光ファイバの構造、種別及び心線
数を設定する手段と、その種類に応じた放電電流値を記
憶するメモリと、システム制御用のCPUを備え光ファイ
バを放電加熱により溶融し接続する光ファイバの融着接
続装置において、接続する光ファイバの種類を選択する
とCPUが信号を送信して放電電流値を切換える回路に直
列接続した固定抵抗とアナログスイッチ(マルチプレク
サ)を備えており、放電電流値の設定レベルが8段以上
必要な電流切換回路の場合、放電電流選択部を粗選択を
行なう第1段回路と微選択を行なう第2段回路の2段階
回路構成となし、固定抵抗とアナログスイッチの部品数
を低減させたことを特徴とする光ファイバの融着接続装
置。
1. An optical fiber comprising means for setting the structure, type and number of cores of an optical fiber to be connected, a memory for storing a discharge current value corresponding to the type, and a CPU for system control, the optical fiber being heated by discharge. In the fusion splicing device for optical fiber to be fused and connected, when the type of the optical fiber to be connected is selected, the CPU transmits a signal and switches the discharge current value. The circuit includes a fixed resistor and an analog switch (multiplexer) connected in series to the circuit. In the case of a current switching circuit in which the set level of the discharge current value is required to be eight or more, there is no two-stage circuit configuration of a first stage circuit for coarse selection and a second stage circuit for fine selection of the discharge current selection unit. An optical fiber fusion splicing device characterized in that the number of parts of a fixed resistor and an analog switch is reduced.
JP13009590A 1990-05-18 1990-05-18 Optical fiber fusion splicer Expired - Lifetime JP2973466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13009590A JP2973466B2 (en) 1990-05-18 1990-05-18 Optical fiber fusion splicer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13009590A JP2973466B2 (en) 1990-05-18 1990-05-18 Optical fiber fusion splicer

Publications (2)

Publication Number Publication Date
JPH0424603A JPH0424603A (en) 1992-01-28
JP2973466B2 true JP2973466B2 (en) 1999-11-08

Family

ID=15025841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13009590A Expired - Lifetime JP2973466B2 (en) 1990-05-18 1990-05-18 Optical fiber fusion splicer

Country Status (1)

Country Link
JP (1) JP2973466B2 (en)

Also Published As

Publication number Publication date
JPH0424603A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
US6728433B1 (en) Feedback stabilization of a loss optimized switch
US6137941A (en) Variable optical attenuator
US4512637A (en) Method and means for stepwise charge control of electrochromic layers
US4456330A (en) Optical coupling system and method for manufacturing same
JP2769524B2 (en) Interchangeable lens and camera system
US4586784A (en) Modal-insensitive biconical taper couplers
US4810949A (en) Digitally controlled monotonic attenuator
US7376300B2 (en) Variable optical dispersion compensating module
JP2973466B2 (en) Optical fiber fusion splicer
US4918397A (en) Gain control circuit
EP0327512A1 (en) Power supply gradually developing an output voltage when switched on
JPH04294093A (en) Fusion attachment connecting machine for optical fiber
JPH07226715A (en) Reception system
US5296679A (en) Method and apparatus for fusion splicing optical fibers
US20020071628A1 (en) Planar waveguide optical switching system with integrated multi-state outputs
JP2001501324A (en) Switching method of optical signal and thermo-optical switch
JPH10308961A (en) Integrated optical switch array
JP3001207B2 (en) Converter control device
JP2927993B2 (en) LD switching circuit
JP2789830B2 (en) Optical amplifier
JPH0532725B2 (en)
JPH10303496A (en) Method of screening semiconductor laser
JPH06303194A (en) Optical communication equipment
JPH07111486A (en) Optical transmitter
US6424766B1 (en) Device for optimizing signal channelling in communication systems

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11