JP2969192B2 - Current detector - Google Patents

Current detector

Info

Publication number
JP2969192B2
JP2969192B2 JP7109500A JP10950095A JP2969192B2 JP 2969192 B2 JP2969192 B2 JP 2969192B2 JP 7109500 A JP7109500 A JP 7109500A JP 10950095 A JP10950095 A JP 10950095A JP 2969192 B2 JP2969192 B2 JP 2969192B2
Authority
JP
Japan
Prior art keywords
current
amplifier
output signal
current transformer
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7109500A
Other languages
Japanese (ja)
Other versions
JPH08304472A (en
Inventor
良馬 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishishiba Electric Co Ltd
Original Assignee
Nishishiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishishiba Electric Co Ltd filed Critical Nishishiba Electric Co Ltd
Priority to JP7109500A priority Critical patent/JP2969192B2/en
Publication of JPH08304472A publication Critical patent/JPH08304472A/en
Application granted granted Critical
Publication of JP2969192B2 publication Critical patent/JP2969192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電流検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current detecting device.

【0002】[0002]

【従来の技術】通常、導線を流れる電流を検出する電流
検出方法には、変流器の1次巻線に検出対象となる電流
を取り込み、変流器の2次巻線に抵抗器を接続してこの
抵抗器の端子電圧を1次電流の検出信号として検出する
電流検出方法や、ホール効果素子によって導線に流れる
電流を検出する電流検出方法が用いられている。
2. Description of the Related Art Normally, a current detection method for detecting a current flowing through a conducting wire involves taking a current to be detected into a primary winding of a current transformer and connecting a resistor to a secondary winding of the current transformer. A current detection method of detecting the terminal voltage of the resistor as a detection signal of a primary current, and a current detection method of detecting a current flowing through a conductor by a Hall effect element are used.

【0003】[0003]

【発明が解決しようとする課題】ところで、変流器の1
次巻線に検出対象電流を流し、変流器の2次巻線に抵抗
器を接続してこの抵抗器の端子電圧を1次電流の検出信
号として検出する電流検出方法は、変流器の1次巻線に
流れる検出対象電流が歪み波電流などの正負非対称な波
形をした電流である場合、変流器は直流偏磁を起し、変
流器の励磁電流は直流成分を含んだ電流となる。しかし
て変流器理論によると、変流器の2次電流は1次電流と
励磁電流の差であるので、変流器の1次電流と2次電流
は相似な波形とはならず、正確な1次電流検出信号は得
られないという問題があった。
By the way, one of the current transformers is
A current detection method in which a current to be detected flows through the secondary winding, a resistor is connected to the secondary winding of the current transformer, and the terminal voltage of the resistor is detected as a primary current detection signal is a current detection method. If the current to be detected flowing in the primary winding is a current having a positive / negative asymmetric waveform such as a distorted wave current, the current transformer causes a DC bias, and the exciting current of the current transformer is a current including a DC component. Becomes According to the current transformer theory, since the secondary current of the current transformer is the difference between the primary current and the exciting current, the primary current and the secondary current of the current transformer do not have similar waveforms and are accurate. There is a problem that a primary current detection signal cannot be obtained.

【0004】また、ホール効果素子によって導線に流れ
る電流を検出する電流検出方法は、検出の対象となる電
流が歪み波電流などの正負非対称な波形をした電流であ
る場合も検出対象電流と相似な検出信号が得られるが、
ホール効果素子は価格が高く、従って電流検出器も高コ
ストとなり、経済的でないという問題があった。
A current detection method for detecting a current flowing through a conducting wire by a Hall effect element is similar to the current to be detected even when the current to be detected is a current having a positive or negative asymmetric waveform such as a distorted wave current. A detection signal is obtained,
There is a problem in that the Hall effect element is expensive, so that the current detector is also expensive and uneconomical.

【0005】本発明は、上記事情に鑑みてなされたもの
で、その目的は、正弦波電流でけでなく歪み波電流など
の正負非対称な波形を持つ電流も正確に検出し、且つ経
済性の優れた電流検出装置を提供することにある。
The present invention has been made in view of the above circumstances, and has as its object to accurately detect not only a sinusoidal current but also a current having a positive / negative asymmetric waveform such as a distorted wave current, and is economical. An object of the present invention is to provide an excellent current detection device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、変流器、及び前記変流器の2
次巻線に接続し2次電流を2次電圧に変換する抵抗器、
及び該抵抗器の端子電圧を入力として該抵抗器の抵抗値
の逆数のゲインで増幅する第1の増幅器と、該第1の増
幅器の出力信号を前記変流器の2次巻線の漏れインダク
タンスをゲインとして増幅する第2の増幅器と、該第2
の増幅器の出力信号を微分する微分器と、前記第1の増
幅器の出力信号を前記変流器の2次巻線抵抗をゲインと
して増幅する第3の増幅器と、前記微分器の出力信号と
前記第3の増幅器の出力信号を加算する第1の加算器
と、前記抵抗器の端子電圧と前記第1の加算器の出力信
号を加算する第2の加算器より構成されて前記変流器の
2次誘起電圧を演算する2次誘起電圧演算器、及び前記
2次誘起電圧演算器の出力信号を前記変流器の1次巻線
の巻数を2次巻線の巻線で除算して得られるゲインで増
幅する第4の増幅器、及び前記抵抗器の端子電圧を前記
抵抗器の抵抗値の逆数と前記変流器の次巻線の巻数を
次巻線の巻数で除算した値を乗じて得られるゲインで
増幅する第5の増幅器から成る1次負荷電流演算器
前記第4の増幅器の出力信号を積分する積分器と、該
積分器の出力信号を前記変流器の相互インダクタンスの
逆数をゲインとして増幅する第6の増幅器と、前記第
の増幅器の出力信号を前記変流器の鉄損抵抗の逆数をゲ
インとして増幅する第7の増幅器と、前記第6の増幅器
の出力信号と前記第7の増幅器の出力信号を加算する第
3の加算器より構成されて前記変流器の励磁電流を演算
する第1の励磁電流演算器、及び該第1の励磁電流演算
器の出力信号と前記1次負荷電流演算器の出力信号を加
算する第4の加算器とからなる第1の励磁電流補償器を
備え、該第1の励磁電流補償器の出力信号を前記変流器
の1次巻線に流れる電流の検出信号とし、前記変流器の
1次巻線に流れる電流と相似な波形を持つ検出信号を出
力することを特徴とする。
In order to achieve the above object, a first aspect of the present invention is to provide a current transformer and the current transformer.
A resistor connected to the secondary winding to convert a secondary current to a secondary voltage;
And a first amplifier for amplifying the terminal voltage of the resistor as an input with an inverse gain of the resistance value of the resistor, and a leakage inductance of a secondary winding of the current transformer for outputting an output signal of the first amplifier. A second amplifier for amplifying the gain as a gain,
A differentiator for differentiating the output signal of the amplifier, a third amplifier for amplifying the output signal of the first amplifier using a secondary winding resistance of the current transformer as a gain, an output signal of the differentiator, A first adder for adding an output signal of a third amplifier; and a second adder for adding a terminal voltage of the resistor and an output signal of the first adder. A secondary induced voltage calculator for calculating a secondary induced voltage, and an output signal of the secondary induced voltage calculator being obtained by dividing the number of turns of a primary winding of the current transformer by a winding of a secondary winding. fourth amplifier which amplifies a gain to be, and the number of turns of the secondary winding of the reciprocal and the current transformer of the resistance value of the terminal voltage of the resistor the resistor
A primary load current calculator comprising a fifth amplifier for amplifying with a gain obtained by multiplying a value obtained by dividing the value by the number of turns of the primary winding, and
An integrator for integrating the output signal of the fine said fourth amplifier, and a sixth amplifier for amplifying the output signal of the integrator the inverse of the mutual inductance of the current transformer as the gain, the fourth
A seventh amplifier that amplifies the output signal of the first amplifier using the reciprocal of the iron loss resistance of the current transformer as a gain, and a third amplifier that adds the output signal of the sixth amplifier and the output signal of the seventh amplifier. A first excitation current calculator configured by an adder to calculate an excitation current of the current transformer; and an output signal of the first excitation current calculator and an output signal of the primary load current calculator. A first exciting current compensator including a fourth adder, wherein an output signal of the first exciting current compensator is used as a detection signal of a current flowing through a primary winding of the current transformer, and And outputting a detection signal having a waveform similar to the current flowing through the primary winding of the detector.

【0007】本発明の請求項2は、請求項1記載の電流
検出装置において、前記第1の励磁電流補償器の代わり
に、前記変流器の鉄損抵抗と2次巻線の漏れインダクタ
ンスと2次巻線抵抗を近似的に零に置き換えることで前
記第1の増幅器と第2の増幅器と第3の増幅器と微分器
と第1の加算器と第2の加算器と第7の増幅器と第3の
加算器を省いた第2の励磁電流補償器を備え、前記第1
の励磁電流補償器内部の増幅器の構成を簡略化したこと
を特徴とする。
According to a second aspect of the present invention, in the current detecting device according to the first aspect, instead of the first exciting current compensator, an iron loss resistance of the current transformer and a leakage inductance of a secondary winding are used. By replacing the secondary winding resistance with approximately zero, the first amplifier, the second amplifier, the third amplifier, the differentiator, the first adder, the second adder, and the seventh amplifier A second exciting current compensator without a third adder;
Wherein the configuration of the amplifier inside the exciting current compensator is simplified.

【0008】[0008]

【作用】まず、本発明の電流検出装置の原理を図8〜図
13を参照として説明する。図8は電流検出回路図、図
9は図8の電流検出回路のT形等価回路図、図10はi
1 を入力、i0 を出力とするブロック線図である。
First, the principle of the current detecting device according to the present invention will be described with reference to FIGS. 8 is a current detection circuit diagram, FIG. 9 is a T-type equivalent circuit diagram of the current detection circuit of FIG. 8, and FIG.
FIG. 3 is a block diagram in which 1 is input and i 0 is output.

【0009】図8及び図9において、30は変流器、3
1は抵抗器、i1 は変流器30の1次電流、i2 は変流
器30の2次電流、v2 は抵抗器31の端子電圧、40
は変流器30の1次巻線抵抗、41は変流器30の1次
巻線漏れインダクタンス、42は変流器30の鉄損な
どの励磁抵抗、43は変流器30の相互インダクタン
ス、44は変流器30の2次巻線抵抗の1次側変換抵
抗、45は変流器30の2次巻線漏れインダクタンス
の1次変換インダクタンス、46は抵抗器31の1次側
変換抵抗、i′1 は変流器30の2次電流の1次側変換
電流すなわち1次負荷電流、v′2 は抵抗器31の端子
電圧の1次側変換電圧、i0 は変流器30の励磁電流、
owは変流器30の鉄損電流、iolは変流器30の磁化
電流である。
In FIGS. 8 and 9, reference numeral 30 denotes a current transformer;
1 is a resistor, i 1 is a primary current of the current transformer 30, i 2 is a secondary current of the current transformer 30, v 2 is a terminal voltage of the resistor 31, 40
Is a primary winding resistance of the current transformer 30, 41 is a leakage inductance of a primary winding of the current transformer 30, 42 is an exciting resistance such as an iron loss of the current transformer 30, and 43 is a mutual inductance of the current transformer 30. , 44 is a primary conversion resistance of the secondary winding resistance of the current transformer 30, 45 is a primary conversion inductance of the leakage inductance of the secondary winding of the current transformer 30, and 46 is a primary conversion resistance of the resistor 31. The resistance, i ′ 1 is the primary conversion current of the secondary current of the current transformer 30, that is, the primary load current, v ′ 2 is the primary conversion voltage of the terminal voltage of the resistor 31, and i 0 is the current transformer 30 Excitation current,
i ow is the iron loss current of the current transformer 30, and i ol is the magnetizing current of the current transformer 30.

【0010】また、図10のブロック線図において、ブ
ロック50,51,52,54,55,57,58はゲ
イン、53は微分器、56は積分器、59は減算器、6
0,61,62は加算器である。
In the block diagram of FIG. 10, blocks 50, 51, 52, 54, 55, 57 and 58 are gains, 53 is a differentiator, 56 is an integrator, 59 is a subtractor, 6
0, 61, and 62 are adders.

【0011】従って、減算器59は1次電流i1 から励
磁電流i0 を減算し1次負荷電流i′1 を演算する。ゲ
イン50は1次負荷電流i′1 に変流器30の2次巻線
の巻数N2 に対する1次巻線の巻数N1 の比、すなわち
1 /N2 を乗ずることにより2次電流i2 を演算し、
ゲイン51は2次電流i2 に抵抗器31の抵抗値を乗ず
ることにより抵抗器31の端子電圧v2 を演算し、ゲイ
ン52は2次電流i2に変流器30の2次巻線漏れイ
ンダクタンスを乗じ,微分器53はゲイン52の出力信
号を微分し、ゲイン54は2次電流i2 に変流器の2次
巻線抵抗の抵抗値を乗じる。加算器60は微分器53の
出力信号とゲイン54の出力信号を加算することにより
変流器30の2次巻線内部電圧降下を演算し、加算器6
1はゲイン51の出力信号v2 と加算器60の出力信号
である2次巻線内部電圧降下を加算することにより変流
器30の2次誘起電圧e2 を演算する。
Accordingly, the subtractor 59 calculates were primary load current i '1 subtracts the exciting current i 0 from the primary current i 1. Gain 50 primary load current i 'ratio of turns N 1 of the primary winding for the number of turns N 2 of the secondary winding of current transformer 30 to 1, i.e. N 1/2 by multiplying the N 2 primary current i Calculate 2 and
Gain 51 calculates a terminal voltage v 2 of the resistor 31 by multiplying the resistance value of the resistor 31 to the secondary current i 2, the gain 52 secondary winding of the current transformer 30 to the secondary current i 2 multiplied by the leakage inductance, differentiator 53 differentiates the output signal of the gain 52, the gain 54 multiplies the resistance of the secondary winding resistance of transformer secondary current i 2. The adder 60 calculates the voltage drop inside the secondary winding of the current transformer 30 by adding the output signal of the differentiator 53 and the output signal of the gain 54, and
1 calculates the secondary induced voltage e 2 of the current transformer 30 by adding the output signal v 2 of the gain 51 and the voltage drop inside the secondary winding which is the output signal of the adder 60.

【0012】また、ゲイン55は2次誘起電圧e2 に変
流器30の2次巻線の巻数N2 に対する1次巻線の巻数
1 の比、すなわちN1 /N2 を乗ずることにより変流
器30の1次誘起電圧e1 を演算し、積分器56は1次
誘起電圧e1 を積分することにより変流器30の1次巻
線鎖交主磁束数ψ1 を演算し、ゲイン57はψ1 に変流
器30の相互インダクタンスの逆数を乗ずることにより
変流器30の磁化電流i0lを演算する。ゲイン58は1
次誘起電圧e1 に変流器30の鉄損抵抗の逆数を乗ずる
ことにより変流器30の鉄損電流i0wを演算し、加算器
62は磁化電流i01と鉄損電流i0wを加算することによ
り励磁電流i0 を演算する。
The gain 55 is obtained by multiplying the secondary induced voltage e 2 by the ratio of the number of turns N 1 of the primary winding to the number of turns N 2 of the secondary winding of the current transformer 30, ie, N 1 / N 2. The primary induced voltage e 1 of the current transformer 30 is calculated, and the integrator 56 calculates the primary winding interlink main magnetic flux number ψ 1 of the current transformer 30 by integrating the primary induced voltage e 1 , gain 57 computes the magnetization current i 0l the current transformer 30 by multiplying the inverse of the mutual inductance of the current transformer 30 to [psi 1. The gain 58 is 1
By multiplying the next induced voltage e 1 by the reciprocal of the iron loss resistance of the current transformer 30, the iron loss current i 0w of the current transformer 30 is calculated, and the adder 62 adds the magnetizing current i 01 and the iron loss current i 0w . Thus, the excitation current i 0 is calculated.

【0013】ところで、検出対象電流i1 が歪み波電流
などの正負非対称な波形をした電流である場合、変流器
30が直流偏磁を起こすため励磁電流i0 は直流成分を
含む。1次負荷電流i′1 は検出対象電流i1 から励磁
電流i0 を差し引いた波形となるため、1次負荷電流
i′1 は励磁電流i0 の直流量でバイアスされた波形と
なり、検出対象電流i1 と相似な波形とはならない。変
流器30の2次電流i2は1次負荷電流i′1 と相似で
あるため、抵抗器31の端子電圧v2 もまた検出対象電
流i1 と相似な波形とはならない。
When the current i 1 to be detected is a current having an asymmetrical positive and negative waveform such as a distorted wave current, the exciting current i 0 contains a DC component because the current transformer 30 causes a DC bias. Since the primary load current i ′ 1 has a waveform obtained by subtracting the exciting current i 0 from the current i 1 to be detected, the primary load current i ′ 1 has a waveform biased by the DC amount of the exciting current i 0 , not a current i 1, similar to a waveform. Since the secondary current i 2 of the current transformer 30 is similar to the primary load current i ′ 1 , the terminal voltage v 2 of the resistor 31 also does not have a waveform similar to the detection target current i 1 .

【0014】従って、端子電圧v2 を以って検出対象電
流i1 の検出信号とする図8の電流検出器では、検出の
対象となる電流が歪み波電流などの正負非対称な波形を
持つ電流である場合に正確な検出信号が得られない。
Therefore, in the current detector shown in FIG. 8 which uses the terminal voltage v 2 as a detection signal of the current i 1 to be detected, the current to be detected is a current having a positive / negative asymmetric waveform such as a distorted wave current. , An accurate detection signal cannot be obtained.

【0015】そこで、検出信号v2 に対して変流器30
の励磁電流量を補償することにより検出対象電流i1
相似な検出信号を得ることを考える。すなわち、図10
を参照すると、検出信号v2 にゲイン51の逆数とゲイ
ン50の逆数を乗ずることにより、変流器30の1次負
荷電流i′1 が演算できることが分かる。また検出信号
2 から変流器30の励磁電流i0 までのブロック線図
をみると、励磁電流i0 を演算できることが分り、さら
に検出対象電流i1 は1次負荷電流i′1 と変流器30
の励磁電流i0 を加算したものであることが分かる。依
って、抵抗器31の端子電圧v2 から1次負荷電流i′
1 と励磁電流i0 を演算し、両者を加算することにより
検出対称電流i1 を演算できることが分かる。
[0015] Therefore, current transformer with respect to the detection signal v 2 30
It is considered that a detection signal similar to the current to be detected i 1 is obtained by compensating the amount of the exciting current of. That is, FIG.
, It can be seen that the primary load current i ′ 1 of the current transformer 30 can be calculated by multiplying the detection signal v 2 by the reciprocal of the gain 51 and the reciprocal of the gain 50. Also looking at the block diagram of the detection signal v 2 until the exciting current i 0 of the current transformer 30, found to be capable of calculating an exciting current i 0, further detected current i 1 is the primary load current i '1 and strange Sink 30
It can be seen that the excitation current i 0 is added. Depending, the terminal voltage v 2 from the primary load current i of the resistor 31 '
It is understood that the detected symmetric current i 1 can be calculated by calculating 1 and the exciting current i 0 and adding the both.

【0016】以上を踏まえて、図8に示す回路の抵抗器
31の端子電圧v2 に対して変流器30の励磁電流に相
当する量を補償し、変流器の1次巻線に流れる検出対象
電流i1 を演算する励磁電流補償器の原理図を図11に
示す。
Based on the above, an amount corresponding to the exciting current of the current transformer 30 is compensated for the terminal voltage v 2 of the resistor 31 in the circuit shown in FIG. 8 and flows through the primary winding of the current transformer. the principle diagram of the excitation current compensator for calculating a detected current i 1 is shown in FIG. 11.

【0017】図11のブロック線図において、80は励
磁電流補償器、81は2次誘起電圧演算器、82は励磁
電流演算器、83は1次負荷電流演算器、70,71は
ゲイン、72は加算器であり、その他の符号で示すもの
は図10と同様である。すなわち、52,54,55,
57,58はゲイン、53は微分器、56は積分器、6
0,61,62は加算器である。
In the block diagram of FIG. 11, 80 is an exciting current compensator, 81 is a secondary induced voltage calculator, 82 is an exciting current calculator, 83 is a primary load current calculator, 70 and 71 are gains, 72 Is an adder, and the other reference numerals are the same as those in FIG. That is, 52, 54, 55,
57 and 58 are gains, 53 is a differentiator, 56 is an integrator, 6
0, 61, and 62 are adders.

【0018】図11に示すように、励磁電流補償器80
は変流器の2次巻線に接続された抵抗器の端子電圧v2
から変流器の1次巻線電流i1 を演算することを示し、
また2次誘起電圧演算器81は端子電圧v2 から変流器
の2次誘起電圧e2 を演算し、励磁電流演算器82は変
流器の1次誘起電圧e1 から変流器の励磁電流i0 を演
算し、さらに1次負荷電流演算器83は端子電圧v2
ら変流器の1次負荷電流i′1 を演算することを示して
いる。なお、ゲイン52,54,55,57,58、微
分器53、積分器56及び加算器60,61,62はそ
れぞれ図10のゲイン、微分器、積分器及び加算器と同
じ作用をする。
As shown in FIG. 11, the excitation current compensator 80
Is the terminal voltage v 2 of the resistor connected to the secondary winding of the current transformer.
To calculate the primary winding current i 1 of the current transformer from
The secondary induced voltage calculator 81 calculates the secondary induced voltage e 2 of the current transformer from the terminal voltage v 2 , and the exciting current calculator 82 calculates the excitation of the current transformer from the primary induced voltage e 1 of the current transformer. It shows that the current i 0 is calculated, and that the primary load current calculator 83 calculates the primary load current i ′ 1 of the current transformer from the terminal voltage v 2 . The gains 52, 54, 55, 57, 58, the differentiator 53, the integrator 56, and the adders 60, 61, 62 operate in the same manner as the gain, differentiator, integrator, and adder in FIG.

【0019】従って、ゲイン70は端子電圧v2 に抵抗
器31の抵抗値の逆数を乗ずることにより変流器30の
2次電流i2 を演算し、ゲイン71はゲイン70の出力
信号i2 に変流器30の次巻線の巻数N 1 に対する
次巻線の巻数N 2 の比、すなわちN 2 /N 1 を乗ずるこ
とにより変流器の1次負荷電流i′1 を演算し、加算器
72は励磁電流演算器82の出力信号i0 と1次負荷電
流演算器83の出力信号i′1 を加算することにより変
流器の1次巻線に流れる1次巻線電流i1 を演算するこ
とが分かる。
Accordingly, the gain 70 calculates the secondary current i 2 of the current transformer 30 by multiplying the terminal voltage v 2 by the reciprocal of the resistance value of the resistor 31, and the gain 71 calculates the output signal i 2 of the gain 70. 2 for the number of turns N 1 of the primary winding of the current transformer 30
The ratio of the number of turns N 2 follows the windings, i.e. calculates a primary load current i '1 current transformers by multiplying the N 2 / N 1, the adder 72 and the output signal i 0 of the exciting current calculator 82 it can be seen that computing the primary winding current i 1 flowing through the primary winding of the current transformer by adding the output signal i '1 of the primary load current calculator 83.

【0020】ここで、まず本発明の第1実施例(請求項
1対応)の電流検出装置の原理を図12の回路図を参照
して説明する。なお、30は変流器、31は抵抗器、8
0は第1の励磁電流補償器である。
Here, the principle of the current detecting device according to the first embodiment (corresponding to claim 1) of the present invention will be described with reference to the circuit diagram of FIG. 30 is a current transformer, 31 is a resistor, 8
0 is a first exciting current compensator.

【0021】同図に示すように第1の実施例では、変流
器30の2次側に接続された抵抗器31の端子電圧を第
1の励磁電流補償器80に入力し、第1の励磁電流補償
器において図11に示した演算を行うことで入力信号に
対して励磁電流量を補償し、その結果第1の励磁電流補
償器の出力信号は変流器30の1次電流と相似な波形と
なる。したがって、変流器30の1次電流が非正弦波で
あっても正しく検出することが可能となる。
As shown in the figure, in the first embodiment, the terminal voltage of the resistor 31 connected to the secondary side of the current transformer 30 is input to the first exciting current compensator 80, and the first The operation shown in FIG. 11 is performed in the exciting current compensator to compensate the amount of exciting current for the input signal. As a result, the output signal of the first exciting current compensator is similar to the primary current of the current transformer 30. Waveform. Therefore, even if the primary current of the current transformer 30 is a non-sinusoidal wave, it can be correctly detected.

【0022】次に、本発明の第2実施例(請求項2対
応)の励磁電流補償器の原理を図13のブロック線図を
参照して説明する。
Next, the principle of an exciting current compensator according to a second embodiment of the present invention (corresponding to claim 2) will be described with reference to the block diagram of FIG.

【0023】同図に示すように、第2の実施例の励磁電
流補償器90では、図11に示したブロック図において
変流器の2次巻線の漏れインダクタンスと巻線抵抗と鉄
損抵抗が非常に小さく零に近似できると考え、2次誘起
電圧演算器81とゲイン58を省略する。図13の各ブ
ロックの番号は図11と同一の要素を示す。したがっ
て、第2の励磁電流補償器90は第1の励磁電流補償器
80よりも少ない構成要素で済み、より経済的な第2の
電流検出装置を提供できる。図14に示すように、第2
の励磁電流補償器も変流器30の2次側に接続された抵
抗器31の端子電圧を入力し、演算の結果、変流器30
の1次電流と同様の波形の検出信号を出力する。
As shown in the drawing, in the exciting current compensator 90 of the second embodiment , the leakage inductance, winding resistance and iron loss resistance of the secondary winding of the current transformer in the block diagram shown in FIG. Is very small and can be approximated to zero, and the secondary induced voltage calculator 81 and the gain 58 are omitted. The number of each block in FIG. 13 indicates the same element as in FIG. Therefore, the second exciting current compensator 90 is the first exciting current compensator.
With less than 80 components, a more economical second current sensing device can be provided. As shown in FIG.
Also receives the terminal voltage of the resistor 31 connected to the secondary side of the current transformer 30, and as a result of the calculation,
And outputs a detection signal having the same waveform as the primary current.

【0024】[0024]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の第1実施例(請求項1対応)の回路
図である。同図において、1は電流検出器、2は変流
器、3は抵抗器、4は励磁電流補償器である。励磁電流
補償器4は、例えばオペアンプと抵抗器とキャパシタな
どの電気回路素子、あるいはマイクロコンピュータを用
いて実施される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a first embodiment (corresponding to claim 1) of the present invention. In the figure, 1 is a current detector, 2 is a current transformer, 3 is a resistor, and 4 is an exciting current compensator. The exciting current compensator 4 is implemented using an electric circuit element such as an operational amplifier, a resistor, and a capacitor, or a microcomputer.

【0025】この励磁電流補償器4の機能を図2のブロ
ック線図に示す。同図において、5は2次誘起電圧演算
器、6は変流器2の2次巻線の巻数N2に対する1次巻
線の巻数N1 の比、すなわちN1 /N2 を増幅度とする
増幅器、7は励磁電流演算器、8は変流器2の次巻線
の巻数N 1 に対する次巻線の巻数N 2 の比、すなわち
2 /N 1 と抵抗器3の抵抗値の逆数を乗算して得られ
るゲインを入力信号に乗ずる1次負荷電流演算器、9は
加算器である。2次誘起電圧演算器5および増幅器6お
よび励磁電流演算器7および1次負荷電流演算器8およ
び加算器9は、例えばオペアンプと抵抗器とキャパシタ
などの電気回路素子、あるいはマイクロコンピュータを
用いて実施される。
The function of the exciting current compensator 4 is shown in the block diagram of FIG. In the figure, 5 is the secondary induced voltage calculator 6 is the ratio of number of turns N 1 of the primary winding for the number of turns N 2 of the secondary winding, namely the N 1 / N 2 amplification of current transformer 2 amplifiers, 7 exciting current calculator, 8 the ratio of number of turns N 2 of the secondary winding for the number of turns N 1 of the primary winding of the current transformer 2, i.e. N 2 / N 1 and the resistance value of the resistor 3 Is a primary load current calculator that multiplies the input signal by a gain obtained by multiplying the reciprocal of the input signal, and 9 is an adder. The secondary induced voltage calculator 5, the amplifier 6, the exciting current calculator 7, the primary load current calculator 8, and the adder 9 are implemented using electric circuit elements such as an operational amplifier, a resistor, and a capacitor, or a microcomputer. Is done.

【0026】図3は図2の2次誘起電圧演算器5のブロ
ック線図である。同図において、10は抵抗器3の抵抗
値の逆数を増幅度とする増幅器、11は変流器2の2次
巻線漏れインダクタンスを増幅度とする増幅器、12は
微分器、13は変流器2の2次巻線抵抗の抵抗値を増幅
度とする増幅器、14,15は加算器である。増幅器1
0および増幅器11および微分器12および増幅器13
および加算器14,15は例えばオペアンプと抵抗器と
キャパシタなどの電気回路素子、あるいはマイクロコン
ピュータを用いて実施される。
FIG. 3 is a block diagram of the secondary induced voltage calculator 5 of FIG. In the figure, reference numeral 10 denotes an amplifier whose amplification is the reciprocal of the resistance value of the resistor 3, reference numeral 11 denotes an amplifier whose amplification is based on the leakage inductance of the secondary winding of the current transformer 2, reference numeral 12 denotes a differentiator, and reference numeral 13 denotes a current transformer. Amplifiers which use the resistance value of the secondary winding resistance of the amplifier 2 as an amplification degree, and 14 and 15 are adders. Amplifier 1
0 and amplifier 11 and differentiator 12 and amplifier 13
The adders 14 and 15 are implemented using an electric circuit element such as an operational amplifier, a resistor and a capacitor, or a microcomputer.

【0027】図4は図2の励磁電流演算器7のブロック
線図である。同図において、16は積分器、17は変流
器2の相互インダクタンスの逆数を増幅度とする増幅
器、18は変流器2の励磁コンダクタンスを増幅度とす
る増幅器、19は加算器である。積分器16および増幅
器17および増幅器18および加算器19は、例えばオ
ペアンプと抵抗器とキャパシタなどの電気回路素子、あ
るいはマイクロコンピュータを用いて実施される。
FIG. 4 is a block diagram of the exciting current calculator 7 of FIG. In the figure, 16 is an integrator, 17 is an amplifier whose amplification is the reciprocal of the mutual inductance of the current transformer 2, 18 is an amplifier whose amplification is the excitation conductance of the current transformer 2, and 19 is an adder. The integrator 16, the amplifier 17, the amplifier 18, and the adder 19 are implemented using an electric circuit element such as an operational amplifier, a resistor, and a capacitor, or a microcomputer.

【0028】次に、本実施例の作用を図1〜図4を参照
して説明する。図1の回路図において、電流検出器1は
検出対電流I1 と相似な波形を持つ検出信号I1,p
出力する。変流器2は1次巻線を流れる検出対電流I
1 を変流し、2次巻線に2次電流I2 を流す。抵抗器3
は変流器2の2次巻線に流れる2次電流I2 を電圧V2
に変換する。このとき、抵抗器3の抵抗値は励磁電流補
償器4の入力インピーダンスよりも十分小さい値とす
る。励磁電流補償器4は抵抗器3の端子電圧V2 に対し
て変流器2の励磁電流に相当する量を補償し、検出対
電流I1 と相似な波形を持つ検出信号I1,p を出力す
る。なお、詳細は後述する。
Next, the operation of the present embodiment will be described with reference to FIGS. In the circuit diagram of FIG. 1, and outputs a detection signal I 1, p of the current detector 1 has a detection Target current I 1, similar to a waveform. Detection Target current I current transformer 2 through the primary winding
1 and a secondary current I 2 is supplied to the secondary winding. Resistor 3
Represents the secondary current I 2 flowing through the secondary winding of the current transformer 2 by the voltage V 2
Convert to At this time, the resistance value of the resistor 3 is set to a value sufficiently smaller than the input impedance of the exciting current compensator 4. Excitation current compensator 4 compensates the amount corresponding to the exciting current of the current transformer 2 with respect to the terminal voltage V 2 of the resistor 3, the detection Target <br/> current I 1 and the detection signal having a similar waveform Output I 1, p . The details will be described later.

【0029】また、図2に図1の要素4の構成を示すブ
ロック図を示す。2次誘起電圧演算器5は抵抗器3の端
子電圧V2 を入力とし、変流器の理論に基づいて変流器
2の2次誘起電圧E2 を演算して出力する。詳細は後述
する。増幅器6は2次誘起電圧演算器5の出力する信号
2 を入力とし、E2 を変流器2の2次巻線の巻数N2
に対する1次巻線の巻数N1 の比、すなわちN1 /N2
を増幅度として増幅することにより、変流器2の1次誘
起電圧E1 を出力する。励磁電流演算器7は増幅器6の
出力する信号E1 を入力とし、変流器の理論に基づいて
前記変流器2の励磁電流I0 を演算して出力する。詳細
は後述する。1次負荷電流演算器8は抵抗器3の端子電
圧V2 を入力とし、V2 を変流器2の次巻線の巻数N
1 に対する次巻線の巻数N 2 の比、すなわちN 2 /N
1 と抵抗器3の抵抗値の逆数を乗じて得られる値を増幅
度として増幅することにより、変流器2の1次負荷電流
I′1 を演算して出力する。加算器9は励磁電流演算器
7の出力する信号I0 と1次負荷電流演算器8の出力す
る信号I′1 を加算することによって変流器2の1次電
流I1 と相似な波形をもつ検出信号I1,p を出力する。
FIG. 2 is a block diagram showing the structure of the element 4 in FIG. The secondary induced voltage calculator 5 receives the terminal voltage V 2 of the resistor 3 as an input, calculates the secondary induced voltage E 2 of the current transformer 2 based on the theory of the current transformer, and outputs the result. Details will be described later. Amplifier 6 as input signal E 2 to the output of the secondary induced voltage calculator 5, the number of turns N 2 of the secondary winding of the E 2 transformer 2
, The ratio of the number of turns of the primary winding N 1 to N 1 / N 2
The by amplifying as amplification degree, and outputs a primary induced voltage E 1 current transformer 2. The exciting current calculator 7 receives the signal E 1 output from the amplifier 6 as an input, calculates the exciting current I 0 of the current transformer 2 based on the theory of the current transformer, and outputs the result. Details will be described later. Primary load current computing unit 8 inputs the terminal voltage V 2 of the resistor 3, the V 2 of a current transformer 2 of the primary winding turns N
The ratio of the number of turns N 2 of the secondary winding relative to 1, i.e. N 2 / N
By amplifying the value obtained by multiplying the reciprocal of the resistance value of 1 and the resistor 3 as the amplification degree, and outputs the calculation of the primary load current I '1 current transformer 2. The adder 9 adds the signal I 0 output from the exciting current calculator 7 and the signal I ′ 1 output from the primary load current calculator 8 to form a waveform similar to the primary current I 1 of the current transformer 2. And outputs a detection signal I 1, p having the same.

【0030】さらに図3に図2の2次誘起電圧演算器5
の構成を示す。増幅器10は抵抗器3の端子電圧V2
入力とし、V2 を抵抗器3の抵抗値の逆数を増幅度とし
て増幅することにより変流器2の2次電流I2 を演算し
て出力する。増幅器11は増幅器10の出力信号I2
変流器2の2次巻線漏れインダクタンスを増幅度とし
て増幅して出力し、微分器12は増幅器11の出力信号
を微分して出力し、増幅器13は増幅器10の出力信号
2 を変流器2の2次巻線抵抗の抵抗値を増幅度として
増幅して出力し、加算器15は微分器12の出力信号と
増幅器13の出力信号を加算することによって変流器2
の2次側内部電圧降下V2,s を演算して出力する。加算
器14は、抵抗器3の端子電圧V2 と加算器15の出力
信号V2,s を加算することによって変流器2の2次誘起
電圧E2 を演算し出力する。
FIG. 3 shows the secondary induced voltage calculator 5 shown in FIG.
Is shown. The amplifier 10 receives the terminal voltage V 2 of the resistor 3 as an input, amplifies V 2 as the reciprocal of the resistance value of the resistor 3 as an amplification degree, calculates and outputs a secondary current I 2 of the current transformer 2. . The amplifier 11 amplifies and outputs the output signal I 2 of the amplifier 10 with the leakage inductance of the secondary winding of the current transformer 2 as an amplification factor, and the differentiator 12 differentiates and outputs the output signal of the amplifier 11. 13 and amplifies the output signal I 2 of the amplifier 10 the resistance of the secondary winding resistance of transformer 2 as the amplification degree of the adder 15 is the output signal of the output signal and the amplifier 13 of the differentiator 12 Current transformer 2 by adding
Is calculated and output. The adder 14 calculates and outputs the secondary induced voltage E 2 of the current transformer 2 by adding the terminal voltage V 2 of the resistor 3 and the output signal V 2, s of the adder 15.

【0031】そして図4に図2の励磁電流演算器7の構
成を示すブロック図を示す。積分器16は増幅器6の出
力信号E1 を入力とし、E1 を積分することにより変流
器2の1次鎖交主磁束数ψ1 を演算して出力する。増幅
器17は積分器18の出力信号ψ1 を入力とし、ψ1
変流器2の相互インダクタンスの逆数を増幅度として増
幅することによって変流器2の磁化電流I0lを演算して
出力する。増幅器18は増幅器6の出力E1 を入力と
し、変流器2の励磁コンダクタンスを増幅度として増幅
することによって変流器2の鉄損電流Iowを演算して出
力する。加算器19は増幅器17の出力信号Iolと増幅器
18の出力信号Iowを加算することによって変流器2の
励磁電流I0 を演算して出力する。
FIG. 4 is a block diagram showing the configuration of the exciting current calculator 7 shown in FIG. The integrator 16 receives the output signal E 1 of the amplifier 6 as an input, calculates the primary flux main flux number ψ 1 of the current transformer 2 by integrating E 1 , and outputs the result. Amplifier 17 receives the output signal [psi 1 integrator 18 calculates and outputs the magnetizing current I 0l current transformer 2 by amplifying the [psi 1 the inverse of the mutual inductance of the current transformer 2 as an amplification degree . Amplifier 18 receives the output E 1 of the amplifier 6 calculates and outputs an iron loss current I ow current transformer 2 by amplifying the excitation conductance of the current transformer 2 as an amplification degree. The adder 19 calculates and outputs the exciting current I 0 of the current transformer 2 by adding the output signal I ol of the amplifier 17 and the output signal I ow of the amplifier 18.

【0032】上述したように、本実施例によると、変流
器の2次巻線電圧に対して励磁電流補償器4で励磁電流
に相当する量を補償することにより、検出の対象となる
電流が歪み波電流などの正負非対称な波形を持つ電流で
あっても、変流器の直流偏磁の影響を受けずに検出対象
電流と相似な波形を持つ検出信号を得ることを可能と
し、且つ変流器と抵抗器と、オペアンプとキャパシタな
どの電気回路素子、あるいはマイクロコンピュータによ
って構成することにより経済性の優れた電流検出装置を
提供できる。
As described above, according to the present embodiment, the excitation current compensator 4 compensates the secondary winding voltage of the current transformer for the amount corresponding to the excitation current, thereby detecting the current to be detected. Is a current having an asymmetrical positive and negative waveform such as a distorted wave current, it is possible to obtain a detection signal having a waveform similar to the current to be detected without being affected by the DC bias of the current transformer, and A current detector excellent in cost efficiency can be provided by being constituted by an electric circuit element such as a current transformer and a resistor, an operational amplifier and a capacitor, or a microcomputer.

【0033】図5は本発明の第2実施例(請求項2対
応)の回路図である。同図において、23は電流検出装
置、2は変流器、3は抵抗器、22は励磁電流補償器で
ある。励磁電流補償器22は、例えばオペアンプと抵抗
器とキャパシタなどの電気回路素子、あるいはマイクロ
コンピュータを用いて実施される。
FIG. 5 is a circuit diagram of a second embodiment (corresponding to claim 2) of the present invention. In the figure, 23 is a current detecting device, 2 is a current transformer, 3 is a resistor, and 22 is an exciting current compensator. The exciting current compensator 22 is implemented using an electric circuit element such as an operational amplifier, a resistor, and a capacitor, or a microcomputer.

【0034】図6は図5の励磁電流補償器22のブロッ
ク線図である。同図において、6は変流器2の2次巻線
の巻数N2 に対する1次巻線の巻数N1 の比、すなわち
1 /N2 を増幅度とする増幅器、20は励磁電流演算
器、8は変流器2の次巻線の巻数N 1 に対する次巻
線の巻数N 2 の比、すなわちN 2 /N 1 と抵抗器3の抵
抗値の逆数を乗じて得られる値を増幅度として増幅する
1次負荷電流演算器、21は加算器である。増幅器6お
よび励磁電流演算器20および1次負荷電流演算器8お
よび加算器21は、例えばオペアンプと抵抗器とキャパ
シタなどの電気回路素子、あるいはマイクロコンピュー
タを用いて実施される。
FIG. 6 is a block diagram of the exciting current compensator 22 of FIG. In the figure, the ratio of number of turns N 1 of the primary winding for the number of turns N 2 of the secondary winding of the current transformer 2 6, i.e. an amplifier to amplify the degree of N 1 / N 2, 20 is the exciting current calculator , 8 the ratio of number of turns N 2 of the secondary winding for the number of turns N 1 of the primary winding of the current transformer 2, i.e. a value obtained by multiplying the reciprocal of the resistance value of the N 2 / N 1 and the resistor 3 A primary load current calculator that amplifies the amplification degree, and 21 is an adder. The amplifier 6, the excitation current calculator 20, the primary load current calculator 8, and the adder 21 are implemented using, for example, an electric circuit element such as an operational amplifier, a resistor, and a capacitor, or a microcomputer.

【0035】図7は図6の励磁電流演算器20のブロッ
ク線図である。同図において、16は積分器、17は変
流器2の相互インダクタンスの逆数を増幅度とする増幅
器である。積分器16および増幅器17は、例えばオペ
アンプと抵抗器とキャパシタなどの電気回路素子、ある
いはマイクロコンピュータを用いて実施される。
FIG. 7 is a block diagram of the exciting current calculator 20 of FIG. In the figure, reference numeral 16 denotes an integrator, and 17 denotes an amplifier whose amplification factor is the reciprocal of the mutual inductance of the current transformer 2. The integrator 16 and the amplifier 17 are implemented using an electric circuit element such as an operational amplifier, a resistor, and a capacitor, or a microcomputer.

【0036】次に、本実施例の作用を図5〜図7を参照
して説明する。図5の回路図において、電流検出器23
は検出対象電流I1 と相似な波形を持つ検出信号I1,p
を出力する。変流器2は1次巻線を流れる検出対象電流
1 を変流し、2次巻線に2次電流I2 を流す。抵抗器
3は変流器2の2次巻線に流れる2次電流I2 を電流V
2 に変換する。このとき、抵抗器3の抵抗値は励磁電流
補償器22の入力インピ―ダンスよりも十分小さい値と
する。励磁電流補償器22は抵抗器3の端子電圧V2
対して、変流器2の励磁電流に相当する量を補償し、検
出対象電流I1 と相似な波形を持つ検出信号I1,p を出
力する。なお、詳細は後述する。
Next, the operation of this embodiment will be described with reference to FIGS. In the circuit diagram of FIG.
Is a detection signal I 1, p having a waveform similar to the detection target current I 1.
Is output. The current transformer 2 transforms the current to be detected I 1 flowing through the primary winding, and causes the secondary current I 2 to flow through the secondary winding. The resistor 3 converts the secondary current I 2 flowing through the secondary winding of the current transformer 2 into a current V.
Convert to 2 . At this time, the resistance value of the resistor 3 is set to a value sufficiently smaller than the input impedance of the exciting current compensator 22. The exciting current compensator 22 compensates for the terminal voltage V 2 of the resistor 3 by an amount corresponding to the exciting current of the current transformer 2 , and generates a detection signal I 1, p having a waveform similar to the detection target current I 1. Is output. The details will be described later.

【0037】また図6は図5の励磁電流補償器22の構
成を示すブロック図である。増幅器6は抵抗器3の端子
電圧V2 を変流器2の2次誘起電圧と近似して入力と
し、V2 を変流器2の2次巻線の巻数N2 に対する1次
巻線の巻数N1 の比、すなわちN1 /N2 を増幅度とし
て増幅することにより、変流器2の1次誘起電圧E1
出力する。励磁電流演算器20は増幅器6の出力する信
号E1 を入力とし、変流器2の励磁電流I0 を演算して
出力する。詳細は後述する。1次負荷電流演算器8は抵
抗器3の端子電圧V2 を入力とし、V2 を変流器2の
次巻線の巻数N 1 に対する次巻線の巻数N 2 の比、す
なわちN 2 /N 1 と抵抗器3の抵抗値の逆数を乗じて得
られる値を増幅度として増幅することにより、変流器2
の1次負荷電流I′1 を演算して出力する。加算器21
は励磁電流演算器20の出力する信号I0 と1次負荷電
流演算器8が出力する信号I′1 を加算することによっ
て変圧器2の1次巻線電流I1 と相似な波形を持つ検出
信号I′1,p を出力する。
FIG. 6 is a block diagram showing the configuration of the exciting current compensator 22 shown in FIG. The amplifier 6 receives the terminal voltage V 2 of the resistor 3 as an input by approximating the secondary induced voltage of the current transformer 2, and uses V 2 of the primary winding with respect to the number of turns N 2 of the secondary winding of the current transformer 2. The primary induced voltage E 1 of the current transformer 2 is output by amplifying the ratio of the number of turns N 1 , that is, N 1 / N 2 as the amplification degree. The exciting current calculator 20 receives the signal E 1 output from the amplifier 6 as an input, calculates the exciting current I 0 of the current transformer 2 and outputs the result. Details will be described later. Primary load current computing unit 8 inputs the terminal voltage V 2 of the resistor 3, 1 V 2 of the current transformer 2
The ratio of the number of turns N 2 of the secondary winding for the number of turns N 1 of the next winding, i.e. by amplifying the value obtained as an amplification degree multiplied by the reciprocal of the resistance value of the N 2 / N 1 and the resistor 3, variable Sink 2
The primary load current I '1 and calculates and outputs. Adder 21
Is a signal having a waveform similar to the primary winding current I 1 of the transformer 2 by adding the signal I 0 output from the exciting current calculator 20 and the signal I ′ 1 output from the primary load current calculator 8. The signal I'1 , p is output.

【0038】さらに図7に図6の励磁電流演算器20の
構成を示すブロック図を示す。積分器16は増幅器6の
出力信号E1 を入力とし、E1 を積分することにより変
流器2の1次巻線鎖交磁束数ψ1 を演算して出力する。
増幅器17は積分器16の出力信号ψ1 を入力とし、出
力信号ψ1 を変流器2の相互インダクタンスの逆数を増
幅度として増幅することによって変流器2の磁化電流を
演算し、磁化電流を変流器2の励磁電流I0 に近似した
信号として出力する。
FIG. 7 is a block diagram showing the configuration of the exciting current calculator 20 shown in FIG. The integrator 16 receives the output signal E 1 of the amplifier 6 as an input, calculates the primary magnetic flux linkage ψ 1 of the current transformer 2 by integrating E 1 , and outputs the result.
Amplifier 17 receives the output signal [psi 1 integrator 16 calculates the magnetizing current of the current transformers 2 by amplifying the output signal [psi 1 the inverse of the mutual inductance of the current transformer 2 as the amplification degree of magnetizing current Is output as a signal approximating the exciting current I 0 of the current transformer 2.

【0039】上述したように本実施例によると、変流器
の鉄損抵抗と2次巻線漏れインダクタンスと2次巻線抵
抗を零に近似することにより、装置の構成を簡略化し、
同時に変流器の1次電流が非正弦波電流の場合において
も少ない誤差で相似な波形の検出信号が得られる手段を
提供できる。
As described above, according to the present embodiment, the structure of the device is simplified by approximating the iron loss resistance, the secondary winding leakage inductance and the secondary winding resistance of the current transformer to zero.
At the same time, it is possible to provide a means for obtaining a detection signal having a similar waveform with a small error even when the primary current of the current transformer is a non-sinusoidal current.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
正弦波電流だけでなく歪み波電流などの正負非対称な波
形を持つ電流も正確に検出し、且つ経済性の優れた電流
検出装置を提供できる。
As described above, according to the present invention,
It is possible to provide a current detecting device that accurately detects not only a sine wave current but also a current having a positive / negative asymmetric waveform such as a distorted wave current and is excellent in economy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の電流検出装置の回路図。FIG. 1 is a circuit diagram of a current detection device according to a first embodiment of the present invention.

【図2】図1の励磁電流補償器のブロック線図。FIG. 2 is a block diagram of an exciting current compensator of FIG. 1;

【図3】図1の2次誘起電圧演算器のブロック線図。FIG. 3 is a block diagram of a secondary induced voltage calculator of FIG. 1;

【図4】図1の励磁電流演算器のブロック線図。FIG. 4 is a block diagram of an exciting current calculator of FIG. 1;

【図5】本発明の第2実施例の電流検出装置の回路図。FIG. 5 is a circuit diagram of a current detection device according to a second embodiment of the present invention.

【図6】図5の励磁電流補償器のブロック線図。FIG. 6 is a block diagram of the exciting current compensator of FIG. 5;

【図7】図5の励磁電流演算器のブロック線図。FIG. 7 is a block diagram of an exciting current calculator of FIG. 5;

【図8】従来の電流検出回路図。FIG. 8 is a diagram of a conventional current detection circuit.

【図9】図8のT形等価回路図。9 is a T-type equivalent circuit diagram of FIG.

【図10】図8と図9に示す回路のブロック線図。FIG. 10 is a block diagram of the circuit shown in FIGS. 8 and 9;

【図11】本発明の第1実施例の電流検出装置の励磁電
流補償器の原理を説明するためのブロック線図。
FIG. 11 is a block diagram for explaining the principle of the excitation current compensator of the current detection device according to the first embodiment of the present invention.

【図12】図11の電流検出装置の原理を説明するため
の回路図。
FIG. 12 is a circuit diagram for explaining the principle of the current detection device in FIG. 11;

【図13】本発明の第2実施例の電流検出装置の励磁電
流補償器の原理を説明するためのブロック線図。
FIG. 13 is a block diagram for explaining the principle of the exciting current compensator of the current detecting device according to the second embodiment of the present invention.

【図14】図13の電流検出装置の原理を説明するため
の回路図。
FIG. 14 is a circuit diagram for explaining the principle of the current detection device in FIG. 13;

【符号の説明】[Explanation of symbols]

1,23…電流検出装置、2…変流器、3…抵抗器、
4,22…励磁電流補償器、5…2次誘起電圧演算器、
6…増幅器、7,20…励磁電流演算器、8…1次負荷
電流演算器、9…加算器。
1, 23 ... current detection device, 2 ... current transformer, 3 ... resistor,
4, 22 ... exciting current compensator, 5 ... secondary induced voltage calculator,
6: Amplifier, 7, 20: Excitation current calculator, 8: Primary load current calculator, 9: Adder.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 変流器、及び前記変流器の2次巻線に接
続し2次電流を2次電圧に変換する抵抗器、及び該抵抗
器の端子電圧を入力として該抵抗器の抵抗値の逆数のゲ
インで増幅する第1の増幅器と、該第1の増幅器の出力
信号を前記変流器の2次巻線の漏れインダクタンスをゲ
インとして増幅する第2の増幅器と、該第2の増幅器の
出力信号を微分する微分器と、前記第1の増幅器の出力
信号を前記変流器の2次巻線抵抗をゲインとして増幅す
る第3の増幅器と、前記微分器の出力信号と前記第3の
増幅器の出力信号を加算する第1の加算器と、前記抵抗
器の端子電圧と前記第1の加算器の出力信号を加算する
第2の加算器より構成されて前記変流器の2次誘起電圧
を演算する2次誘起電圧演算器、及び前記2次誘起電圧
演算器の出力信号を前記変流器の1次巻線の巻数を2次
巻線の巻線で除算して得られるゲインで増幅する第4の
増幅器、及び前記抵抗器の端子電圧を前記抵抗器の抵抗
値の逆数と前記変流器の次巻線の巻数を次巻線の巻
数で除算した値を乗じて得られるゲインで増幅する第5
の増幅器から成る1次負荷電流演算器及び前記第4の
増幅器の出力信号を積分する積分器と、該積分器の出力
信号を前記変流器の相互インダクタンスの逆数をゲイン
として増幅する第6の増幅器と、前記第の増幅器の出
力信号を前記変流器の鉄損抵抗の逆数をゲインとして増
幅する第7の増幅器と、前記第6の増幅器の出力信号と
前記第7の増幅器の出力信号を加算する第3の加算器よ
り構成されて前記変流器の励磁電流を演算する第1の励
磁電流演算器、及び該第1の励磁電流演算器の出力信号
と前記1次負荷電流演算器の出力信号を加算する第4の
加算器とからなる第1の励磁電流補償器を備え、該第1
の励磁電流補償器の出力信号を前記変流器の1次巻線に
流れる電流の検出信号とし、前記変流器の1次巻線に流
れる電流と相似な波形を持つ検出信号を出力することを
特徴とする電流検出装置。
1. A current transformer, and the current transformer resistor for converting the secondary voltage secondary current is connected to the secondary windings, and the resistor of the resistor terminal voltage of the resistor as input A first amplifier for amplifying the output signal with a reciprocal gain of a value, a second amplifier for amplifying an output signal of the first amplifier as a gain with a leakage inductance of a secondary winding of the current transformer; A differentiator for differentiating the output signal of the amplifier, a third amplifier for amplifying the output signal of the first amplifier using a secondary winding resistance of the current transformer as a gain, an output signal of the differentiator, And a second adder for adding the terminal voltage of the resistor and the output signal of the first adder. A secondary induced voltage calculator for calculating a secondary induced voltage, and an output signal of the secondary induced voltage calculator. A fourth amplifier for amplifying a gain obtained by dividing the number of turns of the primary winding of the current transformer by the number of windings of the secondary winding, and a reciprocal of a resistance value of the resistor for a terminal voltage of the resistor fifth it is amplified with the gain obtained by multiplying the value obtained by dividing the number of turns of the secondary winding the turns of the primary winding of the current transformer and
A primary load current calculator composed of the amplifiers described above, an integrator integrating the output signal of the fourth amplifier, and a sixth amplifying the output signal of the integrator using a reciprocal of a mutual inductance of the current transformer as a gain. , An amplifier that amplifies the output signal of the fourth amplifier using the reciprocal of the iron loss resistance of the current transformer as a gain, an output signal of the sixth amplifier, and an output of the seventh amplifier A first exciting current calculator configured to calculate an exciting current of the current transformer, comprising a third adder for adding a signal; and an output signal of the first exciting current calculator and the primary load current calculation. A first exciting current compensator comprising a fourth adder for adding the output signal of the first exciter.
The output signal of the exciting current compensator of (1) as a detection signal of the current flowing in the primary winding of the current transformer, and outputting a detection signal having a waveform similar to the current flowing in the primary winding of the current transformer. A current detection device characterized by the above-mentioned.
【請求項2】 請求項1記載の電流検出装置において、
前記第1の励磁電流補償器の代わりに、前記変流器の鉄
損抵抗と2次巻線の漏れインダクタンスと2次巻線抵抗
を近似的に零に置き換えることで前記第1の増幅器と第
2の増幅器と第3の増幅器と微分器と第1の加算器と第
2の加算器と第7の増幅器と第3の加算器を省いた第2
の励磁電流補償器を備え、前記第1の励磁電流補償器内
部の増幅器の構成を簡略化したことを特徴とする電流検
出装置。
2. The current detection device according to claim 1, wherein
Instead of the first exciting current compensator, the iron loss resistance of the current transformer, the leakage inductance of the secondary winding, and the secondary winding resistance are approximately replaced with zero, so that the first amplifier and the second amplifier are replaced. The second amplifier, the second amplifier, the third amplifier, the differentiator, the first adder, the second adder, the seventh amplifier, and the third adder.
A current detecting device comprising the exciting current compensator of (1), wherein the configuration of the amplifier inside the first exciting current compensator is simplified.
JP7109500A 1995-05-08 1995-05-08 Current detector Expired - Fee Related JP2969192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7109500A JP2969192B2 (en) 1995-05-08 1995-05-08 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7109500A JP2969192B2 (en) 1995-05-08 1995-05-08 Current detector

Publications (2)

Publication Number Publication Date
JPH08304472A JPH08304472A (en) 1996-11-22
JP2969192B2 true JP2969192B2 (en) 1999-11-02

Family

ID=14511843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7109500A Expired - Fee Related JP2969192B2 (en) 1995-05-08 1995-05-08 Current detector

Country Status (1)

Country Link
JP (1) JP2969192B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020341A (en) * 2014-06-20 2014-09-03 哈尔滨工业大学 Novel fundamental wave positive sequence active current detection method

Also Published As

Publication number Publication date
JPH08304472A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
US6984979B1 (en) Measurement and control of magnetomotive force in current transformers and other magnetic bodies
US8199534B2 (en) Load current detection in electrical power converters
WO2001006266A1 (en) Ac current detection device
US7898243B2 (en) Device for determining the strength of the magnetic field of an electromagnet
US6064191A (en) Current transducer and current-monitoring method
JP2969192B2 (en) Current detector
JPH06174765A (en) Power multiplier circuit
JP3916225B2 (en) Current detector
JP3518260B2 (en) Transformer, DC bias detection element of transformer, and DC bias evaluation device
US7521920B2 (en) Measuring device for measuring the output current of a clocked half-bridge circuit
JP2829237B2 (en) Inverter device
JP3516644B2 (en) Magnetic sensor device and current sensor device
JP2501686B2 (en) Balanced amplifier
JP3161133B2 (en) Force detection device
JP3583699B2 (en) Sensor device
JP3412417B2 (en) Power amplifier
JP2000060132A (en) Power converter
JPS5965771A (en) Current detecting circuit
JP2006112833A (en) Inductance measuring instrument
JP3502516B2 (en) Method and apparatus for detecting primary voltage of transformer
TW396674B (en) Method for converter compensation
US11394190B2 (en) Multi-frequency ground fault circuit interrupter apparatuses, systems, and method
JP2534035Y2 (en) Inverter demagnetization prevention circuit for inverter
KR940008903B1 (en) Current transformer
KR20240008031A (en) Apparatus for current measuring

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees