JPH06297587A - Three-dimensional shaping method - Google Patents

Three-dimensional shaping method

Info

Publication number
JPH06297587A
JPH06297587A JP5088310A JP8831093A JPH06297587A JP H06297587 A JPH06297587 A JP H06297587A JP 5088310 A JP5088310 A JP 5088310A JP 8831093 A JP8831093 A JP 8831093A JP H06297587 A JPH06297587 A JP H06297587A
Authority
JP
Japan
Prior art keywords
cross
resin
shape
laser beam
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5088310A
Other languages
Japanese (ja)
Inventor
Yosuke Ogue
洋輔 小久江
Takahiro Kuyama
高弘 久山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5088310A priority Critical patent/JPH06297587A/en
Priority to KR1019940007595A priority patent/KR970011573B1/en
Priority to US08/227,330 priority patent/US5500069A/en
Publication of JPH06297587A publication Critical patent/JPH06297587A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser

Abstract

PURPOSE:To prevent the internal stress accompannied by the curing of a resin from deviating in a definite direction by changing the direction of the internal stress at every cross section layer to disperse the same as the whole of a molded product by scanning a photo-setting resin at a parallel equal interval by laser beam and relatively rotating a scanning direction at an arbitrary angle. CONSTITUTION:A desired three-dimensional shape is formed in a threedimensional CAD system 1 and converted to an STL format to be sent to an NWS 2. The EWS 2 cuts data on a Z-axis at an equal interval DELTAZ in parallel to an XY plane and the desired three-dimensional shape is displayed as the aggregate of the data of respective cross-sectional shapes. A forming stand 13 positioned in a photo-setting resin 7 so as to be set under the liquid level of the resin 7 by the interval DELTAZ of a cross section and covered with a liquid photo-setting resin layer with a thickness DELTAZ. The surface of the photo-setting resin is scanned in the shape corresponding to the cross-sectional shape of the lowermost part by the laser beam from a laser XY scanner 4 and the surface resin layer is cured to shape the lowermost cross-section layer on the forming stand 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光を照射するこ
とにより光硬化性樹脂を硬化させて三次元形状を造形す
る三次元造形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional modeling method for molding a three-dimensional shape by irradiating a laser beam to cure a photocurable resin.

【0002】[0002]

【従来の技術】近年、さまざまな三次元形状を造形する
方法として、液体状の光硬化性樹脂にレーザ光を走査さ
せて樹脂の硬化層を形成し、この硬化層を複数層積層さ
せ所望の立体形状を造形する三次元造形方法が広く利用
されてきた。
2. Description of the Related Art Recently, as a method for forming various three-dimensional shapes, a liquid photocurable resin is scanned with a laser beam to form a cured layer of the resin, and a plurality of the cured layers are laminated to form a desired layer. A three-dimensional modeling method for modeling a three-dimensional shape has been widely used.

【0003】以下に従来の三次元造形方法について説明
する。図3は上記三次元造形方法の原理を適用した従来
の三次元造形装置の概略構成を示したものである。
A conventional three-dimensional modeling method will be described below. FIG. 3 shows a schematic configuration of a conventional 3D modeling apparatus to which the principle of the 3D modeling method is applied.

【0004】三次元造形装置は、三次元形状のデータを
処理する部分と、このデータにもとづいて三次元形状を
造形する装置より成る。
The three-dimensional modeling apparatus comprises a part for processing three-dimensional shape data and a device for modeling the three-dimensional shape based on this data.

【0005】データを処理する部分は、三次元形状を作
成する三次元CADシステム1と、三次元CADシステ
ム1で作成された三次元形状にもとづいて造形装置用デ
ータを計算するEWS(エンジニアリング ワーク ス
テーション)2より構成される。
The data processing part is a three-dimensional CAD system 1 for creating a three-dimensional shape, and an EWS (engineering workstation) for calculating data for a modeling apparatus based on the three-dimensional shape created by the three-dimensional CAD system 1. ) 2.

【0006】一方、三次元形状を造形する装置は、液体
状の光硬化性樹脂7を収容した樹脂タンク10からな
り、この樹脂タンク10に昇降装置6により昇降自在な
形成台13が設けられている。光硬化性樹脂としては、
光照射により硬化する種々の樹脂が利用でき、例えばエ
ポキシアクリレートなどのエポキシ系樹脂や、変性ポリ
ウレタンメタクリレートなどが利用される。
On the other hand, the apparatus for forming a three-dimensional shape comprises a resin tank 10 containing a liquid photocurable resin 7, and a forming table 13 which can be moved up and down by an elevating device 6 is provided on the resin tank 10. There is. As the photo-curable resin,
Various resins that are cured by light irradiation can be used, for example, epoxy-based resins such as epoxy acrylate and modified polyurethane methacrylate.

【0007】樹脂タンク10の上方には、レーザ発生装
置5より発生したレーザ光を光ファイバー9を介し、光
硬化性樹脂7の液面にXY方向に自由に走査しながら照
射するレーザXY走査装置4が設けられている。なお、
レーザ発生装置5、レーザXY走査装置4および昇降装
置6はEWS2のデータにもとづいてNC制御装置3に
より制御される。
Above the resin tank 10, a laser XY scanning device 4 for irradiating a laser beam generated by a laser generator 5 through an optical fiber 9 onto the liquid surface of the photocurable resin 7 while freely scanning in the XY directions. Is provided. In addition,
The laser generator 5, the laser XY scanning device 4, and the lifting device 6 are controlled by the NC controller 3 based on the data of the EWS 2.

【0008】次に、上記装置の動作を説明すると、まず
三次元CADシステム1で所望の三次元形状を作成する
と共に、その三次元形状データはSTL(ストレージ
リスト)フォーマットに変換され、EWS2に送られ
る。EWS2は前記三次元形状のSTLフォーマットさ
れたデータをXY平面に平行にZ軸で等間隔ΔZに切断
し、所望の三次元形状を各断面形状のデータの集合体と
して表す。なおΔZの値は光硬化性樹脂の種類とレーザ
光のパワーによって決定される。
Next, the operation of the above apparatus will be described. First, a desired three-dimensional shape is created by the three-dimensional CAD system 1, and the three-dimensional shape data is stored in STL (storage).
List) format and sent to EWS2. The EWS 2 cuts the STL-formatted data of the three-dimensional shape in parallel with the XY plane at equal intervals ΔZ along the Z-axis, and represents a desired three-dimensional shape as an aggregate of data of each cross-sectional shape. The value of ΔZ is determined by the type of photocurable resin and the power of laser light.

【0009】次に、形成台13を光硬化性樹脂7の液面
より断面の間隔ΔZだけ下方に位置決めし、形成台13
の上部を厚さΔZの液体状光硬化性樹脂層で覆う。レー
ザXY走査装置4により光硬化性樹脂7の表面に三次元
形状の最下部の断面形状に対応した形状にレーザ光を走
査し、表面樹脂層を硬化させて形成台13上に最下断面
層を造形する。
Next, the forming table 13 is positioned below the liquid surface of the photocurable resin 7 by the interval ΔZ of the cross section, and the forming table 13 is formed.
Is covered with a liquid photocurable resin layer having a thickness ΔZ. The laser XY scanning device 4 scans the surface of the photocurable resin 7 with a laser beam in a shape corresponding to the bottom cross-sectional shape of the three-dimensional shape to cure the surface resin layer and form the bottom cross-section layer on the forming table 13. To model.

【0010】このとき、図4に示すように、レーザ光
を、X軸方向にレーザ光の径を基準として定めた間隔2
2ずつずらしながら、矢印21で示すようにY軸に平行
に断面形状20の一方の端から他方の端に向けて走査す
る。
At this time, as shown in FIG. 4, the laser beam is separated by an interval 2 in the X-axis direction with reference to the diameter of the laser beam.
Scanning is performed from one end of the cross-sectional shape 20 toward the other end parallel to the Y-axis while shifting by two, as indicated by arrow 21.

【0011】一断面層が造形されると、昇降装置6によ
り断面の間隔分ΔZだけさらに形成台13を未硬化の光
硬化性樹脂中に沈め、再び先に形成された樹脂硬化層の
上部を厚さΔZの液体状光硬化性樹脂層で覆う。その
後、前記と同様にレーザXY走査装置4により光硬化性
樹脂7の表面に最下断面層に続く第二の断面形状に対応
した形状にレーザ光を走査し、最下断面層の上部に第二
の断面層を硬化させ造形する。
When the one cross-section layer is formed, the elevating device 6 further immerses the forming table 13 in the uncured photocurable resin by the interval ΔZ of the cross section, and the upper portion of the resin-cured layer previously formed again. It is covered with a liquid photocurable resin layer having a thickness ΔZ. Then, similarly to the above, the laser XY scanning device 4 scans the surface of the photocurable resin 7 with laser light in a shape corresponding to the second cross-sectional shape following the lowermost cross-sectional layer, and the laser light is scanned on the uppermost part of the lowermost cross-sectional layer. The second cross-section layer is cured and shaped.

【0012】この工程を立体形状の最高部まで繰り返す
ことにより、光硬化性樹脂の硬化層を複数層積層させて
三次元形状が造形される。
By repeating this process up to the highest part of the three-dimensional shape, a plurality of cured layers of the photocurable resin are laminated to form a three-dimensional shape.

【0013】[0013]

【発明が解決しようとする課題】三次元造形装置に使用
される光硬化性樹脂は、レーザ光が照射され硬化する際
に体積比で2〜5%程度収縮する。よって、未硬化の光
硬化性樹脂にレーザ光を照射すると、図5(a)に示す
ように、レーザ光が照射される領域51の周囲に未硬化
の光硬化性樹脂53が存在する場合は、領域51にレー
ザ光が照射され、樹脂が硬化して収縮し52となるが、
この硬化収縮量を補うように周囲の未硬化の樹脂が、矢
印54に示すように供給されながら硬化が進行するた
め、硬化時の収縮による応力は発生しにくい。
The photocurable resin used in the three-dimensional modeling apparatus shrinks by about 2 to 5% in volume ratio when it is cured by being irradiated with laser light. Therefore, when the uncured photocurable resin is irradiated with the laser light, as shown in FIG. 5A, when the uncured photocurable resin 53 exists around the region 51 irradiated with the laser light, , The region 51 is irradiated with the laser beam and the resin is cured and contracts to become 52.
Since the uncured resin in the surroundings is supplied while being supplied as shown by the arrow 54 so as to compensate for this curing shrinkage amount, the curing progresses, so that stress due to shrinkage at the time of curing hardly occurs.

【0014】しかし、図5(b)に示すように、レーザ
光が照射される領域57の周囲にすでに硬化した樹脂5
5が存在するときは、未硬化の光硬化性樹脂にレーザ光
を照射した際、領域57中の樹脂は硬化し収縮しようと
するが、周囲からの未硬化の樹脂の供給がないため、す
でに硬化した部分55は硬化中の樹脂に引きよせられ、
張力56が発生する。つまり、樹脂の硬化に伴う収縮に
より先に硬化した部分から後に硬化する部分に向かう方
向に内部応力が発生する。
However, as shown in FIG. 5B, the resin 5 which has already been hardened around the region 57 irradiated with the laser beam.
When 5 is present, when the uncured photocurable resin is irradiated with laser light, the resin in the region 57 hardens and tries to shrink, but since the uncured resin is not supplied from the surroundings, The cured portion 55 is attracted to the resin being cured,
Tension 56 is generated. That is, internal stress is generated in the direction from the portion that is cured first to the portion that is cured later due to contraction accompanying the curing of the resin.

【0015】さらに、光硬化性樹脂はレーザ光が照射さ
れた時点では、照射された部分のおよそ98%程度しか
硬化しておらず、完全に硬化するにはかなりの時間を要
する。そのため、一度硬化した後、さらに硬化が進行し
成形品の内部で樹脂が収縮し、さらに応力が発生する。
Further, the photo-curing resin is cured by about 98% of the irradiated portion when the laser beam is irradiated, and it takes a considerable time to be completely cured. Therefore, once cured, the curing further progresses, the resin shrinks inside the molded product, and further stress is generated.

【0016】従って、従来の様に光硬化性樹脂にX軸あ
るいはY軸に平行な向きにレーザ光を走査、例えば、図
6に示すようにレーザ光を直線的に矢印69の向きに走
査すると、レーザ光の照射域は63,64,65,6
6,67と進行し、光硬化性樹脂もレーザ光が走査され
るにつれてレーザ光の走査方向と同じ方向に連続的に徐
々に硬化する。よって、樹脂の硬化に伴う収縮により矢
印68に示すように先に硬化した部分61が後に硬化す
る部分62に引っ張られるように内部応力68が発生し
蓄積される。
Therefore, if the photocurable resin is scanned with a laser beam in a direction parallel to the X axis or the Y axis as in the conventional case, for example, the laser beam is linearly scanned in the direction of an arrow 69 as shown in FIG. , The irradiation area of laser light is 63, 64, 65, 6
6 and 67, the photocurable resin is also gradually and continuously cured in the same direction as the scanning direction of the laser light as the laser light is scanned. Therefore, the internal stress 68 is generated and accumulated such that the first cured portion 61 is pulled by the later cured portion 62 as shown by the arrow 68 due to the contraction accompanying the curing of the resin.

【0017】すなわち、従来の走査方法では、内部応力
68が総じて同方向例えばX軸あるいはY軸に平行な向
きに偏るため、結果として成形品が反ってしまうなどの
変形を起こす恐れがあった。
That is, in the conventional scanning method, the internal stress 68 is generally biased in the same direction, for example, in the direction parallel to the X axis or the Y axis, and as a result, the molded product may be deformed such as warped.

【0018】本発明は、内部応力の偏りをなくし、三次
元形状の造形において成形品の変形を防止する方法を提
供するものである。
The present invention provides a method for eliminating unevenness of internal stress and preventing deformation of a molded product in three-dimensional shape molding.

【0019】[0019]

【課題を解決するための手段】本発明は上記目的を達成
するため、レーザ光を断面形状に対応した形状に平行等
間隔に走査し、光硬化性樹脂を硬化させて断面層を造形
する際、その一工程もしくは数工程毎に、レーザ光の走
査方向を光硬化性樹脂層に対し任意の角度相対的に回転
させる方法をとる。
In order to achieve the above-mentioned object, the present invention is to form a cross-section layer by scanning a laser beam in parallel with a shape corresponding to the cross-section shape at equal intervals to cure the photocurable resin. The method of rotating the scanning direction of the laser beam relative to the photo-curable resin layer by an arbitrary angle is performed in each step or every several steps.

【0020】[0020]

【作用】上記本発明の方法によれば、断面層を造形する
際の一工程もしくは数工程毎に、レーザ光の走査方向を
光硬化性樹脂層に対して任意の角度相対的に回転させる
ことにより、断面層毎あるいは数断面層毎にレーザ光の
走査方向がずれ、これにつれて樹脂の硬化の進行方向も
ずれるため、樹脂の硬化に伴う収縮による応力の方向も
断面層毎あるいは数断面層毎に変化する。よって、成形
品全体として応力の方向が分散する。
According to the above-mentioned method of the present invention, the scanning direction of the laser beam is rotated relative to the photocurable resin layer by an arbitrary angle in every step or every several steps in forming the cross-section layer. As a result, the scanning direction of the laser beam shifts for each cross-section layer or every several cross-section layers, and the progress direction of the curing of the resin also shifts accordingly. Changes to. Therefore, the direction of stress is dispersed in the entire molded product.

【0021】[0021]

【実施例】以下、本発明の一実施例について説明する。
図2に本発明方法を適用した三次元造形装置の概略構成
を示すが、基本的には図3の従来の構成と同一であり、
形成台13を回転させる回転装置14を設けた点におい
て図3の構成と異なる。従って、図3と同一機能を有す
る部分には同一符号を付し、その説明を省略する。
EXAMPLES An example of the present invention will be described below.
FIG. 2 shows a schematic configuration of a three-dimensional modeling apparatus to which the method of the present invention is applied, but it is basically the same as the conventional configuration of FIG.
It differs from the configuration of FIG. 3 in that a rotating device 14 for rotating the forming table 13 is provided. Therefore, parts having the same functions as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.

【0022】図2の装置の動作を説明すると、まず三次
元CADシステム1において所望の三次元形状を作成す
ると共に、その三次元データはSTLフォーマットに変
換されEWS2に送られる。EWS2は前記三次元形状
のSTLフォーマットされたデータをZ軸でXY平面に
平行に等間隔ΔZに切断し、所望の三次元形状を各断面
形状のデータの集合体として表す。
The operation of the apparatus shown in FIG. 2 will be described. First, a desired three-dimensional shape is created in the three-dimensional CAD system 1, and the three-dimensional data is converted to the STL format and sent to the EWS 2. The EWS 2 cuts the STL-formatted data of the three-dimensional shape at equal intervals ΔZ in parallel with the XY plane along the Z-axis, and represents a desired three-dimensional shape as an aggregate of data of each cross-sectional shape.

【0023】次に、形成台13を光硬化性樹脂7の液面
より断面の間隔ΔZだけ下方に位置決めし、形成台13
の上部を厚さΔZの液体状光硬化性樹脂層で覆う。レー
ザXY走査装置4により光硬化性樹脂7の表面に最下部
の断面形状に対応した形状にレーザ光を走査し、表面樹
脂層を硬化させて形成台13上に最下断面層を造形す
る。
Next, the forming table 13 is positioned below the liquid surface of the photocurable resin 7 by the interval ΔZ of the cross section, and the forming table 13 is formed.
Is covered with a liquid photocurable resin layer having a thickness ΔZ. The laser XY scanning device 4 scans the surface of the photocurable resin 7 with laser light in a shape corresponding to the bottom cross-sectional shape to cure the surface resin layer and form the bottom cross-section layer on the forming table 13.

【0024】このとき、図1(a)に示すように、レー
ザ光を、X軸方向にレーザ光の径を基準として定めた間
隔17ずつずらしながら、矢印16で示すようにY軸に
平行に断面形状15の一方の端から他方の端に向けて走
査する。なお、レーザ光はY軸方向にレーザ光の径を基
準として定めた間隔ずつずらしながら、X軸に平行に走
査してもよい。
At this time, as shown in FIG. 1 (a), the laser light is shifted in the X-axis direction by an interval 17 determined based on the diameter of the laser light while being parallel to the Y-axis as shown by an arrow 16. Scanning is performed from one end of the cross-sectional shape 15 toward the other end. The laser light may be scanned in parallel with the X-axis while being shifted in the Y-axis direction by an interval determined based on the diameter of the laser light.

【0025】一断面層が造形されると、昇降装置6によ
り断面の間隔分ΔZだけさらに形成台13を未硬化の光
硬化性樹脂中に沈め、再び先に形成された樹脂硬化層の
上部を厚さΔZの液体状の光硬化性樹脂層で覆う。同時
に回転装置14により形成台13を任意の角度θだけ回
転し、かつ図1(b)に示すように、EWS2上で最下
断面層に続く第二の断面形状のデータも同方向に角度θ
だけ回転する。その後、回転させた断面形状18に対応
した形状に、前記と同様に光硬化性樹脂7の表面にレー
ザXY走査装置4によりレーザ光を照射し、最下断面層
の上部に第二の断面層を硬化させ造形する。
When one cross-section layer is formed, the elevating device 6 further immerses the forming table 13 in the uncured photocurable resin by the interval ΔZ of the cross section, and the upper part of the resin-cured layer previously formed again is removed. It is covered with a liquid photocurable resin layer having a thickness ΔZ. At the same time, the forming table 13 is rotated by an arbitrary angle θ by the rotating device 14, and as shown in FIG. 1B, the data of the second cross-sectional shape following the lowermost cross-sectional layer on the EWS 2 also has the same angle θ.
Just rotate. After that, a laser beam is applied to the surface of the photocurable resin 7 by the laser XY scanning device 4 in the shape corresponding to the rotated sectional shape 18 in the same manner as described above, and the second sectional layer is formed above the lowermost sectional layer. Harden and model.

【0026】このプロセスを立体形状の最高部まで繰り
返すことにより、光硬化性樹脂の硬化層を複数層積層さ
せて三次元形状が造形される。
By repeating this process up to the highest part of the three-dimensional shape, a three-dimensional shape is formed by laminating a plurality of cured layers of the photocurable resin.

【0027】なお、形成台13及び断面形状のデータの
回転操作は、硬化断面層の造形工程の数層ごとに行って
もよく、また所望の三次元形状のZ軸にわたって均等に
回転させると、応力の偏りを防ぐことに対してさらに効
果的である。
The operation of rotating the forming table 13 and the cross-sectional shape data may be carried out every several layers in the step of forming the hardened cross-sectional layer, and when the data is uniformly rotated along the Z axis of the desired three-dimensional shape, It is even more effective in preventing stress bias.

【0028】このように、レーザ光の走査方向を断面層
毎あるいは数断面層毎に変えることにより、樹脂の硬化
方向が断面層毎あるいは数断面層毎に変化し、結果とし
て、樹脂の硬化時の収縮による内部応力が成形品全体と
して分散し、一定方向に偏ることがなくなるため、成形
品が反るなどの変形を防止できる。
As described above, by changing the scanning direction of the laser beam for each cross-section layer or every several cross-section layers, the hardening direction of the resin changes for each cross-section layer or every several cross-section layers, and as a result, when the resin is hardened. Since the internal stress due to the shrinkage of the molded product is dispersed as a whole and is not biased in a certain direction, it is possible to prevent the molded product from being deformed such as warped.

【0029】[0029]

【発明の効果】以上のように本発明によれば、光硬化性
樹脂に平行等間隔にレーザ光を走査し、その走査方向を
硬化断面層の造形工程の一工程もしくは数工程毎に光硬
化性樹脂層に対し任意の角度相対的に回転させることに
より、樹脂の硬化に伴う内部応力の方向が断面層毎もし
くは数断面層毎に変化し、成形品全体として分散し一定
方向に偏ることがなくなるため、成形品が反るなどの変
形を防止できる。
As described above, according to the present invention, the photo-curing resin is scanned with laser light at equal intervals in parallel, and the scanning direction is photo-cured in one step or every several steps of the step of forming the cured cross-section layer. By rotating it relative to the flexible resin layer by an arbitrary angle, the direction of internal stress due to the hardening of the resin may change for each cross-section layer or for several cross-section layers, and the molded product may be dispersed and biased in a certain direction. Since it disappears, deformation such as warping of the molded product can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法でのレーザ光走査パターンを示す平
面図
FIG. 1 is a plan view showing a laser beam scanning pattern in the method of the present invention.

【図2】本発明方法を適用した三次元造形装置の概略構
成図
FIG. 2 is a schematic configuration diagram of a three-dimensional modeling apparatus to which the method of the present invention is applied.

【図3】従来方法を適用した三次元造形装置の概略構成
FIG. 3 is a schematic configuration diagram of a three-dimensional modeling apparatus to which a conventional method is applied.

【図4】従来方法でのレーザ光走査パターンを示す平面
FIG. 4 is a plan view showing a laser beam scanning pattern in a conventional method.

【図5】光硬化性樹脂の硬化パターンを示す平面図FIG. 5 is a plan view showing a curing pattern of a photocurable resin.

【図6】内部応力の発生原理を説明する概念図FIG. 6 is a conceptual diagram illustrating the principle of internal stress generation.

【符号の説明】[Explanation of symbols]

1 三次元CADシステム 2 EWS 3 NC制御装置 4 レーザXY走査装置 5 レーザ発生装置 6 昇降装置 7 光硬化性樹脂 8 造形物 9 光ファイバー 10 樹脂タンク 13 形成台 14 回転装置 15 回転前の断面形状 16 回転前のレーザ走査パス 17 レーザ光の走査間隔 18 回転後の断面形状 19 回転後のレーザ走査パス 20 断面形状 21 レーザ走査パス 22 レーザ光の走査間隔 1 Three-dimensional CAD system 2 EWS 3 NC control device 4 Laser XY scanning device 5 Laser generation device 6 Elevating device 7 Photocurable resin 8 Modeling object 9 Optical fiber 10 Resin tank 13 Forming table 14 Rotating device 15 Cross-sectional shape before rotation 16 Rotation Previous laser scanning path 17 Laser beam scanning interval 18 Cross-sectional shape after rotation 19 Laser scanning path after rotation 20 Cross-sectional shape 21 Laser scanning path 22 Laser beam scanning interval

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所望の三次元形状を等間隔に切断した断
面形状に関するデータの集合体として表し、このデータ
にもとづいて下記(1),(2)の工程を繰り返すこと
により複数層の光硬化性樹脂層を積層し三次元形状を造
形する三次元造形方法において、レーザ光を平行等間隔
に走査し、かつその走査方向を(1),(2)の一組も
しくは複数組の工程毎に、光硬化性樹脂層に対し任意の
角度相対的に回転させることを特徴とする三次元造形方
法。 (1)未硬化の液体状光硬化性樹脂を充填した水槽の上
方からレーザ光を走査し、断面形状に対応した形状の表
面樹脂層を硬化させる。 (2)硬化した樹脂層を断面の間隔分未硬化の液体状光
硬化性樹脂中に沈下させる。
1. A desired three-dimensional shape is expressed as a set of data relating to cross-sectional shapes cut at equal intervals, and based on this data, the steps (1) and (2) below are repeated to perform photocuring of a plurality of layers. In a three-dimensional modeling method of laminating a resinous resin layer to form a three-dimensional shape, a laser beam is scanned at equal intervals in parallel, and the scanning direction is (1), (2) for each set or a plurality of sets of steps. A three-dimensional modeling method comprising rotating the photocurable resin layer relative to an arbitrary angle. (1) A laser beam is scanned from above a water tank filled with an uncured liquid photocurable resin to cure a surface resin layer having a shape corresponding to the cross-sectional shape. (2) The cured resin layer is submerged in the uncured liquid photocurable resin by the distance of the cross section.
JP5088310A 1993-04-14 1993-04-15 Three-dimensional shaping method Pending JPH06297587A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5088310A JPH06297587A (en) 1993-04-15 1993-04-15 Three-dimensional shaping method
KR1019940007595A KR970011573B1 (en) 1993-04-14 1994-04-12 Three dimensional object-forming method
US08/227,330 US5500069A (en) 1993-04-14 1994-04-14 Three dimensional object-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088310A JPH06297587A (en) 1993-04-15 1993-04-15 Three-dimensional shaping method

Publications (1)

Publication Number Publication Date
JPH06297587A true JPH06297587A (en) 1994-10-25

Family

ID=13939364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088310A Pending JPH06297587A (en) 1993-04-14 1993-04-15 Three-dimensional shaping method

Country Status (1)

Country Link
JP (1) JPH06297587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150085444A (en) * 2014-01-15 2015-07-23 (주)에이엔에이치스트럭쳐 Manufacturing method of aircraft member using rapid prototyping tools
CN106476269A (en) * 2016-10-25 2017-03-08 张雅文 A kind of Concentric rotation formula high-rate laser 3D printer
CN115464151A (en) * 2021-06-10 2022-12-13 株式会社沙迪克 Method for forming laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150085444A (en) * 2014-01-15 2015-07-23 (주)에이엔에이치스트럭쳐 Manufacturing method of aircraft member using rapid prototyping tools
CN106476269A (en) * 2016-10-25 2017-03-08 张雅文 A kind of Concentric rotation formula high-rate laser 3D printer
CN115464151A (en) * 2021-06-10 2022-12-13 株式会社沙迪克 Method for forming laminate

Similar Documents

Publication Publication Date Title
KR970011573B1 (en) Three dimensional object-forming method
JP3030853B2 (en) Method and apparatus for forming a three-dimensional object
JP3443365B2 (en) Method and apparatus for forming a three-dimensional object
JPH02239921A (en) Formation of three-dimensional shape
JP2676838B2 (en) 3D image formation method
JP2002127260A (en) Method for manufacturing three-dimensional item
JP2970300B2 (en) 3D modeling method
JP2000263650A (en) Stereo lithographic apparatus
JPH06297587A (en) Three-dimensional shaping method
JP3782049B2 (en) Stereolithography method and apparatus therefor
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JP3458593B2 (en) Method for forming a three-dimensional shape
JP3392177B2 (en) Photocurable resin supply device
JP3641276B2 (en) 3D image forming method
JP3412278B2 (en) Stereolithography device and method
JP2671534B2 (en) 3D shape forming method
JPS63145016A (en) Device for forming solid shape
JPH0493228A (en) Method for forming three-dimensional matter
JP3166133B2 (en) Optical shaping method and apparatus
JPH07195529A (en) Optical shaping method and apparatus
JP3155156B2 (en) 3D shape forming method
JPH06246837A (en) Optically shaping method and device
JP3170832B2 (en) Optical molding method
JPH01237122A (en) Optical shaping method for thick wall section
JPH0910967A (en) Optical molding device