JP2969927B2 - Water treatment control device - Google Patents

Water treatment control device

Info

Publication number
JP2969927B2
JP2969927B2 JP31697890A JP31697890A JP2969927B2 JP 2969927 B2 JP2969927 B2 JP 2969927B2 JP 31697890 A JP31697890 A JP 31697890A JP 31697890 A JP31697890 A JP 31697890A JP 2969927 B2 JP2969927 B2 JP 2969927B2
Authority
JP
Japan
Prior art keywords
pulverized coal
turbidity
treated water
amount
pond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31697890A
Other languages
Japanese (ja)
Other versions
JPH04187287A (en
Inventor
弘志 島崎
浩之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP31697890A priority Critical patent/JP2969927B2/en
Publication of JPH04187287A publication Critical patent/JPH04187287A/en
Application granted granted Critical
Publication of JP2969927B2 publication Critical patent/JP2969927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は水処理装置における活性炭注入制御に関する
ものである。
The present invention relates to activated carbon injection control in a water treatment apparatus.

B.発明の概要 本発明は、沈澱池に処理水撮影機を設置し、この処理
水撮影機からの画像情報に基づいて処理水における微粉
炭の平均粒径および単位量当たりの微粉炭を求めると共
に、これらの量をフィードバック信号として演算処理部
に導き、この演算信号に基づいて活性炭注入量を制御す
ることにより、制御精度を高めると共に、制御の遅れ時
間を短縮する。
B. Summary of the Invention According to the present invention, a treated water photographing machine is installed in a sedimentation basin, and the average particle size and the pulverized coal per unit amount in the treated water are determined based on image information from the treated water photographing machine. At the same time, these amounts are guided to an arithmetic processing unit as a feedback signal, and the activated carbon injection amount is controlled based on the arithmetic signal, thereby increasing control accuracy and reducing control delay time.

C.従来の技術 現在、浄水場では河川,湖沼等の著しい汚濁により、
原水中の色度,臭気等の発生に苦慮し、この対策として
粉末活性炭を注入して除去する方法が一般的に行われて
いる。
C. Conventional technology At present, water purification plants are subject to significant pollution of rivers, lakes and marshes.
The generation of chromaticity, odor, etc. in the raw water is difficult, and as a countermeasure, a method of injecting and removing powdered activated carbon is generally used.

粉末活性炭の注入率の決定は、非常に難しい。理由と
しては、除去目的の物質だけではなく他の物質も同時に
吸着してしまうため、実験的に単一物質を使って求めた
能力からは決定できないこと、吸着に大きな影響因子と
なる混和接触条件と接触時間を実規模と同一にできない
ことなどによる。
Determining the injection rate of powdered activated carbon is very difficult. The reason is that not only the substance to be removed but also other substances are adsorbed at the same time, so it cannot be determined from the ability experimentally obtained using a single substance, and the mixing contact conditions which are a major influencing factor for adsorption And the contact time cannot be the same as the actual scale.

従って、実際には処理目的の原水を用いて、これに種
々の注入率で粉末活性炭を加えジャーテストを行い、十
分効果が得られたものから最低の注入率を求める。
Therefore, in practice, raw water for the purpose of treatment is used, powder activated carbon is added thereto at various injection rates, and a jar test is performed.

また、混和及び接触時間は長ければ長いほど良いわけ
であるが、既設の浄水場では敷地や動力の面から考える
と短いことに越したことはない。故に既設の浄水場に適
用する場合には種々の制約がある。
Also, the longer the mixing and contacting time, the better. However, in the existing water treatment plant, it is far from short in terms of site and power. Therefore, there are various restrictions when applying to existing water treatment plants.

D.発明が解決しようとする課題 十分な接触時間を得るためには注入場所が重要とな
る。浄水場によっては、接触時間を長くするために取水
点で注入し、途中の導水路を流下する間に接触させる方
法を採用している所もあるが、この様な条件が得られる
ところはまれで、通常は浄水場内の適当なプロセス過程
で注入している。現在、浄水場で一般的に可能とされる
粉末活性炭の注入点としては、以下に示す通りである。
D. Problems to be Solved by the Invention In order to obtain a sufficient contact time, the injection site is important. Some water treatment plants adopt a method of injecting water at the water intake point and making contact while flowing down the waterway along the way to prolong the contact time.However, such conditions are rarely obtained. Usually, it is injected during the appropriate process in the water treatment plant. At present, the injection points of powdered activated carbon generally available in water treatment plants are as follows.

(1)着水井及び急速混和池 (2)フロック形成池入口 (3)沈澱池出口及び濾過池入口 等が考えられる。しかしながら、(1)の着水井及び急
速混和池では、粉末活性炭が凝集剤や前塩素処理と同時
に注入されるために接触効率が低下する危険性がある。
(2)のフロック形成池入口では、凝集剤と濁質の反応
が(1)の段階でほぼ終了しているため、逆に凝集でき
ない微粉炭が流出し、濾過池を通り抜ける危険性があ
る。(3)の沈澱池出口及び濾過池入口では、粉末活性
炭が砂層に堆積するため濾速が急速に低下し、更に微粉
炭が通り抜ける危険性もある。
(1) Landing well and rapid mixing pond (2) Floc formation pond entrance (3) Settlement pond exit and filtration pond entrance. However, in the landing well and the rapid mixing pond of (1), there is a risk that the contact efficiency is reduced because the powdered activated carbon is injected at the same time as the coagulant or the pre-chlorination treatment.
At the entrance of the floc formation pond in (2), since the reaction between the flocculant and the turbidity is almost completed in the stage (1), there is a risk that pulverized coal which cannot be coagulated flows out and passes through the filtration pond. At the outlet of the settling basin and the inlet of the filtration basin of (3), the activated carbon powder accumulates in the sand layer, so that the filtration speed is rapidly reduced, and there is a risk that pulverized coal may pass through.

以上の様に、実浄水場では粉末活性炭注入に際して種
々の問題点をかかえているにもかかわらず、ほとんどが
フィードフォワード(FF)制御でフィードバック制御
(FB)を実施しているところは少ない。
As mentioned above, although there are various problems at the time of powdered activated carbon injection in actual water treatment plants, most of them do not implement feedback control (FB) by feedforward (FF) control.

本発明は上述の点に鑑みてなされたもので、その目的
は、粉末活性炭注入制御に際してフィードバック制御を
行うことにより、水処理上の種々の問題を解決すること
である。
The present invention has been made in view of the above points, and an object of the present invention is to solve various problems in water treatment by performing feedback control during powder activated carbon injection control.

E.課題を解決するための手段 本発明は、上記目的を達成するために、処理水を入水
する着水井と、該着水井から供給される処理水に凝集剤
を投入・混和する混和池と、この混和池からの処理水を
撹拌してフロックを形成するフロック形成池と、このフ
ロックを沈澱させる沈澱池とを具備し、前記着水井、混
和池またはフロック形成池に活性炭を注入し、前記沈澱
池から流出する処理水の濁度を設定流出濁度に制御する
ものにおいて、前記沈澱池に設置される処理水撮影機
と、この処理水撮影機からの画像情報に基づいて、前記
注入された活性炭が凝集されずまたは吸着しなかった微
細な微粉炭を識別し、処理水における微粉炭の粒径分布
を求め、この粒径分布から微粉炭の平均粒径および単位
容量当たりの微粉炭量を求める微粉炭計測部と、前記微
粉炭計測部からの単位量当たりの微粉炭量から前記沈澱
池の予測流出濁度を算出する演算処理部と、前記設定流
出濁度と予測流出濁度を比較し、これらの比較結果に基
づいて活性炭の注入量を制御する活性炭注入制御部とを
設ける。
E. Means for Solving the Problems The present invention provides, in order to achieve the above object, a landing well for entering treated water, and a mixing pond for adding and mixing a coagulant into treated water supplied from the landing well. A floc forming pond that forms flocs by stirring the treated water from the mixing pond; and a sedimentation pond that precipitates the flocs. A method for controlling the turbidity of the treated water flowing out of the sedimentation basin to a set turbidity of the treated water, wherein the injected turbidity is based on a treated water photographing machine installed in the sedimentation pond and image information from the treated water photographing machine. The fine pulverized coal in which the activated carbon was not agglomerated or adsorbed was identified, and the particle size distribution of the pulverized coal in the treated water was determined. From the particle size distribution, the average particle size of pulverized coal and the amount of pulverized coal per unit volume Pulverized coal measuring unit An arithmetic processing unit that calculates the predicted runoff turbidity of the settling basin from the amount of pulverized coal per unit amount from the pulverized coal measurement unit, and compares the set runoff turbidity with the predicted runoff turbidity. And an activated carbon injection controller for controlling the amount of activated carbon to be injected based on the activated carbon.

F.作用 沈澱池に配設された処理水撮影機からの画像情報に基
づいて活性炭が凝集されずまたは吸着しなかった微細な
微粉炭粒径分布が求められ、この粒径分布から微粉炭の
平均粒径および単位量当たりの微粉炭量を求め、この単
位量当たりの微粉炭量をフィードバック信号として演算
処理部に導き、予測流出濁度を算出し、この予測流出濁
度を基に活性炭の流入量を制御する。
F. Action A fine pulverized coal particle size distribution in which activated carbon was not agglomerated or adsorbed was determined based on image information from the treated water photographing machine installed in the sedimentation basin. The average particle size and the amount of pulverized coal per unit amount are obtained, and the amount of pulverized coal per unit amount is led to an arithmetic processing unit as a feedback signal to calculate a predicted turbidity of the runoff. Control the inflow.

G.実施例 以下に本発明の実施例を第1図〜第2図を参照しなが
ら説明する。
G. Embodiment An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明の実施例による水処理装置の活性炭注
入制御装置のブロック図であって、1は処理水を入水す
る着水井、2は着水井から供給される処理水に凝集剤を
注入する混和池、3はフロックを形成するフロック形成
池、4はフロック6を沈澱させるための沈澱池、5は濾
過池である。着水井1、混和池2またはフロック形成池
3には活性炭が注入される。また、混和池2には凝集剤
コントローラ(図示省略)から凝集剤が混入される。7
はモータ8によって回転駆動される撹拌器、10はパドル
9を回転させるモータであり、このモータ10はフロック
計測装置(図示せず)の計測信号をもとに回転数コント
ローラ(図示せず)によって回転制御される。
FIG. 1 is a block diagram of an activated carbon injection control device of a water treatment apparatus according to an embodiment of the present invention, wherein 1 is a landing well for receiving treated water, and 2 is a coagulant injected into treated water supplied from the landing well. 3 is a floc forming pond for forming flocs, 4 is a sedimentation pond for sedimenting flocs 6, and 5 is a filtration pond. Activated carbon is injected into the landing well 1, the mixing pond 2 or the floc forming pond 3. A flocculant is mixed into the mixing pond 2 from a flocculant controller (not shown). 7
Is a stirrer rotationally driven by a motor 8, and 10 is a motor for rotating the paddle 9, and the motor 10 is controlled by a rotation speed controller (not shown) based on a measurement signal of a floc measuring device (not shown). The rotation is controlled.

例えば沈澱池4内の入口(整流壁の近傍)には、フロ
ック計測装置(図示せず)と兼用の水中カメラ11が配設
されている。水中カメラ11の設置部位は、沈殿池の入口
に限らず、水中カメラによる画像処理できる位置であれ
ばよい。水中カメラ11のバックスクリーンとしてはホワ
イトボードが用いられている。
For example, an underwater camera 11 which is also used as a floc measuring device (not shown) is provided at an entrance (in the vicinity of the rectifying wall) in the sedimentation basin 4. The installation site of the underwater camera 11 is not limited to the entrance of the sedimentation basin, but may be any position where image processing by the underwater camera can be performed. As a back screen of the underwater camera 11, a white board is used.

12は微粉炭計測装置で、水中カメラ11からの画像を処
理して微粉炭を識別し、統計処理を行って微粉炭につい
ての各種のデータを作成し、演算処理部13に入力するも
のである。13は、演算コンピュータ等からなる演算処理
部で、微粉炭計測装置12かろの各種データを基に所要の
演算処理を実行し、活性炭注入装置14に動作指示を与え
るものである。活性炭注入装置14は演算処理部13の指令
に基づいて着水井1,混和池2およびフロック形成池3に
適宜活性炭を注入する。
Reference numeral 12 denotes a pulverized coal measuring device, which processes an image from the underwater camera 11 to identify pulverized coal, performs statistical processing to create various data on pulverized coal, and inputs the data to the arithmetic processing unit 13. . Numeral 13 denotes an arithmetic processing unit which comprises an arithmetic computer or the like, executes a required arithmetic processing based on various data from the pulverized coal measuring device 12 and gives an operation instruction to the activated carbon injection device 14. The activated carbon injection device 14 appropriately injects activated carbon into the landing well 1, the mixing pond 2 and the floc forming pond 3 based on a command from the arithmetic processing unit 13.

フロック形成池3内では、凝集物,活性炭等が高密度
で混和しているために粒子の重なり,撹拌等の影響を受
け微粉炭の認識がかなり難しいため、単粒子沈降が明確
となる沈澱池入口の水面近傍に設置した。水中カメラ検
出部はフロック計測装置に用いたものを流用することも
可能で、カメラの背景となるバックスクリーンをブラッ
クボードからホワイトボードに交換する。理由として
は、活性炭が黒色であること、微粉炭を鮮明に映し画像
処理を行い易くすること等を考慮した。
In the floc formation pond 3, sedimentation, activated carbon, etc. are mixed at a high density, so that it is very difficult to recognize pulverized coal due to the effects of particles overlapping and stirring, etc. It was installed near the water surface at the entrance. The underwater camera detection unit can use the one used for the flock measurement device, and replaces the back screen, which is the background of the camera, from the black board to the white board. The reason was considered that the activated carbon was black, and that pulverized coal was clearly projected to facilitate image processing.

また画像計測処理フローも、フロック計測装置とは逆
に背景を白色、微粉炭を黒色に2値化処理を行い平均粒
径,微粉炭量(単位容積当たりの数十ミクロンの微粉炭
体積量)を計測する。この計測結果を第2図に示すと、
縦軸に体積量(横軸の級別径に対応した粒子体積と個数
の積),横軸に粒子径を100ミクロン毎にとるとこのヒ
ストグラムが得られる。このヒストグラムでは、沈澱池
から流出の危険性のある300ミクロンを境界としたしき
い値を設定して、300ミクロン以下の粒子数と総体積量
を出力する。このしきい値の設定は沈澱池5に粒子を流
入させた場合、どれだけ除去できるかを評価する指標と
なる表面積負荷率から与えられている。
In the image measurement processing flow, the average particle size and the amount of pulverized coal (volume of tens of microns of pulverized coal per unit volume) are obtained by binarizing the background into white and pulverized coal into black, contrary to the floc measuring device. Is measured. FIG. 2 shows the measurement results.
The histogram is obtained by plotting the volume amount (product of the particle volume and the number corresponding to the classified diameter on the horizontal axis) on the vertical axis and the particle diameter every 100 microns on the horizontal axis. In this histogram, a threshold is set at a boundary of 300 microns, which is at risk of flowing out of the sedimentation basin, and the number of particles less than 300 microns and the total volume are output. The setting of the threshold value is given from a surface area load factor which is an index for evaluating how much particles can be removed when the particles flow into the sedimentation basin 5.

具体的には(1)式に示す通り、表面積負荷率は、沈
澱池に流入する流量(Q)を沈澱池の表面積で割った値
で沈澱池で100%除去できる最小粒子の指標ともなる。
Specifically, as shown in equation (1), the surface area load factor is an index of the minimum particles that can be removed 100% in the sedimentation basin by dividing the flow rate (Q) flowing into the sedimentation basin by the surface area of the sedimentation basin.

WO=Q/A ……(1) ここで、 WO:表面積負荷率(cm/sec) Q :沈澱池流入量(cm3/sec) A :沈澱池表面積(cm3) である。WO = Q / A (1) where, WO: surface area load factor (cm / sec) Q: sedimentation tank inflow (cm 3 / sec) A: sedimentation tank surface area (cm 3 )

即ち、(1)式は、表面積負荷率(WO)より小さい単
粒子の沈降速度W(cm/sec)の除去率を与える基礎値と
なる。
That is, equation (1) is a basic value that gives the removal rate of the sedimentation velocity W (cm / sec) of single particles smaller than the surface area loading rate (WO).

W<WO …の割合だけ除去できる。 It can be removed by the ratio of W <WO.

W≧WO …常に100%除去できる。 W ≧ WO: 100% can always be removed.

一般的に、薬品沈澱池の流速は0.66cm/sec以下、傾斜
板沈澱池の場合は1.0cm/sec以下であるが、この負荷率
より1/10程度であってもフロック計測装置による計測結
果から200ミクロンのフロック粒子は流出する可能性が
あり、実際沈澱池の流出濁度とフロック径には高い相関
を確認し、微粉炭粒子にこの原理を直接適応することも
可能である。何故ならば、粉末活性炭は必ずフロック凝
集過程を通るため、ほぼ微フロックと同等の特性(有効
密度等)と考えられる。
Generally, the flow velocity of the chemical sedimentation basin is 0.66 cm / sec or less, and that of the slant plate sedimentation basin is 1.0 cm / sec or less. It is possible that floc particles of up to 200 microns may flow out. In fact, it is possible to apply this principle directly to pulverized coal particles by confirming a high correlation between the turbidity of the sedimentation basin and the floc diameter. This is because powdered activated carbon always passes through the floc agglomeration process, and is considered to have substantially the same characteristics (effective density and the like) as fine floc.

(1)画像計測における単位容量当たりの微粉炭量 ここで、Mg:微粉炭量(g/)、X:50〜300μまでの級
数別フロック体積量(cm3)、Gc:測定画面数、Gs:画面
視野範囲の容量()、ρE2:平均微粉炭密度(150μm
の密度=0.074g/cm3)である。
(1) Pulverized coal amount per unit volume in image measurement Here, Mg: amount of pulverized coal (g /), X: volume of floc by series from 50 to 300μ (cm 3 ), Gc: number of measurement screens, Gs: capacity of screen viewing range (), ρE2: average fine powder Charcoal density (150μm
Is 0.074 g / cm 3 ).

(2)画像計測から求める沈澱池の予測流出濁度 TTB=Mg・{1−(AVEWG/WO)}×1000 ……(3) ここで、TTB:沈澱池の予測流出濁度(mg/)、Mg:微
粉炭量(g/)、AVEWG:平均微粉炭径の沈降速度(150
μmの沈降速度=0.04cm/sec)、WO:画像計測時の表面
負荷率(cm/sec)である。
(2) Predicted outflow turbidity of sedimentation basin obtained from image measurement T TB = Mg · {1- (AVEWG / WO)} × 1000 (3) where, T TB : predicted outflow turbidity of sedimentation basin (mg /), Mg: Pulverized coal amount (g /), AVEWG: Sedimentation speed of average pulverized coal diameter (150
μm sedimentation velocity = 0.04 cm / sec), WO: surface load rate (cm / sec) during image measurement.

例−1,実際の画像計測においてMg=0.00457,AVEWG=0.0
4,WO=0.05の場合 予測流出濁度=0.00457・{1−(0.04/0.05)}・1000 =0.914mg/ 例−2,実際の画像計測においてMg=0.0004,AVEWG=0.0
4,WO=0.05の場合 予測流出濁度=0.0004・{1−(0.04/0.05)}・1000 =0.1mg/ となる。
Example 1, Mg = 0.00457, AVEWG = 0.0 in actual image measurement
4, When WO = 0.05 Predicted runoff turbidity = 0.00457 · {1- (0.04 / 0.05)] · 1000 = 0.914 mg / Example-2, Mg = 0.0004 in actual image measurement, AVEWG = 0.0
4, When WO = 0.05 Predicted runoff turbidity = 0.0004 • {1- (0.04 / 0.05)} • 1000 = 0.1mg /

この結果から、微粉炭量(Mg)によって沈澱池からの
予測流出濁度も大きく変化することが判る。更に、予測
流出濁度は、沈澱池の滞留時間後の実測した流出濁度と
かなり高い相関があることが確認できた。
The results show that the predicted turbidity of runoff from the sedimentation basin changes significantly depending on the amount of pulverized coal (Mg). Furthermore, it was confirmed that the predicted runoff turbidity had a considerably high correlation with the measured runoff turbidity after the residence time of the sedimentation basin.

(3)粉末活性炭(スラリー状も可能)の注入量フィー
ドバック制御 この制御では画像計測で得られる微粉炭量から演算す
る予測流出濁度(TTB)と設定流出濁度(TBSETしきい
値)から粉末活性炭注入量を判断し、注入率式の補正項
を増減する。判断基準としては表1に示す。
(3) Feedback control of injection amount of powdered activated carbon (slurry is also possible) In this control, predicted runoff turbidity (T TB ) calculated from pulverized coal amount obtained by image measurement and set runoff turbidity (TB SET threshold) , The amount of powdered activated carbon to be injected is determined, and the correction term of the injection rate formula is increased or decreased. Table 1 shows the criteria.

3通りの判断で行い設定値と画像計測値の差が大きい
場合は TBSET<<TTB と大幅な注入量を減量する。
If the difference between the set value and the image measurement value is large based on the three judgments, the injection amount is significantly reduced to TB SET << T TB .

この判断のポイントは沈澱池4の入口(整流壁の近
傍)に設置した水中カメラ11から得られる画像情報によ
り微粉炭粒子の特徴量(50〜300ミクロンの微粉炭量)
を演算し、沈澱池の流出濁度(TTB)を予測してしま
う。この予測流出濁度と予め設定した濁度から判断しフ
ィードバック制御を行う。
The point of this judgment is the characteristic amount of pulverized coal particles (pulverized coal amount of 50 to 300 microns) based on image information obtained from the underwater camera 11 installed at the entrance of the sedimentation basin 4 (near the rectifying wall).
And predict the runoff turbidity (T TB ) of the sedimentation basin. Judgment is made from the predicted outflow turbidity and a preset turbidity to perform feedback control.

〔制御理由〕[Reason for control]

では計測された微粉炭量が増加傾向にあり、その結
果予測濁度が高い情報が得られた。従って、粉末活性炭
注入量を減らす。
The measured pulverized coal amount tended to increase, and as a result, information with a high predicted turbidity was obtained. Therefore, the injection amount of powdered activated carbon is reduced.

では計測された微粉炭量が減少傾向にあり、その結
果予測濁度が設定値より低い情報が得られた。従って、
粉末活性炭注入量を増加する。
The measured amount of pulverized coal had a tendency to decrease, and as a result, information that the predicted turbidity was lower than the set value was obtained. Therefore,
Increase the amount of powdered activated carbon injected.

接触効率を考慮し、現状を維持する。 Consider the contact efficiency and maintain the status quo.

以上の判断基準をフィードフォワード凝集剤注入量
(4)式の補正項に代入すると、 D=a・Q±Bx(TBDIFF) ……(4) となる。
Substituting the above criteria feedforward coagulant injection amount (4) the correction term of equation becomes D = a · Q ± B x (TB DIFF) ...... (4).

ここで、D:粉末活性炭注入量式(mg/ or g/m3)、
Q:取水量(m3/h)、a:係数、Bx:補正項微粉炭増減量
比、TBDIFF:流出濁度の差、である。
Here, D: powder activated carbon injection amount formula (mg / or g / m 3 ),
Q: Water intake (m 3 / h), a: Coefficient, B x : Correction term pulverized coal increase / decrease ratio, TB DIFF : Difference in runoff turbidity.

フィードフォワード注入式D=a・Qで一定注入し、
補正項±Bx(微粉炭増減比)を画像計測から得られ演算
した、予測流出濁度と設定濁度の差分によりフィードバ
ック制御を行う。
Feed forward injection type D = a · Q, constant injection,
Feedback control is performed based on the difference between the predicted turbidity and the set turbidity obtained by calculating the correction term ± B x (pulverized coal increase / decrease ratio) from the image measurement.

以上のように、フィードバック制御が可能な粉末活性
炭注入量(1)式を用いて濾過池等への微粉炭による閉
塞を考慮し、更に画像処理技術を応用した粉末活性炭注
入量フィードバック制御が可能である。さらに、画像計
測によるフィードバック制御としては、基本的にはサン
プリング制御(10〜30分間隔程度)で行い、画像計測時
に得られた(2)式の微粉炭量(Mg)から予測流出濁度
(3)式を演算し、この予測値と予め設定した流出濁度
値(上限値)を比較・判断して粉末活性炭注入量制御を
行う。
As described above, the feedback control of the amount of powdered activated carbon injected using the image processing technology is possible in consideration of the clogging of the filtration pond or the like with the pulverized coal using the powdered activated carbon injection amount (1) capable of feedback control. is there. Furthermore, the feedback control by image measurement is basically performed by sampling control (at intervals of about 10 to 30 minutes), and based on the amount of pulverized coal (Mg) of the equation (2) obtained at the time of image measurement, the predicted outflow turbidity ( 3) The equation is calculated, and the predicted value is compared with a preset turbidity value (upper limit value) to determine the activated carbon powder injection amount.

本実施例によれば、除去目的物質と粉末活性炭の接触
終了段階の沈澱池入口において除去不可能な微粉炭を検
出する。また、画像計測から求まる微粉炭量(300ミク
ロンしきい値以下)と予測流出濁度から凝集剤注入率制
御の判断基準を求める。
According to the present embodiment, unremovable pulverized coal is detected at the entrance of the settling basin at the stage of terminating the contact between the substance to be removed and the activated carbon powder. In addition, a criterion for controlling the coagulant injection rate is determined from the amount of pulverized coal (below the threshold of 300 microns) obtained from the image measurement and the predicted turbidity of the outflow.

H.発明の効果 以上説明したように、本発明による水処理制御装置で
は、沈澱池における画像情報から単位量当たりの微粉炭
量を求め、この微粉炭量から沈澱池における予測流出濁
度を算出し、この予測流出濁度をフィードバック制御因
子として、粉末活性炭注入量を制御するものである。
H. Effects of the Invention As described above, in the water treatment control device according to the present invention, the amount of pulverized coal per unit amount is obtained from the image information in the sedimentation basin, and the predicted runoff turbidity in the sedimentation basin is calculated from the amount of pulverized coal. Then, the injection amount of the activated carbon powder is controlled using the predicted flow turbidity as a feedback control factor.

したがって、沈澱池において水中カメラからの情報に
より微粉炭量(Mg),予測流出濁度(TTB)を導きだす
ことが可能になる利点がある。
Therefore, there is an advantage that it is possible to derive the amount of pulverized coal (Mg) and the predicted turbidity of runoff (T TB ) from the information from the underwater camera in the sedimentation basin.

また、従来では沈澱池の流出濁度を濁度計により計測
しているが、沈澱池流出口までの遅れ時間(滞留時間)
が2〜3時間もかかっていた。本制御では、除去目的物
質と粉末活性炭の接触終了段階の沈澱池所定の位置にお
いて除去不可能な微粉炭を検出する。更に、フィードバ
ック制御の遅れ時間を30〜60分まで短縮できる利点があ
る。
Conventionally, the turbidity of runoff from the sedimentation basin is measured using a turbidity meter.
Took two to three hours. In this control, unremovable pulverized coal is detected at a predetermined position in the sedimentation basin at the stage when the contact between the removal target substance and the powdered activated carbon is completed. Further, there is an advantage that the delay time of the feedback control can be reduced to 30 to 60 minutes.

さらに、画像計測から求まる微粉炭量と予測流出濁度
から凝集剤注入率制御の判断基準を求めることができる
と共に、設定値と画像計測値との差分間隔を換えること
で判断基準をより細分化できる利点がある。
In addition, the criterion for controlling the coagulant injection rate can be determined from the amount of pulverized coal obtained from the image measurement and the estimated turbidity of the runoff, and the criterion can be further subdivided by changing the difference interval between the set value and the image measurement value. There are advantages that can be done.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例による水処理装置の粉末活性炭
注入制御装置を示すブロック図、第2図は微粉炭の平均
粒径の分布図である。 1……着水井、2……混和池、3……フロック形成池、
4……沈澱池、5……濾過池、7……撹拌機、8……モ
ータ、9……パドル、10……モータ、11……水中カメ
ラ、12……微粉炭計測装置、13……演算コンピュータ、
14……活性炭注入装置。
FIG. 1 is a block diagram showing a powdered activated carbon injection control device of a water treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a distribution diagram of an average particle size of pulverized coal. 1 ... landing well, 2 ... mixing pond, 3 ... floc formation pond,
4 ... sedimentation basin, 5 ... filtration basin, 7 ... stirrer, 8 ... motor, 9 ... paddle, 10 ... motor, 11 ... underwater camera, 12 ... pulverized coal measuring device, 13 ... Arithmetic computer,
14 ... Activated carbon injection device.

フロントページの続き (56)参考文献 特開 平2−218408(JP,A) 特開 平1−199608(JP,A) 特開 昭64−15107(JP,A) 特開 昭63−218217(JP,A) 特開 昭62−250919(JP,A) 特開 昭62−214331(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 1/28 B01D 21/30 Continuation of the front page (56) References JP-A-2-218408 (JP, A) JP-A-1-199608 (JP, A) JP-A-64-15107 (JP, A) JP-A-63-218217 (JP) JP-A-62-250919 (JP, A) JP-A-62-214331 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C02F 1/28 B01D 21/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】処理水を入水する着水井と、該着水井から
供給される処理水に凝集剤を投入・混和する混和池と、
この混和池からの処理水を撹拌してフロックを形成する
フロック形成池と、このフロックを沈澱させる沈澱池と
を具備し、前記着水井、混和池またはフロック形成池に
活性炭を注入し、前記沈澱池から流出する処理水の濁度
を設定流出濁度に制御するものにおいて、 前記沈澱池に設置される処理水撮影機と、 この処理水撮影機からの画像情報に基づいて前記注入さ
れた活性炭が凝集されずまたは吸着しなかった微細な微
粉炭を識別し、処理水における微粉炭の粒径分布を求
め、この粒径分布から微粉炭の平均粒径および単位容量
当たりの微粉炭量を求める微粉炭計測部と、 前記微粉炭計測部からの単位量当たりの微粉炭量から前
記沈澱池の予測流出濁度を算出する演算処理部と、 前記設定流出濁度と予測流出濁度を比較し、これらの比
較結果に基づいて活性炭の注入量を制御する活性炭注入
制御部と、 を設けたことを特徴とする水処理制御装置。
1. A landing well for receiving treated water, a mixing pond for introducing and mixing a flocculant into treated water supplied from the landing well,
A flocculation pond for forming flocs by stirring the treated water from the mixing pond; and a sedimentation pond for sedimentation of the flocs. A method for controlling the turbidity of treated water flowing out of a pond to a set turbidity of treated water, comprising: a treated water photographing machine installed in the sedimentation pond; and the injected activated carbon based on image information from the treated water photographing machine. Identify fine pulverized coal that has not been agglomerated or adsorbed, determine the particle size distribution of pulverized coal in the treated water, and determine the average particle size of pulverized coal and the amount of pulverized coal per unit volume from this particle size distribution. A pulverized coal measurement unit, an arithmetic processing unit that calculates a predicted outflow turbidity of the settling basin from the amount of pulverized coal per unit amount from the pulverized coal measurement unit, and compares the set outflow turbidity and the predicted outflow turbidity. , These comparisons A water treatment control device, comprising: an activated carbon injection control unit that controls an injection amount of activated carbon based on a result.
【請求項2】前記処理水撮影機が前記沈殿池内の入口に
設置されていることを特徴とする、特許請求の範囲第1
項に記載の水処理制御装置。
2. The apparatus according to claim 1, wherein said treated water photographing machine is installed at an entrance in said sedimentation basin.
The water treatment control device according to Item.
【請求項3】前記単位容量当たりの微粉炭量と前記沈澱
池の予測流出濁度から凝集剤注入制御の判断基準を求め
ることを特徴とする、特許請求の範囲第1項に記載の水
処理制御装置。
3. The water treatment according to claim 1, wherein a criterion for controlling the coagulant injection is determined from the amount of pulverized coal per unit volume and the predicted turbidity of the settling basin. Control device.
JP31697890A 1990-11-21 1990-11-21 Water treatment control device Expired - Lifetime JP2969927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31697890A JP2969927B2 (en) 1990-11-21 1990-11-21 Water treatment control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31697890A JP2969927B2 (en) 1990-11-21 1990-11-21 Water treatment control device

Publications (2)

Publication Number Publication Date
JPH04187287A JPH04187287A (en) 1992-07-03
JP2969927B2 true JP2969927B2 (en) 1999-11-02

Family

ID=18083058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31697890A Expired - Lifetime JP2969927B2 (en) 1990-11-21 1990-11-21 Water treatment control device

Country Status (1)

Country Link
JP (1) JP2969927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2737691B2 (en) * 1995-04-14 1998-04-08 日本電気株式会社 Method and apparatus for treating fluorine-containing wastewater
CN110935203B (en) * 2019-12-13 2020-10-20 安徽理工大学 Rake-free concentration device comprising driving area
CN115477437A (en) * 2022-09-21 2022-12-16 泸州市威鑫煤业有限责任公司 Coal washery sewage treatment system

Also Published As

Publication number Publication date
JPH04187287A (en) 1992-07-03

Similar Documents

Publication Publication Date Title
JP5801031B2 (en) Water treatment system
JP7179486B2 (en) Coagulant injection control device, coagulant injection control method and computer program
JP4202207B2 (en) Coagulation separation device
JP2020146614A (en) Sludge treatment system and sludge treatment method
JP2008055299A (en) Flocculating sedimentation treating equipment
JP2969927B2 (en) Water treatment control device
Veerapaneni et al. Role of suspension polydispersivity in granular media filtration
JP2001137835A (en) Facility control system
JPH06304420A (en) Coating sludge discarding device in coating booth water tank
KR100472947B1 (en) One-type treatment system of a waste water and well water having a monitoring control skill
JPH05240767A (en) Floc measuring/controlling device
JP2674226B2 (en) Flock formation control device
JPH06327907A (en) Flocculation controller
JP6270655B2 (en) Flock aggregation condition control method, floc aggregation condition control device, water treatment method and water treatment apparatus
KR100814011B1 (en) Device and methode for water purification
JPH08309109A (en) Controlling device for pouring chemical in water purification plant
JPH02284605A (en) Paddle control device in flocculation basin
JP3973967B2 (en) Coagulation separation device
JPS6164307A (en) Apparatus for controlling sedimentation basin
JP3325049B2 (en) Sludge treatment method and sludge treatment apparatus therefor
EP1637205A1 (en) Flocculaing settling device
JP3314736B2 (en) Cross-flow sedimentation type water treatment equipment
JP2542478B2 (en) Turbid water treatment device
JP2542479B2 (en) Turbid water treatment device
JP3933991B2 (en) Coagulation separation device