JP2972596B2 - Power generation prediction method for photovoltaic power generation system - Google Patents

Power generation prediction method for photovoltaic power generation system

Info

Publication number
JP2972596B2
JP2972596B2 JP25424896A JP25424896A JP2972596B2 JP 2972596 B2 JP2972596 B2 JP 2972596B2 JP 25424896 A JP25424896 A JP 25424896A JP 25424896 A JP25424896 A JP 25424896A JP 2972596 B2 JP2972596 B2 JP 2972596B2
Authority
JP
Japan
Prior art keywords
power generation
weather
amount
solar
generation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25424896A
Other languages
Japanese (ja)
Other versions
JPH10108486A (en
Inventor
孝志 中澤
治 北
保次 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Denryoku KK
Original Assignee
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Denryoku KK filed Critical Kansai Denryoku KK
Priority to JP25424896A priority Critical patent/JP2972596B2/en
Publication of JPH10108486A publication Critical patent/JPH10108486A/en
Application granted granted Critical
Publication of JP2972596B2 publication Critical patent/JP2972596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photovoltaic Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽光発電シス
テムの発電量予測方法に関するものである。さらに詳し
くは、この発明は、任意の設置地点における太陽光発電
システムの発電量を容易に高精度で予測することのでき
る太陽光発電システムの発電量予測方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a power generation amount of a photovoltaic power generation system. More specifically, the present invention relates to a method for estimating a power generation amount of a photovoltaic power generation system that can easily and accurately predict a power generation amount of a photovoltaic power generation system at an arbitrary installation point.

【0002】[0002]

【従来の技術とその課題】太陽光の光エネルギーを電気
エネルギーに変換することにより発電する太陽光発電シ
ステムは、石油などの天然資源の枯渇が問題視されるな
か、無尽蔵のエネルギーを安全に利用することができる
として、盛んに研究・開発が進められており、その利用
が促進されている。
2. Description of the Related Art A photovoltaic power generation system that generates electric power by converting light energy of sunlight into electric energy can safely use inexhaustible energy despite the depletion of natural resources such as oil. Research and development are being actively pursued, and their use is being promoted.

【0003】このような太陽光発電システムを利用する
にあたって、その設置地点において太陽光発電システム
がどの程度発電するかは、ユーザーにとって非常に重要
なことである。従来より、この太陽光発電システムの発
電電力量の予測は、たとえば、システムの設置地点に一
番近い気象台による計測データを基にして行なわれてい
る。
[0003] In using such a solar power generation system, it is very important for the user how much the solar power generation system generates power at the installation site. Conventionally, the amount of power generated by the photovoltaic power generation system has been predicted based on, for example, measurement data from a weather station closest to the installation location of the system.

【0004】たとえば、図1は、このような従来の太陽
光発電システムの発電量予測方法の予測過程を例示した
ものである。この図1に例示した従来の予測方法では、
まず、太陽電池の設置地点の緯度や経緯などの位置情
報、太陽光発電システムの容量、太陽光発電システム容
量に見合った太陽電池の直並列枚数、および設置地点に
おける太陽電池の設置方位角と傾斜角などから、どのよ
うな太陽光発電システムをどのような地点に設置するの
かを決定する。そして、このように決定された太陽光発
電システムに対してその発電電力量を予測する。
For example, FIG. 1 illustrates a prediction process of such a conventional power generation prediction method for a photovoltaic power generation system. In the conventional prediction method illustrated in FIG.
First, position information such as latitude and longitude of the installation location of the solar cell, the capacity of the photovoltaic system, the number of series-parallel solar cells corresponding to the capacity of the photovoltaic system, and the installation azimuth and inclination of the solar cell at the installation location From the corner, etc., it is decided what kind of solar power generation system is to be installed at what point. Then, the amount of generated power is predicted for the photovoltaic power generation system thus determined.

【0005】まず、気象台による地域別の1ヵ月平均の
1日の全天日射量データから、太陽光発電システムの設
置地点が属する気象台区分地域のデータを選んで、シス
テム設置地点における全天日射強度を得る。次に、予め
算出されている太陽電池動作温度に太陽電池の種類別の
温度係数を加えることにより、太陽光発電システムの動
作温度発電量を求める。太陽電池動作温度は、たとえば
各太陽電池メーカの公表動作温度の平均値として算出さ
れる。
[0005] First, from the daily solar radiation data of the monthly average for each region by the weather station, data of the weather station divided area to which the installation site of the photovoltaic power generation system belongs is selected, and the global solar radiation intensity at the system installation site is selected. Get. Next, an operating temperature power generation amount of the photovoltaic power generation system is obtained by adding a temperature coefficient for each type of solar cell to the solar cell operating temperature calculated in advance. The solar cell operating temperature is calculated, for example, as an average of the published operating temperatures of each solar cell maker.

【0006】そして、この動作温度発電量から直流発電
量を求め、この直流発電量から交流発電量を得る。この
ようにして得られた日間の交流発電量が、太陽光発電シ
ステムの発電量の予測値である。また、月別発電量、年
間発電量、または季節別の発電量は、予測された日間発
電量にそれぞれ対応する日数を掛けることにより得られ
る。
Then, a DC power generation amount is obtained from the operating temperature power generation amount, and an AC power generation amount is obtained from the DC power generation amount. The daily AC power generation amount thus obtained is a predicted value of the power generation amount of the photovoltaic power generation system. Further, the monthly power generation, the annual power generation, or the seasonal power generation can be obtained by multiplying the predicted daily power generation by the corresponding number of days.

【0007】このように、従来の太陽光発電システムの
発電量予測方法は、気象台による測定データを基にして
発電量を予測しているため、気象台付近の地域に設置さ
れる太陽光発電システムの発電量に対しては比較的正確
に予測することができるものの、気象台付近でない地域
に設置される太陽光発電システムの発電量に対しては精
度良く予測することは非常に困難であった。
[0007] As described above, the conventional method of estimating the amount of power generation of a photovoltaic power generation system predicts the amount of power generation based on data measured by a meteorological observatory. Although the power generation amount can be predicted relatively accurately, it is very difficult to accurately predict the power generation amount of a solar power generation system installed in an area other than the vicinity of the weather station.

【0008】また、全天日射強度は、太陽電池面から見
た天空の開口状況により大きく変化するため、気象台で
は、天空の開口状況を損なわさせ、散乱光などを発生さ
せるような建物等の障害物が周囲に存在しない場所にお
いて各種値の計測を行なっている。しかしながら、一般
のユーザによる太陽電池の設置地点が、このような障害
物が存在しない周囲環境にあることは稀である。つま
り、通常、一般ユーザーの太陽光発電システムは、太陽
光の直達光と、太陽電池の周囲に存在する障害物等によ
る散乱光とが、太陽電池面に入射するような地点、つま
り直達光だけでなく散乱光による影響をも受ける地点に
設置されることが多い。したがって、太陽電池への全天
日射強度を正確に得るためには、直達光による直達日射
強度と散乱光による散乱日射強度とを考慮する必要があ
る。
[0008] Further, since the global irradiance greatly varies depending on the state of the opening of the sky viewed from the solar cell surface, the weather station obstructs the opening of the sky and obstructs a building or the like that generates scattered light. Various values are measured in a place where no object exists. However, the installation location of the solar cell by a general user is rarely in the surrounding environment where such obstacles do not exist. In other words, normally, a solar power generation system of a general user only has a point where direct light of sunlight and scattered light due to an obstacle or the like existing around the solar cell enter the solar cell surface, that is, only the direct light. Often, it is installed at a point affected by scattered light. Therefore, in order to accurately obtain the global solar radiation intensity to the solar cell, it is necessary to consider the direct solar radiation intensity by the direct light and the scattered solar radiation intensity by the scattered light.

【0009】しかしながら、従来の予測方法では、上述
のように散乱光の影響をあまり受けない地点に設置され
ている測定機器による気象台の全天日射量データのみを
用いて全天日射強度を得ているため、気象台の測定機器
の周囲環境とは異なり、直達光および散乱光による影響
を受ける地点に設置される太陽光発電システムに対して
は、その発電量を高精度で予測することが非常に困難で
あるといった問題があった。
However, in the conventional prediction method, as described above, the global solar irradiance is obtained by using only global solar irradiance data of a meteorological observatory by a measuring instrument installed at a point which is not much affected by scattered light. Therefore, unlike the surrounding environment of meteorological observing instruments, it is extremely difficult to accurately predict the amount of power generated by a solar power generation system installed at a point affected by direct light and scattered light. There was a problem that it was difficult.

【0010】そこで、この発明は、以上の通りの事情に
鑑みてなされたものであり、任意の設置地点における太
陽光発電システムの発電電力量を天候別に高精度で予測
することのできる太陽光発電システムの発電量予測方法
を提供することを目的としている。
Therefore, the present invention has been made in view of the above circumstances, and a photovoltaic power generation system capable of highly accurately predicting the amount of power generated by a photovoltaic power generation system at an arbitrary installation point for each weather. The purpose is to provide a method for estimating the amount of power generated by the system.

【0011】[0011]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、太陽光発電システムの発電量を
地域別および天候別に予測する方法であって、大気透過
を地域別および天候別に予め計測しておき(ステップ
1)、太陽光発電システムの設置地点に対応した地域の
天候別の大気透過率と大気外法線面日射とエアマスと太
陽光発電システムの設置地点の緯度と太陽電池モジュー
ルの方位角および傾斜角と天空の太陽軌跡とを用いて直
達日射強度を算出するとともに(ステップ2)、太陽電
池モジュールの設置地点において計測される天空立体角
と気象台による地域別および天候別の雲量と特定係数b
を掛けることにより散乱日射強度を算出し(ステップ
3)、これら直達日射強度と散乱日射強度を足すことに
より全天日射強度を求め(ステップ4)次に、この
天日射強度に特定係数cを掛けた値と気象台による地域
別日最低気温を和算することにより太陽電池動作温度
求め(ステップ5)この太陽電池動作温度に見合った
発電量である動作温度発電量を求め(ステップ6)
らに、この動作温度発電量に特定係数dを掛けることに
より直流発電量を求めた後(ステップ7)、この直流発
電量に特定係数eを掛けることにより交流発電量を求め
(ステップ8)そして、これらのステップ1〜ステッ
プ8を任意の時間間隔毎に行なうことにより、太陽光発
電システムの発電量を任意の時間間隔毎に予測すること
を特徴とする太陽光発電システムの発電量予測方法(請
求項1)を提供する。
Means for Solving the Problems] The present invention, as to solve the above problems, the power generation amount of the solar power generation systems to a method of predicting by region and weather, regional and atmospheric transmittance weather Measure separately in advance (step
1) In the area corresponding to the installation location of the solar power generation system
Atmospheric transmittance, extra-atmospheric normal solar radiation, air mass, and thickness by weather
Latitude of solar power system installation point and solar cell module
Using the azimuth and tilt angles of the
Calculate the solar radiation intensity (step 2) and
Sky solid angle measured at the pond module installation point
And cloud coefficient and specific coefficient b by area and weather by weather station
To calculate the scattered solar radiation intensity (step
3) To add these direct and scattered solar intensities
Obtains a more global solar radiation intensity (step 4), then the solar cell operating temperature by summing the regional date minimum temperature by value and weather stations multiplied by the specific coefficients c to the solar radiation intensity
Calculated (Step 5), commensurate with the solar cell operating temperature
A power generation amount operating temperature power generation amount calculated (Step 6), and
In addition, this operating temperature power generation amount is multiplied by a specific coefficient d.
After obtaining the DC power generation amount (step 7), the DC power generation amount is multiplied by the specific coefficient e to obtain the AC power generation amount .
(Step 8) and these steps 1 to
By performing step 8 at any time interval,
Providing power generation amount prediction method of photovoltaic power generation system characterized by predicting (claim 1) for every arbitrary time interval the amount of electric power generated by the electric system.

【0012】また、この発明は、上記の方法において、
天候別の任意時間間隔毎における各予測発電量を合計す
ることにより天候別の日間発電量を求めること(請求項
2)や、天候別の日間発電量と気象台による月別の各天
候日数とから天候別の月別発電量を求めること(請求項
)などもその態様としている。
Further, the present invention provides the above-mentioned method,
Sum up each forecasted power generation at any time interval according to the weather
The daily power generation by weather (Claim 2) and the daily power generation by weather and monthly
Determining the weather another monthly power generation amount from the weather dates are the (claim 3) of Domo aspects thereof.

【0013】[0013]

【発明の実施の形態】この発明の請求項1に記載の発明
は、太陽光発電システムの発電量を地域別および天候別
に予測する方法であって、大気透過率を地域別および天
候別に予め計測しておき(ステップ1)、太陽光発電シ
ステムの設置地点に対応した地域の天候別の大気透過率
と大気外法線面日射とエアマスと太陽光発電システムの
設置地点の緯度と太陽電池モジュールの方位角および傾
斜角と天空の太陽軌跡とを用いて直達日射強度を算出す
るとともに(ステップ2)、太陽電池モジュールの設置
地点において計測される天空立体角と気象台による地域
別および天候別の雲量と特定係数bを掛けることにより
散乱日射強度を算出し(ステップ3)、これら直達日射
強度と散乱日射強度を足すことにより全天日射強度を求
め(ステップ4)次に、この全天日射強度に特定係数
cを掛けた値と気象台による地域別日最低気温を和算す
ることにより太陽電池動作温度を求め(ステップ5)
この太陽電池動作温度に見合った発電量である動作温度
発電量を求め(ステップ6)さらに、この動作温度発
電量に特定係数dを掛けることにより直流発電量を求め
た後(ステップ7)、この直流発電量に特定係数eを掛
けることにより交流発電量を求め(ステップ8)そし
て、これらのステップ1〜ステップ8を任意の時間間隔
毎に行なうことにより、太陽光発電システムの発電量を
任意の時間間隔毎に予測することを特徴としたものであ
り、任意の設置地点における太陽光発電システムの発電
電力量を天候別に容易に高精度で予測することができる
という作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is a method for predicting the power generation amount of a photovoltaic power generation system by region and by weather, wherein the atmospheric transmittance is calculated by region and by weather.
Measure in advance for each weather (step 1), and
Atmospheric transmittance by area weather corresponding to the installation location of the stem
And extra-atmospheric normal solar radiation, air mass and photovoltaic system
Latitude of installation point and azimuth and inclination of solar cell module
Calculate direct solar radiation intensity using oblique angles and the sun's trajectory in the sky
(Step 2) and installation of solar cell module
Sky solid angle measured at the point and the area by the meteorological observatory
By multiplying the cloud amount for each and the weather by the specific coefficient b
Scattered solar radiation intensity calculated (step 3), the solar radiation intensity determined by adding the scattering irradiance these direct solar radiation intensity
(Step 4) Then, a specific coefficient is assigned to the global solar radiation intensity.
Add the value multiplied by c and the daily minimum temperature for each region from the weather station
Obtains a solar cell operating temperature by Rukoto (Step 5),
An operating temperature power generation amount corresponding to the solar cell operating temperature is obtained (step 6) , and a DC power generation amount is obtained by multiplying the operating temperature power generation amount by a specific coefficient d.
(Step 7), the DC power generation amount is multiplied by a specific coefficient e.
Determine the alternator amount by kicking it (Step 8), And
And these steps 1 to 8 can be performed at arbitrary time intervals.
Each time, the amount of power generated by the photovoltaic power generation system is predicted at any time interval, and the amount of power generated by the photovoltaic power generation system at any installation point can be easily increased according to the weather. It has the effect that it can be predicted with accuracy.

【0014】請求項2に記載の発明は、天候別の任意時
間間隔毎における各予測発電量を合 計することにより天
候別の日間発電量を求めることを特徴としたものであ
り、請求項1記載の発明の有する作用と同じ作用を有す
る。請求項3に記載の発明は、天候別の日間発電量と気
象台による月別の各天候日数とから天候別の月別発電量
求めることを特徴としたものであり、請求項1記載の
発明の有する作用と同じ作用を有する
[0014] According to a second aspect of the invention, any time a different Weather
Heaven By total each prospective power generation amount in between every interval
The present invention is characterized in that the daily power generation amount for each weather is obtained, and has the same operation as the invention according to claim 1. The third aspect of the present invention provides a daily power generation amount and energy
Monthly weather amount by elephant stand and monthly power generation by weather
It is obtained by and obtains the has the same effect as the effect of having the first aspect of the present invention.

【0015】 以下、この発明の実施の形態について、図
2を用いて説明する。図2は、この発明の太陽光発電シ
ステムの発電量予測方法の予測処理過程の一例を例示し
たものである。まず、太陽電池の設置地点の緯度および
経緯や都道府県名および市町村名などの位置情報、太陽
光発電システムの容量、この太陽光発電システム容量に
見合った太陽電池の直並列枚数、および設置地点におけ
る太陽電池の設置方位角と傾斜角などから、どのような
太陽光発電システムをどのような地点に設置するのかを
決定する。直並列枚数は、たとえばメーカー別の太陽電
池モジュールとインバータは、それぞれのメーカー公表
性能値から求める。
[0015] Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
2 will be described. FIG. 2 shows a solar power generation system according to the present invention.
An example of the prediction process of the system power generation prediction method
It is a thing. First, the latitude of the solar cell
Location information such as background, prefecture and municipal names,
The capacity of the photovoltaic system, the capacity of this photovoltaic system
The number of solar cells in series and parallel
What type of azimuth and inclination angle
Where to install the solar power system
decide. The number of series-parallel
Pond module and inverter are announced by their respective manufacturers
Determined from performance values.

【0016】そして、このように決定された太陽光発電
システムの設置地点における、天候別、たとえば快晴、
晴れ、曇り、雨の4つの天候別の発電量を予測する。ま
ず、太陽光発電システムの設置地点における天候別の大
気透過率を、たとえば以下のように求める。予め、気象
台がある地点とは異なる複数の地点において天候別に斜
面全天日射強度と斜面散乱日射強度とを計測し、この斜
面全天日射強度と斜面散乱日射強度の計測値を用いて、
Then, at the installation point of the photovoltaic power generation system determined in this way, weather-specific, for example, fine weather,
Forecast power generation in four weathers: sunny, cloudy, and rainy. First, the atmospheric transmittance at the installation point of the photovoltaic power generation system for each weather is obtained as follows, for example. In advance, the slope global solar radiation intensity and slope scattered solar radiation intensity are measured separately at a plurality of points different from the point where the weather station is located, using the measured values of the slope global solar radiation intensity and the slope scattered solar radiation intensity,

【0017】[0017]

【数1】 (Equation 1)

【0018】により斜面直達日射強度を算出し、この斜
面直達日射強度の算出値と太陽光の斜面への入射角とを
用いて、
The direct sunlight on the slope is calculated by using the calculated value of the direct sunlight on the slope and the angle of incidence of the sunlight on the slope.

【0019】[0019]

【数2】 (Equation 2)

【0020】により法線面直達日射強度を算出し、この
法線面直達日射強度の算出値と大気外日射強度とエアマ
スとを用いて
The direct solar irradiance is then calculated, and the calculated direct solar irradiance, the extra-atmospheric irradiance and the air mass are used.

【0021】[0021]

【数3】 (Equation 3)

【0022】により、地域別および天候別の大気透過率
を算出する。そして、このように算出された地域別およ
び天候別の大気透過率から、予測対象の太陽光発電シス
テムの設置地点および天候に対応する算出大気透過率を
割り当てることにより、予測対象の太陽光発電システム
の設置地点における天候別の大気透過率を求める。たと
えば、表1は、このように算出された快晴時の地域別の
各月毎の大気透過率を例示したものであり、また、表2
は、天候別および地域別の各季節毎の大気透過率を例示
したものである。
Thus, the atmospheric transmittance for each region and each weather is calculated. By assigning the calculated atmospheric transmittance corresponding to the installation location and the weather of the photovoltaic power generation system to be predicted from the thus-calculated air transmittance for each region and each weather, the solar power generation system for the prediction target is assigned. Atmospheric permeability at each installation point is calculated. For example, Table 1 exemplifies the calculated atmospheric transmittance for each month in each region at the time of fine weather calculated in this manner.
Is an example of the atmospheric transmittance for each season for each weather and each region.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】地域は、京都府北部・南部、大阪府、兵庫
県北部・南部、和歌山県北部・南部、滋賀県、奈良県に
区分されている。表1においては、各地域において快晴
時に斜面全天日射強度を計測し、この斜面全天日射強度
を基に上述のように大気透過率を算出して、各月毎の大
気透過率の平均値が示されている。表2においては、各
地域において、快晴、晴れ、曇り、雨の時に計測された
斜面全天日射強度を基に算出された大気透過率の、春季
(3月〜5月)、夏期(6月〜8月)、秋季(9月〜1
1月)、冬季(12月〜2月)の平均値が示されてい
る。
The areas are divided into northern and southern parts of Kyoto prefecture, Osaka prefecture, northern and southern parts of Hyogo prefecture, northern and southern parts of Wakayama prefecture, Shiga prefecture and Nara prefecture. In Table 1, the sunshine intensity on a slope is measured in each region when the weather is fine, and the air transmittance is calculated based on the sunshine intensity on the slope as described above, and the average value of the air transmittance for each month is calculated. It is shown. In Table 2, in each region, the atmospheric transmittance calculated on the basis of the total solar radiation intensity of the slope measured at the time of fine weather, fine weather, cloudy weather, and rainy season, in spring (March to May) and summer (June) ~ August), Autumn (September ~ 1)
The average values in January) and winter (December to February) are shown.

【0026】なお、算出された地域別および天候別の大
気透過率をデータベース化し、大気透過率を求める際
に、予測対象の太陽光発電システムの設置地点および天
候を入力することにより、それらに対応する大気透過率
が求められるようにしてもよい。次に、上述のように求
められた太陽光発電システムの設置地点における天候別
の大気透過率と、大気外法線面日射と、エアマスと、太
陽光発電システムの設置地点の緯度と、太陽電池モジュ
ールの方位角および傾斜角と、天空の太陽軌跡とを用い
て、太陽電池モジュールへの直達日射強度を求める。
It should be noted that the calculated air permeability for each region and each weather is stored in a database, and when calculating the air permeability, the installation location of the photovoltaic power generation system to be predicted and the weather are input to handle them. May be determined. Next, the atmospheric transmittance at the installation location of the photovoltaic power generation system obtained as described above, the solar radiation outside the atmosphere, the air mass, the latitude of the installation location of the photovoltaic power generation system, Using the azimuth and inclination of the module and the sun's trajectory in the sky, the direct solar radiation intensity to the solar cell module is determined.

【0027】また、太陽電池モジュールの設置地点にお
いて計測される天空立体角と、気象台による地域別およ
び天候別の雲量とを用いて、たとえば、
Further, using the solid angle of the sky measured at the installation point of the solar cell module and the cloud amount for each area and weather by the weather station, for example,

【0028】[0028]

【数4】 (Equation 4)

【0029】により、太陽電池モジュールへの散乱日射
強度を算出する。なお、地域別の雲量は、太陽電池モジ
ュールの設置地点に対応する地域の値を選んで用いる。
また、天空立体角は、たとえば、この発明の発明者によ
り既に開発されている日影の評価方法における魚眼レン
ズの撮影像から、簡易に求めることもできる。ここで、
図3は、天空立体角と雲量とから得られる雲立体角と散
乱日射強度との関係を例示したものである。天空立体角
は京都府南部地域の特定の地点において計測した値であ
り、雲量は天空立体角を計測した地点に対応する京都府
南部地域の快晴時の気象台のデータである。この図3か
ら明らかなように、天空立体角と雲量とから得られる雲
立体角と散乱日射強度との関係は、地域別および天候別
で決められる特定の値により表すことができるため、散
乱日射強度は、単空立体角と、雲量と、特定の値、つま
り係数とを用いた上式により算出することができる。
Thus, the scattered solar radiation intensity to the solar cell module is calculated. As the cloud amount for each area, a value of an area corresponding to the installation location of the solar cell module is selected and used.
In addition, the sky solid angle can be easily obtained, for example, from a photographed image of a fisheye lens in the method of evaluating a shade already developed by the inventor of the present invention. here,
FIG. 3 illustrates the relationship between the cloud solid angle obtained from the sky solid angle and the cloud amount and the scattered solar radiation intensity. The sky solid angle is a value measured at a specific point in the southern part of Kyoto Prefecture, and the cloud amount is data of a weather station at a sunny day in the southern part of Kyoto corresponding to the point at which the sky solid angle was measured. As is clear from FIG. 3, the relationship between the solid angle of the cloud obtained from the solid angle of the sky and the cloud amount and the scattered solar radiation intensity can be represented by specific values determined for each region and each weather. The intensity can be calculated by the above equation using the single-sky solid angle, the cloud amount, and a specific value, that is, a coefficient.

【0030】そして、これら直達日射強度と散乱日射強
度とを、たとえば、足し合わせることにより全天日射強
度を得る。このように、この発明の予測方法では、直達
光による直達日射強度と散乱光による散乱日射強度とか
ら全天日射強度を得るため、前述のように散乱光を考慮
していない従来の予測方法よりも、より正確に太陽電池
モジュールへの全天日射強度を得ることができる。ま
た、直達日射強度も複数の地域において計測される値を
基に得られる大気透過率を用いて求め、散乱日射強度も
システムの設置地点において計測される天空立体角を用
いて求めるため、前述のように気象台の測定位置におけ
るデータのみを用いる従来の予測方法よりも、より正確
に任意設置地点の太陽光発電システムによる発電量の予
測を行なうことができる。
Then, the total solar irradiance is obtained by adding the direct solar irradiance and the scattered solar irradiance, for example. As described above, in the prediction method of the present invention, in order to obtain the global solar radiation intensity from the direct solar radiation intensity by the direct light and the scattered solar radiation intensity by the scattered light, the conventional predictive method not considering the scattered light as described above. In addition, it is possible to more accurately obtain the global solar radiation intensity on the solar cell module. In addition, since the direct solar radiation intensity is obtained using the atmospheric transmittance obtained based on the values measured in a plurality of regions, and the scattered solar radiation intensity is also obtained using the sky solid angle measured at the installation point of the system, As described above, it is possible to more accurately predict the amount of power generated by the photovoltaic power generation system at an arbitrary installation point than the conventional prediction method using only the data at the measurement position of the weather station.

【0031】なお、たとえば、この全天日射強度を得る
ために必要な直達日射強度を求める前に、この発明の発
明者により既に開発されている日影の評価方法における
魚眼レンズの撮影像を用いることにより、太陽電池の設
置地点における太陽軌跡と障害物との位置関係から、太
陽電池面への直達光の有無の判定を行い、この直達光の
有無判定に従って、直達日射強度を求めるか否かを決定
するようにしてもよい。つまり、たとえば、上述の日影
の評価方法における魚眼レンズの撮影像を用いて得られ
る太陽軌跡と障害物との位置関係から、太陽電池面への
直達光が無いと判定された場合は、直達日射強度を求め
ずに、次の散乱日射強度の処理に進み、散乱日射強度の
みから全天日射強度を求め、またその逆に、太陽電池面
への直達光が有ると判定された場合には、前述のよう
に、直達日射強度および散乱日射強度を求めて、これら
直達日射強度と散乱日射強度とから全天日射強度を得
る。このようにこの発明の発明者により既に開発されて
いる日影の評価方法における魚眼レンズを用いた直達光
有無判定の処理を組み入れることにより、より正確な全
天日射強度を得ることができる。
Before obtaining the direct solar radiation intensity necessary for obtaining the global solar radiation intensity, for example, it is necessary to use a photographed image of a fish-eye lens in the method of evaluating a shadow already developed by the inventor of the present invention. By determining the presence or absence of direct light to the solar cell surface from the positional relationship between the sun trajectory and the obstacle at the installation location of the solar cell, according to the presence or absence of the direct light, whether to determine the direct solar radiation intensity It may be determined. That is, for example, when it is determined that there is no direct light to the solar cell surface from the positional relationship between the sun trajectory obtained by using the captured image of the fish-eye lens and the obstacle in the above-described method for evaluating the shade, the direct solar radiation is determined. Without obtaining the intensity, proceed to the processing of the next scattered solar radiation intensity, obtain the total solar irradiance only from the scattered solar irradiance, and conversely, when it is determined that there is direct light to the solar cell surface, As described above, the direct solar radiation intensity and the scattered solar radiation intensity are obtained, and the total solar radiation intensity is obtained from the direct solar radiation intensity and the scattered solar radiation intensity. As described above, by incorporating the processing for determining the presence or absence of direct light using a fish-eye lens in the method of evaluating a shade already developed by the inventor of the present invention, a more accurate global solar radiation intensity can be obtained.

【0032】次に、上述のように正確に得られた全天日
射強度と、気象台による地域別の日最低気温とを用い
て、太陽電池の動作温度を求める。日最低気温は、太陽
電池モジュールの設置地点に対応する地域の値を選んで
用いる。この太陽電池動作温度は、たとえば
Next, the operating temperature of the solar cell is determined by using the global solar radiation intensity accurately obtained as described above and the daily minimum air temperature for each region by the weather station. As the daily minimum temperature, a value in an area corresponding to the installation location of the solar cell module is selected and used. This solar cell operating temperature is, for example,

【0033】[0033]

【数5】 (Equation 5)

【0034】により算出することができる。この太陽電
池動作温度を用いて、太陽電池動作温度に見合った発電
量、つまり動作温度発電量を求める。この動作温度発電
量は、たとえば、
Can be calculated by Using the solar cell operating temperature, a power generation amount corresponding to the solar cell operating temperature, that is, an operating temperature power generation amount is obtained. This operating temperature power generation is, for example,

【0035】[0035]

【数6】 (Equation 6)

【0036】により算出することができる。そして、こ
の動作温度発電量と、太陽光発電システムにおける電線
の抵抗、接続抵抗、太陽電池モジュール面の汚れなどを
考慮した係数とから、たとえば、
Can be calculated by Then, from the operating temperature power generation amount and the coefficient in consideration of the resistance of the electric wire, the connection resistance, and the contamination of the solar cell module surface in the solar power generation system, for example,

【0037】[0037]

【数7】 (Equation 7)

【0038】により直流発電量を求め、この直流発電量
と、直流・交流変換装置の変換効率を考慮した係数とか
ら、たとえば、
The amount of DC power generation is obtained by using the DC power generation amount and a coefficient in consideration of the conversion efficiency of the DC / AC converter.

【0039】[0039]

【数8】 (Equation 8)

【0040】により交流発電量を求める。このように求
められた交流発電量が、太陽光発電システムの発電量で
ある。なお、実際には、たとえば、上述のような地域別
および天候別の発電量の予測を任意の時間間隔毎、たと
えば日の出(5時)から日の入り(19)時までにおい
て毎正時毎に行なうことにより時刻別の発電量を求め、
この毎正時毎の予測発電量値を合計することにより日間
発電量を得る。このように任意の時間間隔毎に発電量を
予測することにより、より高精度の予測ができる。
Thus, the AC power generation amount is obtained. The AC power generation amount thus obtained is the power generation amount of the solar power generation system. Actually, for example, the above-described prediction of the power generation amount for each region and each weather is performed at every arbitrary time interval, for example, every sunrise (5 o'clock) to sunset (19) every hour. To determine the amount of power generation by time,
The daily power generation is obtained by summing up the predicted power generation values for each hour. By predicting the amount of power generation at an arbitrary time interval in this way, more accurate prediction can be performed.

【0041】そして、この各天候別日間発電量と、気象
台による月別の各天候の日数とから、月別の発電量を得
る。また、季節別の発電量は、それぞれの季節に対応す
る月の発電量を足し合わせることにより得て、年間の発
電量は、各月の発電量を足し合わせることにより得る。
もちろん、この発明は以上の例に限定されるものではな
く、細部については様々な態様が可能であることは言う
までもない。
Then, a monthly power generation amount is obtained from the daily power generation amount for each weather and the number of monthly weather days by the weather station. The power generation amount for each season is obtained by adding the power generation amounts of the months corresponding to each season, and the annual power generation amount is obtained by adding the power generation amounts of each month.
Of course, the present invention is not limited to the above-described example, and it goes without saying that various aspects are possible in detail.

【0042】[0042]

【発明の効果】以上詳しく説明した通り、この発明によ
って、任意の設置地点における太陽光発電システムの発
電電力量を天候別に容易に高精度で予測することのでき
る太陽光発電システムの発電量予測方法が提供される。
As described in detail above, according to the present invention, a method for estimating the amount of power generation of a photovoltaic power generation system that can easily and accurately predict the amount of power generated by the photovoltaic power generation system at an arbitrary installation point for each weather. Is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の太陽光発電システムの発電量予測方法の
予測処理過程を例示した図である。
FIG. 1 is a diagram exemplifying a prediction process of a conventional power generation amount prediction method for a solar power generation system.

【図2】この発明の太陽光発電システムの発電量予測方
法の予測処理過程を例示した図である。
FIG. 2 is a diagram illustrating a prediction process of a power generation amount prediction method for a photovoltaic power generation system according to the present invention.

【図3】天空立体角と雲量とから得られる雲立体角と散
乱日射強度との関係を例示した図である。
FIG. 3 is a diagram exemplifying a relationship between a cloud solid angle obtained from a sky solid angle and a cloud amount and a scattered solar radiation intensity;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野川 保次 大阪府大阪市北区本庄東2丁目3番41号 株式会社きんでん内 (56)参考文献 特開 平9−113354(JP,A) 特開 平5−66153(JP,A) 特開 平8−36433(JP,A) (58)調査した分野(Int.Cl.6,DB名) H02N 6/00 G01J 1/02 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasuji Nogawa 2-34 Honjo Higashi, Kita-ku, Osaka-shi, Osaka Kinden Co., Ltd. (56) References JP-A-9-113354 (JP, A) JP-A-5-66153 (JP, A) JP-A-8-36433 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H02N 6/00 G01J 1/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 太陽光発電システムの発電量を地域別お
よび天候別に予測する方法であって、大気透過率を地域
別および天候別に予め計測しておき(ステップ1)、太
陽光発電システムの設置地点に対応した地域の天候別の
大気透過率と大気外法線面日射とエアマスと太陽光発電
システムの設置地点の緯度と太陽電池モジュールの方位
角および傾斜角と天空の太陽軌跡とを用いて直達日射強
度を算出するとともに(ステップ2)、太陽電池モジュ
ールの設置地点において計測される天空立体角と気象台
による地域別および天候別の雲量と特定係数bを掛ける
ことにより散乱日射強度を算出し(ステップ3)、これ
直達日射強度と散乱日射強度を足すことにより全天日
射強度を求め(ステップ4)次に、この全天日射強度
に特定係数cを掛けた値と気象台による地域別日最低気
を和算することにより太陽電池動作温度を求め(ステ
ップ5)この太陽電池動作温度に見合った発電量であ
動作温度発電量を求め(ステップ6)さらに、この
動作温度発電量に特定係数dを掛けることにより直流発
電量を求めた後(ステップ7)、この直流発電量に特定
係数eを掛けることにより交流発電量を求め(ステップ
8)そして、これらのステップ1〜ステップ8を任意
の時間間隔毎に行なうことにより、太陽光発電システム
発電量を任意の時間間隔毎に予測することを特徴とす
る太陽光発電システムの発電量予測方法。
1. A power generation amount of the photovoltaic power generation system to a method of predicting by region and weather, local atmospheric transmittance
Measurement in advance (step 1)
Local weather conditions corresponding to the location of the solar power generation system
Atmospheric transmittance, extrasolar normal solar radiation, air mass and solar power
Latitude of system installation point and orientation of solar cell module
Direct solar radiation using angles and tilt angles and the sun's trajectory in the sky
Calculation (step 2) and the solar cell module
Sky angle and meteorological observatory measured at the installation point of the tool
Multiplied by the specific coefficient b and the amount of cloud by region and by weather
To calculate the scattered solar radiation intensity (step 3).
Seeking pyranometer strength by adding the scattering irradiance Tadashi Luo solar radiation intensity (step 4), then the total solar radiation intensity
Is multiplied by the specific coefficient c and the daily minimum temperature for each area by the weather station is added to obtain the solar cell operating temperature (step
-Up 5), power generation amount der commensurate with the solar cell operating temperature
Operating temperature power generation amount determined that (Step 6), further, after obtaining the current power generation amount by multiplying the specific coefficient d in the <br/> operating temperature power generation amount (step 7), specific to the DC power generation amount
The AC power generation amount is obtained by multiplying by the coefficient e (step
8) and these steps 1 to 8 are optional
The solar power generation system
A power generation amount prediction method for a photovoltaic power generation system, wherein the power generation amount is predicted at an arbitrary time interval.
【請求項2】 天候別の任意時間間隔毎における各予測
発電量を合計することにより天候別の日間発電量を求め
ることを特徴とする請求項1記載の太陽光発電システム
の発電量予測方法。
2. Prediction at each arbitrary time interval according to weather
The method for predicting the amount of power generation of a photovoltaic power generation system according to claim 1, wherein the amount of power generation is summed to determine the amount of daily power generation for each weather .
【請求項3】 天候別の日間発電量と気象台による月別
の各天候日数とから天候別の月別発電量を求めることを
特徴とする請求項記載の太陽光発電システムの発電量
予測方法。
3. Daily power generation by weather and monthly by weather station
3. The method according to claim 2, wherein a monthly power generation amount for each weather is obtained from each of the weather days .
JP25424896A 1996-09-26 1996-09-26 Power generation prediction method for photovoltaic power generation system Expired - Lifetime JP2972596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25424896A JP2972596B2 (en) 1996-09-26 1996-09-26 Power generation prediction method for photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25424896A JP2972596B2 (en) 1996-09-26 1996-09-26 Power generation prediction method for photovoltaic power generation system

Publications (2)

Publication Number Publication Date
JPH10108486A JPH10108486A (en) 1998-04-24
JP2972596B2 true JP2972596B2 (en) 1999-11-08

Family

ID=17262351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25424896A Expired - Lifetime JP2972596B2 (en) 1996-09-26 1996-09-26 Power generation prediction method for photovoltaic power generation system

Country Status (1)

Country Link
JP (1) JP2972596B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5833267B1 (en) * 2015-06-17 2015-12-16 株式会社Looop Power generation amount predicting control device, power generation amount prediction method, and power generation amount prediction program

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4641113B2 (en) * 2001-03-23 2011-03-02 シャープ株式会社 Solar power generation system management system
DE602004010281T2 (en) 2003-08-20 2008-10-02 New Energy Options, Inc., Littleton METHOD AND SYSTEM FOR PREDICTING SOLAR ENERGY PRODUCTION
JP2007281060A (en) * 2006-04-04 2007-10-25 Nippon Telegr & Teleph Corp <Ntt> Power generation prediction method for photovoltaic power generation system, device, and program
JP5194458B2 (en) * 2007-01-24 2013-05-08 株式会社明電舎 Photovoltaic power generation system control method and solar power generation system power generation amount prediction device
FR2911964B1 (en) * 2007-01-29 2009-04-17 Francois Xavier Monaco METHOD AND DEVICE FOR DETERMINING THE SUITABILITY OF A LOCATION FOR RECEIVING AN ENERGY GENERATION PLANT FROM SOLAR RADIATION.
FR2941328B1 (en) * 2009-01-19 2012-11-02 Commissariat Energie Atomique METHOD FOR PREDICTING THE ELECTRIC PRODUCTION OF A PHOTOVOLTAIC DEVICE
JP5344614B2 (en) * 2009-10-14 2013-11-20 Necエンジニアリング株式会社 Method and apparatus for predicting power generation amount of photovoltaic power generation system
JP5477038B2 (en) * 2010-02-19 2014-04-23 東京電力株式会社 Photovoltaic power generation amount prediction method and distribution system control system
JP5523914B2 (en) * 2010-04-21 2014-06-18 中国電力株式会社 Power generation amount prediction system and program, power sale amount prediction system and program
JP2014160687A (en) * 2011-06-15 2014-09-04 Sharp Corp Photovoltaic power generation apparatus configuration extraction apparatus, photovoltaic power generation apparatus configuration extraction method, photovoltaic power generation apparatus configuration extraction program, and photovoltaic power generation apparatus configuration determination system
JP2013242279A (en) * 2012-05-23 2013-12-05 Eneres Corp Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method
KR101498927B1 (en) * 2013-07-09 2015-03-04 한국에너지기술연구원 A method for performance analysis of solar thermal system
JP6683449B2 (en) * 2015-10-01 2020-04-22 日本無線株式会社 Independent power supply system and control method for independent power supply system
JP7003419B2 (en) * 2017-02-23 2022-01-20 東京電力ホールディングス株式会社 Information processing equipment, information processing methods and programs
KR101963343B1 (en) * 2017-08-31 2019-07-31 주식회사 인코어드 테크놀로지스 Method and apparatus for estimating generated photovoltaic power
KR102282895B1 (en) * 2017-08-31 2021-07-28 주식회사 인코어드 테크놀로지스 System for estimating generated photovoltaic power
KR102284398B1 (en) * 2018-02-26 2021-08-02 주식회사 인코어드 테크놀로지스 An information acquiring apparatus for estimating generated photovoltaic power
CN108564230B (en) * 2018-04-28 2021-05-04 湖南红太阳新能源科技有限公司 Household distributed energy management method and system
WO2021193296A1 (en) * 2020-03-27 2021-09-30 Agc株式会社 Solar radiation estimation system, air conditioning control system, air conditioning device, vehicle, building, solar radiation estimation method, air conditioning control method, and solar radiation estimation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5833267B1 (en) * 2015-06-17 2015-12-16 株式会社Looop Power generation amount predicting control device, power generation amount prediction method, and power generation amount prediction program
JP2017011780A (en) * 2015-06-17 2017-01-12 株式会社Looop Power generation amount prediction control device, power generation amount prediction method and power generation amount prediction program

Also Published As

Publication number Publication date
JPH10108486A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP2972596B2 (en) Power generation prediction method for photovoltaic power generation system
Šúri et al. Potential of solar electricity generation in the European Union member states and candidate countries
Elminir et al. Optimum solar flat-plate collector slope: case study for Helwan, Egypt
Al-Rawahi et al. Prediction of hourly solar radiation on horizontal and inclined surfaces for Muscat/Oman
JP3984604B2 (en) Method, apparatus, and program for predicting power generation amount of solar power generation system
Luque et al. Some results of the EUCLIDES photovoltaic concentrator prototype
KR100328187B1 (en) Method and apparatus for estimating generated energy of solar cell
Bosman et al. Performance modeling and valuation of snow-covered PV systems: examination of a simplified approach to decrease forecasting error
Lurwan et al. Predicting power output of photovoltaic systems with solar radiation model
Schmelas et al. Photovoltaics energy prediction under complex conditions for a predictive energy management system
Chakraborty et al. Mathematical method to find best suited PV technology for different climatic zones of India
McKenney et al. Spatial insolation models for photovoltaic energy in Canada
Peláez Bifacial solar panels system design, modeling, and performance
Pelland et al. The development of photovoltaic resource maps for Canada
Candanedo et al. Preliminary assessment of a weather forecast tool for building operation
Kwak et al. Statistical analysis of power generation of semi-transparent photovoltaic (STPV) for diversity in building envelope design: A mock-up test by azimuth and tilt angles
MacAlpine et al. Measured and estimated performance of a fleet of shaded photovoltaic systems with string and module‐level inverters
TW201419009A (en) Prediction method for sun-tracking type photovoltaic system
Malik et al. An approach to predict output of PV panels using weather corrected global irradiance
McIntyre Community-scale assessment of rooftop-mounted solar energy potential with meteorological, atlas, and GIS data: a case study of Guelph, Ontario (Canada)
JP5578541B2 (en) Amount of sunlight forecasting system, amount of sunlight forecasting method
Hertzog Validating the optimum tilt angle for PV modules in the central region of South Africa for the winter season
Barbieri et al. A comparative study of clear-sky irradiance models for Western Australia
Kim Modeling of high-concentrator photovoltaic systems for utility-scale applications
Inan Technical and economic analysis of photovoltaic system designed for a public building in Turkey

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term