JP2970300B2 - 3D modeling method - Google Patents
3D modeling methodInfo
- Publication number
- JP2970300B2 JP2970300B2 JP5087043A JP8704393A JP2970300B2 JP 2970300 B2 JP2970300 B2 JP 2970300B2 JP 5087043 A JP5087043 A JP 5087043A JP 8704393 A JP8704393 A JP 8704393A JP 2970300 B2 JP2970300 B2 JP 2970300B2
- Authority
- JP
- Japan
- Prior art keywords
- shape
- cross
- resin
- dimensional
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0072—Roughness, e.g. anti-slip
- B29K2995/0073—Roughness, e.g. anti-slip smooth
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、レーザ光を照射するこ
とにより光硬化性樹脂を硬化させ三次元形状を造形する
三次元造形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional forming method for forming a three-dimensional shape by curing a photocurable resin by irradiating a laser beam.
【0002】[0002]
【従来の技術】近年、さまざまな三次元形状を造形する
方法として、液体状の光硬化性樹脂にレーザ光を走査さ
せて樹脂の硬化層を形成し、この硬化層を複数層積層さ
せ所望の立体形状を造形する三次元造形方法が広く利用
されてきた。2. Description of the Related Art In recent years, as a method of forming various three-dimensional shapes, a liquid photocurable resin is scanned with a laser beam to form a cured layer of the resin, and a plurality of the cured layers are laminated to form a desired layer. A three-dimensional forming method for forming a three-dimensional shape has been widely used.
【0003】以下に従来の三次元造形方法について説明
する。図2は上記三次元造形方法の原理を適用した三次
元造形装置の概略構成を示したものである。A conventional three-dimensional printing method will be described below. FIG. 2 shows a schematic configuration of a three-dimensional printing apparatus to which the principle of the three-dimensional printing method is applied.
【0004】三次元造形装置は、三次元形状のデータを
処理する部分と、このデータにもとづいて三次元形状を
造形する装置より成る。[0004] The three-dimensional printing apparatus includes a part for processing three-dimensional shape data and a device for forming a three-dimensional shape based on the data.
【0005】データを処理する部分は、三次元形状を作
成する三次元CADシステム1と、三次元CADシステ
ム1で作成された三次元形状にもとづいて造形装置用デ
ータを計算するEWS(エンジニアリング ワーク ス
テーション)2より構成される。[0005] The data processing part includes a three-dimensional CAD system 1 for creating a three-dimensional shape, and an EWS (Engineering Workstation) for calculating data for a molding apparatus based on the three-dimensional shape created by the three-dimensional CAD system 1. 2).
【0006】一方、三次元形状を造形する装置は、液体
状の光硬化性樹脂7を収容した樹脂タンク10からな
り、この樹脂タンク10に昇降装置6により昇降自在な
形成台13が設けられている。光硬化性樹脂としては、
光照射により硬化する種々の樹脂が利用でき、例えばエ
ポキシアクリレートなどのエポキシ系樹脂や、変形ポリ
ウレタンメタクリレートなどが利用される。On the other hand, an apparatus for forming a three-dimensional shape comprises a resin tank 10 containing a liquid photocurable resin 7, and a forming table 13 which can be moved up and down by an elevating device 6 is provided in the resin tank 10. I have. As photocurable resin,
Various resins that can be cured by light irradiation can be used. For example, epoxy resins such as epoxy acrylate and modified polyurethane methacrylate are used.
【0007】樹脂タンク10の上方には、レーザ発生装
置5より発生したレーザ光を光ファイバー9を介し、光
硬化性樹脂7の液面にXY方向に自由に走査しながら照
射するレーザXY走査装置4が設けられている。なお、
レーザ発生装置5、レーザXY走査装置4および昇降装
置6はEWS2のデータにもとづいてNC制御装置3に
より制御される。Above the resin tank 10, a laser XY scanning device 4 for irradiating a laser beam generated by a laser generator 5 via an optical fiber 9 while freely scanning the liquid surface of the photocurable resin 7 in the XY directions. Is provided. In addition,
The laser generator 5, the laser XY scanner 4, and the lift 6 are controlled by the NC controller 3 based on the data of the EWS 2.
【0008】次に、上記装置の動作を説明すると、まず
三次元CADシステム1において所望の三次元形状を作
成すると共に、その三次元形状データはSTL(ストレ
ージリスト)フォーマットに変換され、EWS2に送ら
れる。EWS2は前記三次元形状のSTLフォーマット
で表されたデータをXY平面に平行にZ軸で等間隔ΔZ
に切断し、所望の三次元形状を各断面形状のデータの集
合体として表す。なおΔZの値は光硬化性樹脂の種類と
レーザ光のパワーによって決定される。Next, the operation of the above apparatus will be described. First, a desired three-dimensional shape is created in the three-dimensional CAD system 1, and the three-dimensional shape data is converted into an STL (storage list) format and transmitted to the EWS 2. Can be The EWS2 converts the data expressed in the STL format of the three-dimensional shape into the XY plane at equal intervals ΔZ on the Z axis.
And the desired three-dimensional shape is represented as an aggregate of data of each cross-sectional shape. The value of ΔZ is determined by the type of the photocurable resin and the power of the laser beam.
【0009】次に、形成台13を光硬化性樹脂7の液面
より断面の間隔ΔZだけ下方に位置決めし、形成台13
の上部を厚さΔZの液体状光硬化性樹脂層で覆う。レー
ザXY走査装置4により光硬化性樹脂7の表面に最下部
の断面形状に対応した形状にレーザ光を走査し、表面樹
脂層を硬化させて形成台13上に最下断面層を造形す
る。Next, the forming table 13 is positioned below the liquid level of the photo-curable resin 7 by a space ΔZ in cross section.
Is covered with a liquid photocurable resin layer having a thickness of ΔZ. The laser XY scanning device 4 scans the surface of the photocurable resin 7 with laser light in a shape corresponding to the lowermost cross-sectional shape, cures the surface resin layer, and forms the lowermost cross-sectional layer on the forming table 13.
【0010】このとき、図3に示すように、レーザ光
を、X軸方向にレーザ光の径を基準とし定めた間隔19
ずつずらしながら、矢印18で示すようにY軸に平行に
断面形状17の一方の端から他方の端に向けて走査す
る。At this time, as shown in FIG. 3, the laser beam is emitted in the X-axis direction at an interval 19 based on the diameter of the laser beam.
Scanning is performed from one end of the cross-sectional shape 17 to the other end in parallel with the Y-axis as shown by an arrow 18 while shifting each time.
【0011】一断面層が造形されると、昇降装置6によ
り断面の間隔分ΔZだけさらに形成台13を未硬化の光
硬化性樹脂中に沈め、再び先に形成された樹脂硬化層の
上部を厚さΔZの液体状光硬化性樹脂層で覆う。その
後、前記と同様にレーザXY走査装置4により光硬化性
樹脂7の表面に最下断面層に続く第二の断面形状に対応
した形状にレーザ光を走査し、最下断面層の上部に第二
の断面層を硬化させ造形する。When the one-section layer is formed, the forming table 13 is further immersed in the uncured photocurable resin by the elevating device 6 by the interval of the section ΔZ, and the upper portion of the previously formed resin cured layer is re-formed. Cover with a liquid photocurable resin layer having a thickness of ΔZ. Thereafter, similarly to the above, the laser XY scanning device 4 scans the surface of the photocurable resin 7 with laser light in a shape corresponding to the second cross-sectional shape following the lowermost cross-sectional layer, and places a laser beam on the upper surface of the lowermost cross-sectional layer. The two cross-section layers are cured and shaped.
【0012】この工程を立体形状の最高部まで繰り返す
ことにより光硬化性樹脂の硬化層を複数層積層させて三
次元形状が造形される。By repeating this process up to the highest part of the three-dimensional shape, a three-dimensional shape is formed by laminating a plurality of cured layers of the photocurable resin.
【0013】[0013]
【発明が解決しようとする課題】三次元造形装置に使用
される光硬化性樹脂は、レーザ光が照射され硬化する際
に体積比で2〜5%程度収縮する。よって、未硬化の光
硬化性樹脂にレーザ光を照射させると、図4(a)に示
すように、レーザ光が照射される領域41の周囲に未硬
化の光硬化性樹脂43が存在する場合は、領域41にレ
ーザ光が照射され、樹脂が硬化して収縮し42となる
が、この硬化収縮量を補うように周囲の未硬化の樹脂
が、矢印44に示すように供給されながら硬化が進行す
るため、硬化時の収縮による応力は発生しにくい。The photocurable resin used in the three-dimensional printing apparatus shrinks by about 2 to 5% by volume when irradiated with a laser beam and cured. Therefore, when the uncured photocurable resin is irradiated with the laser beam, the uncured photocurable resin 43 exists around the area 41 to be irradiated with the laser beam as shown in FIG. Is irradiated with a laser beam to the area 41, and the resin cures and shrinks to form 42. In order to compensate for the curing shrinkage, the surrounding uncured resin is cured while being supplied as indicated by an arrow 44. Due to the progress, stress due to shrinkage at the time of curing hardly occurs.
【0014】しかし、図4(b)に示すように、レーザ
光が照射される領域47の周囲にすでに硬化した樹脂4
5が存在するときは、未硬化の光硬化性樹脂にレーザ光
を照射した際、領域47中の樹脂は硬化し収縮しようと
するが、周囲からの未硬化の樹脂の供給がないため、す
でに硬化した部分45は硬化中の樹脂に引きよせられ、
張力46が発生する。つまり、樹脂の硬化に伴う収縮に
より先に硬化した部分から後に硬化する部分に向かう方
向に内部応力が発生する。However, as shown in FIG. 4B, the cured resin 4
When 5 is present, when the uncured photocurable resin is irradiated with laser light, the resin in the region 47 is cured and tries to shrink, but since there is no supply of uncured resin from the surroundings, The cured part 45 is drawn by the curing resin,
A tension 46 is generated. That is, internal stress is generated in a direction from a previously cured portion to a later cured portion due to shrinkage accompanying the curing of the resin.
【0015】さらに、光硬化性樹脂はレーザ光が照射さ
れた時点では、照射された部分のおよそ98%程度しか
硬化しておらず、完全に硬化するにはかなりの時間を要
する。そのため、一度硬化した後、さらに硬化が進行し
成形品の内部で樹脂が収縮し、さらに応力が発生する。Further, when the photocurable resin is irradiated with the laser beam, only about 98% of the irradiated portion is cured, and it takes a considerable time to completely cure the photocurable resin. Therefore, once cured, the curing proceeds further, the resin shrinks inside the molded product, and further stress is generated.
【0016】従って、従来の様に光硬化性樹脂にX軸あ
るいはY軸に平行な向きにレーザ光を走査、例えば、図
5に示すようにレーザ光を直線的に矢印59の向きに走
査すると、レーザ光の照射域は53,54,55,5
6,57と進行し、光硬化性樹脂もレーザ光が走査され
るにつれてレーザ光の走査方向と同じ方向に連続的に徐
々に硬化する。よって、樹脂の硬化に伴う収縮により矢
印58に示すように先に硬化した部分51が後に硬化す
る部分52に引っ張られるように内部応力58が発生し
蓄積される。Therefore, when the laser beam is scanned in the direction parallel to the X-axis or the Y-axis on the photo-curable resin as in the prior art, for example, when the laser beam is linearly scanned in the direction of arrow 59 as shown in FIG. And the irradiation area of the laser beam is 53, 54, 55, 5
The light-curing resin also gradually cures in the same direction as the scanning direction of the laser light as the laser light is scanned. Therefore, the internal stress 58 is generated and accumulated such that the previously cured portion 51 is pulled by the later cured portion 52 as shown by an arrow 58 due to shrinkage accompanying the curing of the resin.
【0017】すなわち、従来の走査方法では、内部応力
58が総じて同方向つまりX軸あるいはY軸に平行な向
きに偏るため、結果として成形品が反ってしまうなどの
変形を起こす恐れがあった。That is, in the conventional scanning method, the internal stress 58 is generally biased in the same direction, that is, in a direction parallel to the X axis or the Y axis, and as a result, there is a possibility that the molded product is deformed such as warping.
【0018】本発明は、内部応力の偏りを防ぎ三次元形
状の造形において成形品の変形を防止する方法を提供す
るものである。The present invention provides a method for preventing a bias in internal stress and preventing deformation of a molded product in three-dimensional molding.
【0019】[0019]
【課題を解決するための手段】本発明は上記目的を達成
するため、レーザ光を各断面形状の略重心から外側へ向
けてリング状、同心多角形状又はスパイラル状に走査す
ることにより、光硬化性樹脂を各断面形状の略重心から
外側へ広げるように硬化させ、樹脂の硬化断面層を造形
する。According to the present invention, in order to attain the above object, a laser beam is scanned in a ring shape, concentric polygonal shape or spiral shape from the approximate center of gravity of each cross section outward. The conductive resin is cured so as to spread outward from the approximate center of gravity of each cross-sectional shape, and a cured cross-sectional layer of the resin is formed.
【0020】[0020]
【作用】上記本発明の方法によれば、レーザ光を各断面
形状の略重心から外側へ向けて走査することにより、樹
脂の硬化は略重心から外側へ進行し、硬化時の収縮によ
る応力は略重心から外側方向の向きに発生し、応力が全
体として分散する。According to the method of the present invention, the resin is hardened from the center of gravity to the outside by scanning the laser beam outward from the center of gravity of each cross-sectional shape, and the stress due to shrinkage during hardening is reduced. The stress is generated outward from the approximate center of gravity, and the stress is dispersed as a whole.
【0021】[0021]
【実施例】以下、本発明の実施例について説明する。な
お、三次元造形装置の構成は図2に示す従来例と同一で
あるため、各部の説明は省略する。Embodiments of the present invention will be described below. Since the configuration of the three-dimensional printing apparatus is the same as that of the conventional example shown in FIG. 2, the description of each part will be omitted.
【0022】図2の構成において、三次元CADシステ
ム1において所望の三次元形状を作成し、その三次元形
状データは三次元CADシステム1によりSTLフォー
マットに変換されEWS2にデータが送られる。EWS
2は前記三次元形状のSTLフォーマットで表されたデ
ータをZ軸で等間隔ΔZに切断し、所望の三次元形状を
各断面形状のデータの集合体として表す。In the configuration shown in FIG. 2, a desired three-dimensional shape is created in the three-dimensional CAD system 1, the three-dimensional shape data is converted into the STL format by the three-dimensional CAD system 1, and the data is sent to the EWS 2. EWS
Numeral 2 cuts the data expressed in the STL format of the three-dimensional shape at equal intervals ΔZ along the Z-axis, and expresses the desired three-dimensional shape as an aggregate of data of each cross-sectional shape.
【0023】次に、形成台13を光硬化性樹脂7の液面
より断面の間隔ΔZだけ下方に位置決めし、形成台13
の上部を厚さΔZの液体状光硬化性樹脂層で覆う。レー
ザXY走査装置4により光硬化性樹脂7の表面に最下部
の断面形状に対応した形状にレーザ光を走査し、形成台
13上に表面樹脂層を硬化させ最下断面層を造形する。Next, the forming table 13 is positioned below the liquid level of the photo-curable resin 7 by a space ΔZ in cross section.
Is covered with a liquid photocurable resin layer having a thickness of ΔZ. The laser XY scanning device 4 scans the surface of the photocurable resin 7 with laser light in a shape corresponding to the lowermost cross-sectional shape, and cures the surface resin layer on the forming table 13 to form the lowermost cross-sectional layer.
【0024】このとき、本実施例では、図1に示すよう
にレーザ光を断面形状14の略重心16を中心すなわち
走査開始点として、半径をレーザ光の径を基準とした一
定の値ずつ拡大しながらリング状、同心多角形状又はス
パイラル状に走査する。At this time, in the present embodiment, as shown in FIG. 1, the radius of the laser light is enlarged by a constant value based on the diameter of the laser light with the center of the approximate center of gravity 16 of the sectional shape 14 as the center, ie, the scanning start point. While scanning, scanning is performed in a ring shape, concentric polygonal shape or spiral shape.
【0025】一断面層が造形されると、昇降装置6によ
り断面の間隔分ΔZだけさらに形成台13を未硬化の光
硬化性樹脂中に沈め、再び先に形成された樹脂硬化層の
上部を厚さΔZの液体上光硬化性樹脂層で覆う。その
後、前記と同様にレーザXY走査装置4により光硬化性
樹脂7の表面に最下断面層に続く第二の断面形状に対応
した形状にレーザ光を走査し、最下断面層に第二の断面
層を硬化させ造形する。When the one cross section layer is formed, the forming table 13 is further immersed in the uncured photocurable resin by the cross section interval ΔZ by the elevating device 6, and the upper portion of the previously formed resin cured layer is again formed. It is covered with a photocurable resin layer on the liquid having a thickness ΔZ. Then, the laser XY scanning device 4 scans the surface of the photocurable resin 7 with laser light in a shape corresponding to the second cross-sectional shape following the lowermost cross-sectional layer in the same manner as described above. The cross-section layer is cured and shaped.
【0026】このプロセスを立体形状の最高部まで繰り
返すことにより、光硬化性樹脂の硬化層を複数層積層し
て三次元形状が造形される。By repeating this process up to the highest part of the three-dimensional shape, a three-dimensional shape is formed by laminating a plurality of cured layers of the photocurable resin.
【0027】この結果、光硬化性樹脂にレーザ光が照射
され樹脂は各断面の略重心から外側へ向けて硬化し、硬
化時の収縮による応力は略重心から外側方向の向きに発
生する。そのため、成形品の応力は各断面で放射状に分
布し、一定方向に偏ることがなくなるため、成形品が反
るなどの変形を防止できる。As a result, the photocurable resin is irradiated with the laser beam, and the resin is cured outward from the approximate center of gravity of each section, and stress due to shrinkage at the time of curing is generated in an outward direction from the approximate center of gravity. For this reason, the stress of the molded product is radially distributed in each cross section and is not biased in a certain direction, so that deformation such as warping of the molded product can be prevented.
【0028】[0028]
【発明の効果】以上のように本発明によれば、レーザ光
を断面形状の略重心から外側へ向けてリング状、同心多
角形状又はスパイラル状に走査することにより、樹脂の
硬化を略重心から外側へと進行させ、樹脂の硬化に伴う
収縮による内部応力を全体として分散させ、一定方向に
偏ることをなくすことにより、成形品の変形が防止でき
る。As described above, according to the present invention, the resin is hardened from the substantially center of gravity by scanning the laser beam outward from the substantially center of gravity of the cross section in a ring shape, concentric polygonal shape, or spiral shape. By proceeding outward and dispersing the internal stress due to the shrinkage due to the curing of the resin as a whole and eliminating the bias in a certain direction, the deformation of the molded product can be prevented.
【図1】本発明方法でのレーザ光走査パターンを示す平
面図FIG. 1 is a plan view showing a laser beam scanning pattern in the method of the present invention.
【図2】三次元造形装置の概略構成図FIG. 2 is a schematic configuration diagram of a three-dimensional printing apparatus.
【図3】従来方法でのレーザ光走査パターンを示す平面
図FIG. 3 is a plan view showing a laser beam scanning pattern according to a conventional method.
【図4】光硬化性樹脂の硬化パターンを示す平面図FIG. 4 is a plan view showing a curing pattern of a photocurable resin.
【図5】内部応力の発生原理を説明する概念図FIG. 5 is a conceptual diagram illustrating the principle of generation of internal stress.
1 三次元CADシステム 2 EWS 3 NC制御装置 4 レーザXY走査装置 5 レーザ発生装置 6 昇降装置 7 光硬化性樹脂 8 造形物 9 光ファイバー 10 樹脂タンク 13 形成台 14 断面形状 15 レーザ走査パス 16 略重心 17 断面形状 18 レーザ走査パス 19 レーザ走査間隔 Reference Signs List 1 3D CAD system 2 EWS 3 NC controller 4 Laser XY scanner 5 Laser generator 6 Lifting device 7 Photocurable resin 8 Modeling object 9 Optical fiber 10 Resin tank 13 Forming table 14 Cross section 15 Laser scanning path 16 Approximate center of gravity 17 Cross-sectional shape 18 Laser scanning path 19 Laser scanning interval
Claims (1)
断面形状に関するデータの集合体として表し、このデー
タにもとづいて下記(1),(2)の工程を繰り返すこ
とにより複数層の光硬化性樹脂層を積層し三次元形状を
造形する三次元造形方法において、レーザ光を前記断面
形状の略重心から外側に向けてリング状、同心多角形状
又はスパイラル状に走査することを特徴とする三次元造
形方法。 (1)未硬化の液体状光硬化性樹脂を充填した水槽の上
方からレーザ光を走査し、断面形状に対応した形状の表
面樹脂層を硬化させる。 (2) 硬化した樹脂層を断面の間隔分未硬化の液体状
光硬化性樹脂中に沈下させる。1. A desired three-dimensional shape is represented as an aggregate of data on cross-sectional shapes cut at equal intervals, and the following steps (1) and (2) are repeated based on the data to form a plurality of layers of light. In a three-dimensional forming method of forming a three-dimensional shape by laminating a curable resin layer, a laser beam is scanned in a ring shape, a concentric polygonal shape, or a spiral shape outward from a substantially center of gravity of the cross-sectional shape. 3D modeling method. (1) A laser beam is scanned from above a water tank filled with an uncured liquid photocurable resin to cure a surface resin layer having a shape corresponding to a cross-sectional shape. (2) The cured resin layer is settled in the uncured liquid photocurable resin by the interval of the cross section.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5087043A JP2970300B2 (en) | 1993-04-14 | 1993-04-14 | 3D modeling method |
KR1019940007595A KR970011573B1 (en) | 1993-04-14 | 1994-04-12 | Three dimensional object-forming method |
US08/227,330 US5500069A (en) | 1993-04-14 | 1994-04-14 | Three dimensional object-forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5087043A JP2970300B2 (en) | 1993-04-14 | 1993-04-14 | 3D modeling method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06297586A JPH06297586A (en) | 1994-10-25 |
JP2970300B2 true JP2970300B2 (en) | 1999-11-02 |
Family
ID=13903921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5087043A Expired - Fee Related JP2970300B2 (en) | 1993-04-14 | 1993-04-14 | 3D modeling method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2970300B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101579622B1 (en) * | 2014-01-15 | 2015-12-22 | (주)에이엔에이치스트럭쳐 | Manufacturing method of aircraft member using rapid prototyping tools |
JP6483551B2 (en) * | 2015-07-03 | 2019-03-13 | 株式会社アスペクト | Powder bed fusion unit |
US10442136B2 (en) | 2016-05-31 | 2019-10-15 | Technology Research Association For Future Additive Manufacturing | Three-dimensional laminating and fabricating system, three-dimensional laminating and fabricating method, laminating and fabricating control apparatus and method of controlling the same, and control program |
US11478855B2 (en) | 2016-09-20 | 2022-10-25 | Siemens Aktiengesellschaft | Powder bed machine and method for acquiring the process data of a manufacturing process in a powder bed machine |
CN108637252B (en) * | 2018-05-16 | 2020-04-24 | 南京先进激光技术研究院 | 3D printing scanning method based on SLM technology and 3D printer |
-
1993
- 1993-04-14 JP JP5087043A patent/JP2970300B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06297586A (en) | 1994-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970011573B1 (en) | Three dimensional object-forming method | |
JP3030853B2 (en) | Method and apparatus for forming a three-dimensional object | |
US5705117A (en) | Method of combining metal and ceramic inserts into stereolithography components | |
JP2970300B2 (en) | 3D modeling method | |
JPH04366617A (en) | Optical shaping method | |
JP2959281B2 (en) | Optical molding equipment | |
JPH10119136A (en) | Photo-shaping method using selected light sources and stereoscopially shaped article to be obtained by the method | |
JPH0224127A (en) | Optical shaping method | |
JPH0985837A (en) | Preparation of molding with three-dimensional shape | |
JP2000263650A (en) | Stereo lithographic apparatus | |
JP3782049B2 (en) | Stereolithography method and apparatus therefor | |
JPH06297587A (en) | Three-dimensional shaping method | |
JP2010052318A (en) | Light shaping method | |
JP2671534B2 (en) | 3D shape forming method | |
JP3412278B2 (en) | Stereolithography device and method | |
JPH058307A (en) | Optically shaping method | |
JPH0514839Y2 (en) | ||
JP2921950B2 (en) | 3D shape forming device | |
JP3170832B2 (en) | Optical molding method | |
JP3166133B2 (en) | Optical shaping method and apparatus | |
WO2024172041A1 (en) | Three-dimensional modeling method, method for manufacturing three-dimensional model, and three-dimensional model | |
JP2746235B2 (en) | Photocuring molding method and molding apparatus | |
JP4405671B2 (en) | Determination of resin hardened area in optical stereolithography | |
JP3314608B2 (en) | Stereolithography | |
JPH01232026A (en) | Optical shaping method by porous mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |