JP2968207B2 - Departure monitoring method for heavy equipment for remote construction - Google Patents

Departure monitoring method for heavy equipment for remote construction

Info

Publication number
JP2968207B2
JP2968207B2 JP16031196A JP16031196A JP2968207B2 JP 2968207 B2 JP2968207 B2 JP 2968207B2 JP 16031196 A JP16031196 A JP 16031196A JP 16031196 A JP16031196 A JP 16031196A JP 2968207 B2 JP2968207 B2 JP 2968207B2
Authority
JP
Japan
Prior art keywords
dimensional coordinates
image
heavy equipment
construction
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16031196A
Other languages
Japanese (ja)
Other versions
JPH1011134A (en
Inventor
素久 廣瀬
俊文 佐藤
良和 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP16031196A priority Critical patent/JP2968207B2/en
Publication of JPH1011134A publication Critical patent/JPH1011134A/en
Application granted granted Critical
Publication of JP2968207B2 publication Critical patent/JP2968207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は遠隔施工用重機の逸脱監
視方法に関し、とくに遠隔施工をする施工域内の遠隔施
工用重機が該施工域内の安全作業領域から逸脱するのを
ステレオ画像対によって監視する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring deviation of a heavy construction equipment for remote construction, and more particularly to monitoring of a heavy construction equipment for remote construction in a construction area for remote construction deviating from a safe work area in the construction area by a stereo image pair. On how to do it.

【0002】[0002]

【従来の技術】人の立入り禁止区域や人に危険が伴う区
域でダム建設工事等を行なう場合に、施工域内を無人化
し、振動ローラ、ブルドーザ、ダンプトラック等の施工
用作業機械(以下、重機という。)を半自動とし又は遠
隔操作可能として遠隔施工をすることがある。図5はそ
のような遠隔施工の一例を示す。図5では、施工域1内
に複数台の遠隔操作可能な重機3aを配置し、各重機3aに
撮像機16と画像送信機17を取付け、各撮像機16の出力画
像を受信局4である遠隔操作室40の画像受信機13へ伝送
し、遠隔操作室40の操作員が伝送画像を見ながら各重機
3aを遠隔操作している。また各重機3aに衛星航行システ
ム(以下、GPSという。)による位置測定器9を取付
け、その位置信号に基づいて施工域1内の各重機3aの三
次元座標を遠隔操作室40で把握している。図中の符号6
は施工域1の監視及び/又は測量用の撮像機を示し、符
号7はその出力画像を受信局4へ伝送する画像送信機、
符号5は撮影用移動体を示す。また符号41はデータ伝送
用タワー、符号43は測量用ヘリコプターを示す。
2. Description of the Related Art When constructing a dam in an area where people are restricted or an area where there is danger to humans, the construction area is made unmanned and construction work machines (hereinafter referred to as heavy machinery) such as vibrating rollers, bulldozers, and dump trucks. ) May be made semi-automatic or remotely operable for remote construction. FIG. 5 shows an example of such remote construction. In FIG. 5, a plurality of remotely controllable heavy machines 3a are arranged in the construction area 1, an image pickup device 16 and an image transmitter 17 are attached to each heavy device 3a, and the output image of each image pickup device 16 is the receiving station 4. The image is transmitted to the image receiver 13 in the remote control room 40, and the operator in the remote control room 40 views each transmission while viewing the transmission image.
Remotely controlling 3a. Further, a position measuring device 9 using a satellite navigation system (hereinafter referred to as GPS) is attached to each heavy equipment 3a, and three-dimensional coordinates of each heavy equipment 3a in the construction area 1 are grasped in the remote control room 40 based on the position signals. I have. Reference numeral 6 in the figure
Denotes an imager for monitoring and / or surveying the construction area 1, an image transmitter 7 for transmitting an output image thereof to the receiving station 4,
Reference numeral 5 denotes a photographing moving body. Reference numeral 41 denotes a data transmission tower, and reference numeral 43 denotes a survey helicopter.

【0003】図5に示すような遠隔施工では、半自動重
機の暴走や遠隔操作ミスに起因する重機の作業領域から
の逸脱や盛土からの転落等(以下、纏めて安全作業領域
からの逸脱という。)の事故の発生を避けるため、重機
3aを監視する必要がある。施工域を無人化する遠隔施工
では、安全作業領域から逸脱した重機の復旧が極めて難
しいからである。従来、遠隔施工における重機の安全作
業領域からの逸脱を監視する一方法として、施工域1内
に複数の監視用撮像機6を設け、各撮像器6の監視画像
からステレオ画像計測法によって重機3aの三次元座標を
求め、予めCAD等により作成した施工域1の三次元設
計図と重機3aの三次元座標とを比較する方法が提案され
ている。
[0005] In remote construction as shown in FIG. 5, deviation of a heavy machine from a work area due to runaway of a semi-automatic heavy machine or a mistake in remote operation or fall from an embankment (hereinafter, collectively referred to as a deviation from a safe work area). ) Heavy machinery to avoid accidents
3a needs to be monitored. This is because it is extremely difficult to recover heavy equipment that deviates from the safe work area in remote construction where the construction area is unmanned. Conventionally, as one method of monitoring the deviation of a heavy machine from a safe work area in remote construction, a plurality of monitoring imagers 6 are provided in the construction area 1 and the heavy machine 3a is measured from a monitoring image of each imager 6 by a stereo image measurement method. A method has been proposed in which the three-dimensional coordinates of the heavy equipment 3a are compared with the three-dimensional design drawings of the construction area 1 created in advance by CAD or the like.

【0004】ステレオ画像計測法とは、図7に示すよう
に、異なる位置の撮像機6a、6bで異方向から撮影した画
像対上の対象2の像の二次元座標から対象2の三次元位
置を求める計測法である。図7及び式(1)〜(11)を参照
するに、対象2上の点Pの地球座標系における三次元座
標を(X、Y、Z)、撮像機6aの画像座標系における点Pの像
Paの二次元座標を(Xa、Ya)、撮像機6bの画像座標系にお
ける点Pの像Pbの二次元座標を(Xb、Yb)とすると、点Pか
ら像Pa及び像Pbへの変換式は式(1)(2)で表わすことがで
きる。ここで行列A、Bは撮像機の位置・姿勢・レンズ
の焦点距離等に応じて定まる変換パラメータを示し、
(X、Y、Z、1)T、(Xa、Ya、1)T及び(Xb、Yb、1)Tは同次
座標系表現による点P、像Pa及び像Pbの座標を表す(肩
書のTは転置行列を示す)。各撮像機6a、6bの画像から
座標(Xa、Ya)及び(Xb、Yb)を求めて式(1)(2)に代入し、
式(3)(4)で表されるHa及びHbを用いて式(1)(2)を展開・
整理すると式(5)〜(8)が得られる。式(9)で定義する行
列F、Q、Vを用いて式(5)〜(8)を纏めるとF=QV
(式(10))となり、逆行列Q-1の存在を条件として式(1
1)により座標(X、Y、Z)が算出できる。要するに変換パ
ラメータA、Bが定まれば、式(11)により画像対上の対
象2の二次元座標から対象2の三次元位置が算出でき
る。なお撮像機の台数に応じて行列F、Qの行数が増え
る。
As shown in FIG. 7, the stereo image measurement method is based on the two-dimensional coordinates of an image of the object 2 on a pair of images photographed from different directions by the imaging devices 6a and 6b at different positions. Is a measurement method for obtaining Referring to FIG. 7 and equations (1) to (11), the three-dimensional coordinates of the point P on the target 2 in the earth coordinate system are (X, Y, Z), and the point P in the image coordinate system of the imaging device 6a is image
Assuming that the two-dimensional coordinates of Pa are (Xa, Ya) and the two-dimensional coordinates of the image Pb of the point P in the image coordinate system of the imaging device 6b are (Xb, Yb), the conversion formula from the point P to the image Pa and the image Pb Can be represented by equations (1) and (2). Here, the matrices A and B indicate conversion parameters determined according to the position / posture of the imaging device, the focal length of the lens, and the like.
(X, Y, Z, 1) T , (Xa, Ya, 1) T and (Xb, Yb, 1) T represent the coordinates of point P, image Pa, and image Pb in a homogeneous coordinate system representation. T indicates a transposed matrix). The coordinates (Xa, Ya) and (Xb, Yb) are obtained from the images of the respective imaging devices 6a and 6b, and are substituted into the equations (1) and (2).
Formulas (1) and (2) are expanded using Ha and Hb expressed by formulas (3) and (4).
Equations (5) to (8) are obtained by rearranging. Formulas (5) to (8) are summarized using matrices F, Q, and V defined in formula (9), and F = QV
(Equation (10)), and assuming that the inverse matrix Q −1 exists, the equation (1)
The coordinates (X, Y, Z) can be calculated by 1). In short, if the conversion parameters A and B are determined, the three-dimensional position of the object 2 can be calculated from the two-dimensional coordinates of the object 2 on the image pair by using equation (11). Note that the number of rows of the matrices F and Q increases according to the number of imaging devices.

【0005】[0005]

【数1】 (Equation 1)

【0006】本発明者らは、無人施工域において上記変
換パラメータA、Bを正確に同定する方法を開発し、特
開平8-101035号公報に離隔式測量方法として開示した。
図6及び式(12)〜(18)を参照して同公報の発明を簡単に
説明するに、施工域1に臨ませて画像送信機7付き撮像
機6a、6bを設け、GPS位置測定器9と無線送信機10が
取付けられ遠隔操作可能な移動体3bを撮像機6a、6bの視
野内の基準点P1へ移動させ、位置測定器9で測定した基
準点P1の三次元座標(X1、Y1、Z1)を無線送信機10から送
出する。受信局4の無線受信機14で基準点P1の三次元座
標(X1、Y1、Z1)を受信し、更に受信局4の画像受信機13
で受信した撮像機6a、6bの出力画像上における移動体3b
の像の二次元座標Pa1=(Xa1、Ya1)及びPb1=(Xb1、Yb1)
を検出し、三次元座標P1と二次元座標Pa1とを式(5)(6)
へ代入して式(12)(13)を得る。少なくとも6の異なる基
準点P1〜P6において式(12)(13)に相当する式を求め、式
(16)で定義される行列X、Y、Rを用い且つA34=1と置
いて式(17)の変形を行なえば、式(18)のように行列Y即
ち行列Aが同定できる。但し基準点P1〜P6が全て同一平
面上に存在してはならない。行列Bについても、座標P1
と座標Pb1とを式(7)(8)に代入して式(14)(15)を求め、
各基準点P2〜P6において式(14)(15)に相当する式を求め
ることにより、行列Aの場合と同様に同定できる。
The present inventors have developed a method for accurately identifying the above-mentioned conversion parameters A and B in an unmanned construction area, and disclosed it in Japanese Patent Application Laid-Open No. Hei 8-101035 as a remote type surveying method.
Referring to FIG. 6 and equations (12) to (18), the invention disclosed in the publication will be briefly described. Image sensors 6a and 6b with an image transmitter 7 are provided facing the construction area 1, and a GPS position measuring device is provided. 9 and the radio transmitter 10 is mounted remotely operable mobile 3b the imager 6a, is moved to the reference point P 1 in the field of view of 6b, the three-dimensional coordinates of the reference points P 1 measured by the position measuring device 9 ( X 1 , Y 1 , and Z 1 ) are transmitted from the wireless transmitter 10. The radio receiver 14 of the receiving station 4 receives the three-dimensional coordinates (X 1 , Y 1 , Z 1 ) of the reference point P 1 , and further receives the image receiver 13 of the receiving station 4.
The moving body 3b on the output images of the imaging devices 6a and 6b received at
Two-dimensional coordinates P a1 = (X a1 , Y a1 ) and P b1 = (X b1 , Y b1 )
Detecting the three-dimensional coordinates P 1 and the two-dimensional coordinates P a1 and the formula (5) (6)
Into equations (12) and (13). Obtains a formula corresponding to Formula (12) (13) at the reference point P 1 to P 6 having different at least 6, the formula
By using the matrices X, Y, and R defined in (16) and setting A 34 = 1, the matrix Y, that is, the matrix A can be identified as in equation (18). However, the reference points P 1 to P 6 must not all be on the same plane. For matrix B, coordinates P 1
And coordinates P b1 are substituted into equations (7) and (8) to obtain equations (14) and (15),
By obtaining a formula corresponding to Formula (14) (15) at each reference point P 2 to P 6, it can be identified as in the case of the matrix A.

【0007】[0007]

【数2】 (Equation 2)

【0008】[0008]

【発明が解決しようとする課題】上記ステレオ画像計測
法によれば施工域1内の重機3の三次元座標の把握が可
能であるものの、ダム建設工事等では施工域1の地形が
工事の進捗に応じて変化するので、予め作成した三次元
設計図と重機3の三次元位置との比較のみによって重機
3を監視するのは困難である。即ち重機3の安全作業領
域からの逸脱を監視するためには、工事の進捗に応じて
変化する施工域1内の安全作業領域を随時把握し、その
安全作業領域と重機3の三次元座標とを比較することが
必要である。また遠隔施工では安全作業領域も監視画像
等に基づいて把握しなければならないが、重機3の三次
元座標と比較するためには、二次元である監視画像から
安全作業領域の三次元座標を求める必要がある。
According to the above-mentioned stereo image measuring method, the three-dimensional coordinates of the heavy equipment 3 in the construction area 1 can be grasped. Therefore, it is difficult to monitor the heavy equipment 3 only by comparing the three-dimensional design drawing created in advance with the three-dimensional position of the heavy equipment 3. That is, in order to monitor the deviation of the heavy equipment 3 from the safe work area, the safety work area in the construction area 1 that changes according to the progress of the construction is grasped at any time, and the safe work area and the three-dimensional coordinates of the heavy equipment 3 are determined. It is necessary to compare In the remote construction, the safe work area must also be grasped based on the monitoring image or the like. However, in order to compare with the three-dimensional coordinates of the heavy equipment 3, the three-dimensional coordinates of the safe work area are obtained from the two-dimensional monitoring image. There is a need.

【0009】そこで本発明の目的は、ステレオ画像によ
り遠隔施工用重機の安全作業領域からの逸脱を監視する
方法を提供するにある。
It is an object of the present invention to provide a method for monitoring deviation of a heavy construction equipment for remote construction from a safe work area by using stereo images.

【0010】[0010]

【課題を解決するための手段】図1及び図2を参照する
に、本発明の遠隔施工用重機の逸脱監視方法は、遠隔施
工をする施工域1内で稼働させる施工用重機3が該施工
域1内の安全作業領域1aから逸脱するのを監視する方法
において、ステレオ画像対Ia、Ibを撮影する画像送信機
7a、7b付き撮像機対6a、6bを施工域1に臨ませ;受信局
4に画像送信機7a、7bから受信する画像受信機13a、13b
と画像対Ia、Ibを表示するモニタ15a、15bとを設け;施
工域1内の三次元座標が既知の複数の基準点に対する画
像対Ia、Ib上の二次元座標を求め且つ各基準点の三次元
座標と画像対Ia、Ib上の二次元座標との比較に基づき画
像対Ia、Ib上の任意点の二次元座標から施工域1内の三
次元座標を算出するステレオ画像計測法の変換パラメタ
26を定め;画像対Ia、Ib上に安全作業領域1aの境界に対
応するリミットライン27a、27bをペン入力し(図3参
照)且つ画像対Ia、Ib上のリミットライン27a、27bの二
次元座標と変換パラメタ26とからリミットライン27a、2
7bの三次元座標28を算出して記憶し;画像対Ia、Ib上に
おける重機3の像の二次元座標の検出、重機3の二次元
座標と変換パラメタ26とによる重機3の三次元座標の算
出、リミットライン27の三次元座標28と重機3の三次元
座標との間の三次元距離の算出、及び該三次元距離と三
次元距離の所定下限値との比較により重機3の安全作業
領域1aからの逸脱を監視してなるものである。
Referring to FIGS. 1 and 2, a method for monitoring deviation of a remote construction heavy machine according to the present invention comprises a construction heavy machine 3 operated in a construction area 1 for remote construction. An image transmitter for capturing a stereo image pair Ia, Ib in a method for monitoring departure from a safe working area 1a in an area 1
The imager pair 6a, 6b with 7a, 7b is exposed to the construction area 1; the image receivers 13a, 13b received by the receiving station 4 from the image transmitters 7a, 7b.
And monitors 15a and 15b for displaying the image pairs Ia and Ib; two-dimensional coordinates on the image pairs Ia and Ib with respect to a plurality of reference points whose three-dimensional coordinates in the construction area 1 are known; Conversion of stereo image measurement method for calculating three-dimensional coordinates in construction area 1 from two-dimensional coordinates of arbitrary points on image pair Ia, Ib based on comparison of three-dimensional coordinates and two-dimensional coordinates on image pair Ia, Ib Parameter
Define 26; pen-input limit lines 27a, 27b corresponding to the boundaries of the safe work area 1a on the image pair Ia, Ib (see FIG. 3) and two-dimensional limit lines 27a, 27b on the image pair Ia, Ib. From the coordinates and the conversion parameters 26, the limit lines 27a, 2
Calculate and store the three-dimensional coordinates 28 of 7b; detect the two-dimensional coordinates of the image of the heavy equipment 3 on the image pair Ia, Ib, and calculate the three-dimensional coordinates of the heavy equipment 3 based on the two-dimensional coordinates of the heavy equipment 3 and the conversion parameter 26. Calculation, calculation of the three-dimensional distance between the three-dimensional coordinates 28 of the limit line 27 and the three-dimensional coordinates of the heavy equipment 3, and comparison of the three-dimensional distance with the predetermined lower limit of the three-dimensional distance allow the safe work area of the heavy equipment 3. It monitors the deviation from 1a.

【0011】[0011]

【発明の実施の形態】図1は、施工域1内に構築した盛
土の頂面で稼働させる遠隔施工用重機3の該盛土頂面か
らの転落を本発明方法で監視する実施例を示す。即ち同
図では盛土頂面を重機3の安全作業領域1aとする。施工
域1に臨ませて撮像機対6a、6bを設け、撮像機対6a、6b
の画像対Ia、Ibを画像送信機7a、7bから受信局4の画像
受信機13a、13bへ伝送する。撮像機6の一例はCCDカ
メラであり、画像送信機7及び画像受信機13の一例は50
GHz帯の簡易画像無線機である。受信局4に画像処理装
置20を設け、画像受信機13a、13bで受信した画像対Ia、
Ibを画像処理装置20に入力してフレームメモリ21a、21b
に記憶し、フレームメモリ21a、21bの内容を画像処理装
置20のモニタ15a、15bに表示する。なお図1では撮像機
対6a、6bの光軸を互いに直交させているが、各撮像機6
の光軸は互いに異なる向きであれば足り直交向きに限定
されない。また図1は二台の撮像機6を用いる場合を示
すが、三台以上の撮像機6を用いてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment in which a heavy equipment 3 for remote construction operated on the top of an embankment constructed in a construction area 1 monitors the fall from the top of the embankment by the method of the present invention. That is, in the same figure, the top surface of the embankment is the safe work area 1a of the heavy equipment 3. An imager pair 6a, 6b is provided facing the construction area 1, and an imager pair 6a, 6b
Are transmitted from the image transmitters 7a and 7b to the image receivers 13a and 13b of the receiving station 4. One example of the image pickup device 6 is a CCD camera, and one example of the image transmitter 7 and the image receiver 13 is a CCD camera.
It is a simple image radio in the GHz band. An image processing device 20 is provided in the receiving station 4, and the image pair Ia, received by the image receivers 13 a and 13 b,
Ib is input to the image processing device 20, and the frame memories 21a, 21b
And the contents of the frame memories 21a and 21b are displayed on the monitors 15a and 15b of the image processing device 20. Although the optical axes of the imaging device pairs 6a and 6b are orthogonal to each other in FIG.
The optical axes are not limited to orthogonal directions as long as the directions are different from each other. Although FIG. 1 shows a case where two imagers 6 are used, three or more imagers 6 may be used.

【0012】図2は本発明の監視方法の流れ図の一例を
示す。同図を参照するに、先ずステップ201でステレオ
画像計測法の変換パラメタ26を定める。変換パラメータ
には上記式(1)(2)の行列A、B等が含まれる。例えば施
工域1内に三次元座標が既知の6点以上の基準点を定
め、各基準点に対する画像対Ia、Ib上の二次元座標を求
め、各基準点の三次元座標と二次元座標と上記式(16)〜
(18)とから行列A及びBを定めることができる。図1で
は、GPS位置測定器9と無線送信機10とを取付けた重
機3を撮像機対6a、6bの視野内の基準点に移動させ、位
置測定器9の測定信号を無線送信機10から送信し、受信
局4の無線受信機14で受信した基準点の三次元座標を画
像処理装置20の演算手段24に入力している。画像処理装
置20の座標検出手段22によりフレームメモリ21内の画像
対Ia、Ibから重機3の像の二次元座標を検出し、検出し
た二次元座標を演算手段24に入力する。演算手段24にお
いて、無線受信機14から入力した三次元座標と座標検出
手段22から入力した二次元座標とに基づき変換パラメタ
26を定める。座標検出手段22での重機3の像検出の容易
化のため、重機3に所定色の視標11(図6参照)を取付
けてもよい。
FIG. 2 shows an example of a flow chart of the monitoring method of the present invention. Referring to the figure, first, in step 201, a conversion parameter 26 of the stereo image measurement method is determined. The conversion parameters include the matrices A, B, and the like in the above equations (1) and (2). For example, in the construction area 1, three or more reference points whose three-dimensional coordinates are known are determined, the two-dimensional coordinates on the image pair Ia, Ib for each reference point are determined, and the three-dimensional coordinates and two-dimensional coordinates of each reference point are determined. Formula (16) ~
From (18), the matrices A and B can be determined. In FIG. 1, the heavy equipment 3 on which the GPS position measuring device 9 and the wireless transmitter 10 are mounted is moved to a reference point in the field of view of the imager pair 6a, 6b, and the measurement signal of the position measuring device 9 is transmitted from the wireless transmitter 10. The three-dimensional coordinates of the reference point transmitted and received by the wireless receiver 14 of the receiving station 4 are input to the calculating means 24 of the image processing device 20. The two-dimensional coordinates of the image of the heavy equipment 3 are detected from the image pair Ia and Ib in the frame memory 21 by the coordinate detecting means 22 of the image processing device 20, and the detected two-dimensional coordinates are input to the calculating means 24. The calculating means 24 converts the conversion parameters based on the three-dimensional coordinates inputted from the wireless receiver 14 and the two-dimensional coordinates inputted from the coordinate detecting means 22.
Define 26. In order to facilitate the detection of the image of the heavy equipment 3 by the coordinate detecting means 22, an optotype 11 (see FIG. 6) of a predetermined color may be attached to the heavy equipment 3.

【0013】次にステップ202でステレオ画像対Ia、Ib
上にリミットライン27を入力する。ここでリミットライ
ンとは、緊急停止信号等により重機3の安全作業領域1a
からの逸脱が回避できる限界を意味し、安全作業領域1a
の境界より内側に所定距離だけ隔てて想定されるライン
である。図3(A)及び(B)はモニタ15a、15bに表示した
画像対Ia、Ib上へのリミットラインの入力方法の一例を
示し、画像対Ia、Ib上の境界より所定距離Lだけ内側に
ライトペン16a、16bによりリミットライン27a、27bを入
力している。所定距離Lは、緊急停止時の重機3のブレ
ーキ距離及び施工域の距離に対するモニタ15上の長さの
縮尺等に基づき定まる距離である。ライトペン16a、16b
による入力データはフレームメモリ21a、21b経由で座標
検出手段22に入力され、リミットライン27上の各点の二
次元座標が検出される。例えばライトペン16による入力
データを白色ラインとしてモニタ上に表示し、その白色
ラインの中心軸線をリミットラインの二次元座標として
検出することができる。
Next, in step 202, the stereo image pair Ia, Ib
Enter limit line 27 above. Here, the limit line is a safe work area 1a of the heavy equipment 3 by an emergency stop signal or the like.
Means the limit that deviation from the safe work area can be avoided.
Are assumed to be separated by a predetermined distance from the inside of the boundary. FIGS. 3A and 3B show an example of a method of inputting a limit line on the pair of images Ia and Ib displayed on the monitors 15a and 15b, and are inward by a predetermined distance L from a boundary on the pair of images Ia and Ib. Limit lines 27a and 27b are input by light pens 16a and 16b. The predetermined distance L is a distance determined based on a scale of the length on the monitor 15 with respect to the brake distance of the heavy equipment 3 and the distance of the construction area at the time of an emergency stop. Light pens 16a, 16b
Is input to the coordinate detecting means 22 via the frame memories 21a and 21b, and the two-dimensional coordinates of each point on the limit line 27 are detected. For example, input data from the light pen 16 can be displayed on a monitor as a white line, and the center axis of the white line can be detected as the two-dimensional coordinates of the limit line.

【0014】ステップ203ではリミットラインの二次元
座標27から三次元座標28を算出する。例えばステップ20
2で求めた二次元座標27と変換パラメタ26と式(11)とに
基づき施工域1内の地表面上の直線又は線分としてリミ
ットラインの三次元座標28を求めることができる。ま
た、その直線又は線分を含む鉛直面の三次元座標として
リミットラインを求めてもよい。リミットラインの三次
元座標28の算出は演算手段24で行われ、算出結果は演算
手段24に記憶される。
In step 203, three-dimensional coordinates 28 are calculated from the two-dimensional coordinates 27 of the limit line. For example, step 20
The three-dimensional coordinates 28 of the limit line can be obtained as a straight line or a line segment on the ground surface in the construction area 1 based on the two-dimensional coordinates 27, the conversion parameters 26, and the equation (11) obtained in Step 2. Alternatively, the limit line may be obtained as three-dimensional coordinates of a vertical plane including the straight line or the line segment. Calculation of the three-dimensional coordinates 28 of the limit line is performed by the calculating means 24, and the calculation result is stored in the calculating means 24.

【0015】リミットラインの三次元座標28の算出後、
座標検出手段22により画像対Ia、Ib上における重機3の
像の二次元座標を検出し(ステップ204)、演算手段24
により重機3の三次元座標及びリミットライン27と重機
3との間の三次元距離を算出する(ステップ205〜20
6)。ステップ207において重機3がリミットライン27の
内側にあるかどうかを判断し、内側にないと判断した場
合は重機3を緊急停止させ(ステップ208)、内側にあ
ると判断した場合は更に前記三次元距離とその三次元距
離の所定下限値とを比較する(ステップ209)。所定下
限値の一例は重機3の最高速度VLimに対するブレーキ距
離bLimである(図4参照)。図2の流れ図では、前記三
次元距離が所定下限値以下である場合には重機3に対す
る速度リミットを設定し(ステップ210)、所定下限値
より大きい場合には設定された速度リミットを解除して
いる(ステップ211)。ここで速度リミットとは遠隔操
作員の操作により許容される重機3の上限速度を意味す
る。速度リミットの解除時は重機3の速度を最高速度V
Limまで上げることが許されるが、速度リミットの設定
時は重機3の速度を設定上限速度以上とすることが禁止
される。
After calculating the three-dimensional coordinates 28 of the limit line,
The two-dimensional coordinates of the image of the heavy equipment 3 on the image pair Ia, Ib are detected by the coordinate detecting means 22 (step 204), and the calculating means 24
To calculate the three-dimensional coordinates of the heavy equipment 3 and the three-dimensional distance between the limit line 27 and the heavy equipment 3 (steps 205 to 20).
6). In step 207, it is determined whether the heavy equipment 3 is inside the limit line 27. If not, the heavy equipment 3 is stopped urgently (step 208). The distance is compared with a predetermined lower limit of the three-dimensional distance (step 209). An example of the predetermined lower limit is a brake distance b Lim with respect to the maximum speed V Lim of the heavy equipment 3 (see FIG. 4). In the flowchart of FIG. 2, when the three-dimensional distance is equal to or less than a predetermined lower limit, a speed limit for the heavy equipment 3 is set (step 210), and when the three-dimensional distance is larger than the predetermined lower limit, the set speed limit is released. (Step 211). Here, the speed limit means an upper limit speed of the heavy equipment 3 allowed by the operation of the remote operator. When releasing the speed limit, set the speed of heavy equipment 3 to the maximum speed V
It is allowed to increase to Lim, but when setting the speed limit, the speed of the heavy equipment 3 is prohibited to be equal to or higher than the set upper limit speed.

【0016】ステップ202〜211の繰返しにより、施工域
内の安全作業領域からの重機3の逸脱を防止することが
できる。初回を除く各サイクルにおいて、前回サイクル
と同一のリミットラインに基づく監視を行う場合はステ
ップ202〜203を省略することができる。またステップ20
2〜203でリミットラインを設定し直すことにより、新た
なリミットラインに基づく監視を継続することもでき
る。即ち工事の進捗に応じて施工域内に安全作業領域を
設定し直すことができる。
By repeating steps 202 to 211, it is possible to prevent the heavy machine 3 from deviating from the safe work area in the construction area. When monitoring based on the same limit line as the previous cycle is performed in each cycle except the first cycle, steps 202 to 203 can be omitted. Step 20
By resetting the limit line in 2 to 203, monitoring based on the new limit line can be continued. That is, the safe work area can be set again in the construction area according to the progress of the construction.

【0017】こうして本発明の目的である「ステレオ画
像により遠隔施工用重機の安全作業領域からの逸脱を監
視する方法」の提供が達成できる。
Thus, the object of the present invention, that is, the method of monitoring the deviation of the heavy construction equipment for remote construction from the safe working area by the stereo image can be provided.

【0018】[0018]

【実施例】図1の実施例では、画像処理手段20で求めた
重機3の三次元座標及びリミットライン27と重機3との
間の三次元距離をコンピュータ30へ出力し、図2のステ
ップ207〜211をコンピュータ30で処理している。図1の
コンピュータ30には重機3の速度V0とブレーキ距離bと
の関係式31が記憶されている。関係式31は予め測定し記
憶させたものである。図4は関係式31の一例を示す。図
1のコンピュータ30は、画像処理手段20から入力した重
機3の三次元座標の経時的変化から重機3の実速度Vt
算出し、関係式31と実速度Vtとから対応するブレーキ距
離btを求め、求めたブレーキ距離btを図2のステップ20
9の所定下限値として重機3の逸脱を監視している。即
ち重機3はリミットラインに接近するに従って上限速度
が制限されるので、重機3の安全作業領域からの逸脱が
確実に防止できる。
In the embodiment shown in FIG. 1, the three-dimensional coordinates of the heavy equipment 3 and the three-dimensional distance between the limit line 27 and the heavy equipment 3 obtained by the image processing means 20 are output to the computer 30. To 211 are processed by the computer 30. The relational expression 31 between the speed V 0 of the heavy equipment 3 and the brake distance b is stored in the computer 30 of FIG. The relational expression 31 is measured and stored in advance. FIG. 4 shows an example of the relational expression 31. Computer 30 of FIG. 1, the brake distance calculates the actual velocity V t of heavy machinery 3 from temporal changes in the three-dimensional coordinates of the heavy equipment 3 inputted from the image processing unit 20, corresponding to the relationship equation 31 and the actual velocity V t b t is obtained, and the obtained brake distance b t is calculated in step 20 in FIG.
The deviation of the heavy equipment 3 is monitored as the predetermined lower limit of 9. That is, since the upper limit speed of the heavy equipment 3 is limited as it approaches the limit line, it is possible to reliably prevent the heavy equipment 3 from deviating from the safe work area.

【0019】以上重機3が1台の場合の監視方法につい
て説明したが、本発明によれば施工域1内に配置した複
数台の重機3を同時に監視することも可能である。この
場合は各重機にそれぞれ異なる所定色の視標を取付け、
画像処理装置20の座標検出手段22において各重機を識別
してもよい。また各重機3毎に異なるリミットラインを
設定し、重機3毎に異なる安全作業領域からの逸脱を監
視することができる。
The monitoring method when one heavy machine 3 is used has been described above. However, according to the present invention, a plurality of heavy machines 3 arranged in the construction area 1 can be monitored simultaneously. In this case, a target of different color is attached to each heavy equipment,
Each heavy machine may be identified by the coordinate detecting means 22 of the image processing device 20. Further, a different limit line can be set for each heavy equipment 3, and a deviation from a safe work area different for each heavy equipment 3 can be monitored.

【0020】[0020]

【発明の効果】以上説明したように、本発明の遠隔施工
用重機の逸脱監視方法は、施工域のステレオ画像対上に
設定したリミットラインの三次元座標と該ステレオ画像
対上の重機の像の二次元座標から求めた三次元座標との
三次元距離に基づき重機の安全作業領域からの逸脱を監
視するので、次の顕著な効果を奏する。
As described above, the deviation monitoring method of the heavy equipment for remote construction according to the present invention provides the three-dimensional coordinates of the limit line set on the stereo image pair of the construction area and the image of the heavy equipment on the stereo image pair. Since the deviation of the heavy equipment from the safe working area is monitored based on the three-dimensional distance from the three-dimensional coordinates obtained from the two-dimensional coordinates, the following remarkable effects are obtained.

【0021】(イ)進捗に応じて変化する施工域内の安全
作業領域からの遠隔施工用重機の逸脱を確実に監視する
ことができる。 (ロ)予め重機の速度とブレーキ距離との関係式を求め、
重機とリミットラインとの三次元距離に応じて重機の許
容上限速度を設定することができる。 (ハ)施工域内に配置した複数台の重機毎に異なるリミッ
トラインを設定し、重機毎に異なる安全作業領域からの
逸脱を監視することができる。
(A) The deviation of the heavy equipment for remote construction from the safe work area in the construction area which changes according to the progress can be surely monitored. (B) Obtain the relational expression between the speed of heavy equipment and the braking distance in advance,
The allowable upper limit speed of the heavy equipment can be set according to the three-dimensional distance between the heavy equipment and the limit line. (C) Different limit lines can be set for each of a plurality of heavy machines arranged in the construction area, and deviations from the safe work area different for each heavy machine can be monitored.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、本発明の流れ図の一例である。FIG. 2 is an example of a flowchart of the present invention.

【図3】は、リミットラインの入力方法の説明図であ
る。
FIG. 3 is an explanatory diagram of a limit line input method.

【図4】は、重機の速度とブレーキ距離との関係式の説
明図である。
FIG. 4 is an explanatory diagram of a relational expression between a speed of a heavy machine and a brake distance.

【図5】は、遠隔施工による施工域の一例の説明図であ
る。
FIG. 5 is an explanatory diagram of an example of a construction area by remote construction.

【図6】は、ステレオ画像計測法のパラメタ同定方法の
説明図である。
FIG. 6 is an explanatory diagram of a parameter identification method of a stereo image measurement method.

【図7】は、ステレオ画像計測法の原理の説明図であ
る。
FIG. 7 is an explanatory diagram of the principle of the stereo image measurement method.

【符号の説明】[Explanation of symbols]

1…施工域、 1a…安全作業領域、2…対象、
3…重機、3a…移動体、 4…受
信局、5…撮影用移動体、 6…撮像機、7…画像送
信機、 9…GPS位置測定器、10…無線送信機、
11…視標、13…画像受信機、 14…無線送信
機、15…モニタ、 16…撮像機、17…画像送信
機、 20…画像処理装置、21…フレームメモリ、
22…座標検出手段24…演算手段、 26…変換パラ
メタ、27…リミットラインの二次元座標、28…リミット
ラインの三次元座標、30…コンピュータ、 31…関係
式。
1 ... Construction area, 1a ... Safe work area, 2 ... Target,
3 heavy equipment, 3a moving object, 4 receiving station, 5 moving object for shooting, 6 image pickup device, 7 image transmitter, 9 GPS position measuring device, 10 radio transmitter,
11: Target, 13: Image receiver, 14: Wireless transmitter, 15: Monitor, 16: Imager, 17: Image transmitter, 20: Image processor, 21: Frame memory,
22 ... Coordinate detection means 24 ... Calculation means 26 ... Conversion parameters 27 ... Two-dimensional coordinates of limit line 28 ... Three-dimensional coordinates of limit line 30 ... Computer 31. Relational expression.

フロントページの続き (56)参考文献 特開 平3−39525(JP,A) 特開 昭61−62905(JP,A) 特開 平3−62906(JP,A) 特開 昭59−98213(JP,A) 特開 平6−28031(JP,A) 特開 昭59−106634(JP,A) (58)調査した分野(Int.Cl.6,DB名) G05D 1/00 G05D 1/02 Continuation of front page (56) References JP-A-3-39525 (JP, A) JP-A-61-62905 (JP, A) JP-A-3-62906 (JP, A) JP-A-59-98213 (JP, A) JP-A-6-28031 (JP, A) JP-A-59-106634 (JP, A) (58) Fields studied (Int. Cl. 6 , DB name) G05D 1/00 G05D 1/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】遠隔施工をする施工域内で稼働させる施工
用重機が該施工域内の安全作業領域から逸脱するのを監
視する方法において、ステレオ画像対を撮影する画像送
信機付き撮像機対を施工域に臨ませ;受信局に前記画像
送信機から受信する画像受信機と前記画像対を表示する
モニタとを設け;施工域内の三次元座標が既知の複数の
基準点に対する前記画像対上の二次元座標を求め且つ各
基準点の三次元座標と前記画像対上の二次元座標との比
較に基づき前記画像対上の任意点の二次元座標から施工
域内の三次元座標を算出するステレオ画像計測法の変換
パラメタを定め;前記画像対上に前記作業領域の境界に
対応するリミットラインをペン入力し且つ前記画像対上
のリミットラインの二次元座標と前記変換パラメタとか
ら該リミットラインの三次元座標を算出して記憶し;前
記画像対上における前記重機の像の二次元座標の検出、
該重機の二次元座標と前記変換パラメタとによる該重機
の三次元座標の算出、前記リミットラインと重機との間
の三次元距離の算出、及び該三次元距離と該三次元距離
の所定下限値との比較により重機の安全作業領域からの
逸脱を監視してなる遠隔施工用重機の逸脱監視方法。
In a method for monitoring that a heavy construction machine operated in a construction area for remote construction deviates from a safe work area in the construction area, a construction is provided for constructing a pair of imagers with an image transmitter for photographing a stereo image pair. A receiving station is provided with an image receiver for receiving from the image transmitter and a monitor for displaying the image pair; two-dimensional coordinates on the image pair corresponding to a plurality of reference points whose three-dimensional coordinates are known in the construction area; Stereo image measurement for obtaining three-dimensional coordinates and calculating three-dimensional coordinates in a construction area from two-dimensional coordinates of an arbitrary point on the image pair based on a comparison between the three-dimensional coordinates of each reference point and the two-dimensional coordinates on the image pair A limit line corresponding to the boundary of the work area is input with a pen on the image pair, and the limit line is determined from the two-dimensional coordinates of the limit line on the image pair and the conversion parameter. And calculates and stores the three-dimensional coordinates of; detection of two-dimensional coordinates of the image of the heavy equipment on the image pair,
Calculation of three-dimensional coordinates of the heavy equipment based on the two-dimensional coordinates of the heavy equipment and the conversion parameter, calculation of a three-dimensional distance between the limit line and the heavy equipment, and a predetermined lower limit of the three-dimensional distance and the three-dimensional distance A deviation monitoring method for heavy equipment for remote construction, wherein the deviation of the heavy equipment from the safe work area is monitored by comparison with the above.
【請求項2】請求項1の監視方法において、前記重機の
速度とブレーキ距離との関係式を測定して記憶し、前記
重機の三次元座標の経時的変化から該重機の速度を算出
し且つ該速度に対応するブレーキ距離を前記関係式から
求め、求めたブレーキ距離を前記三次元距離の所定下限
値としてなる遠隔施工用重機の逸脱監視方法。
2. The monitoring method according to claim 1, wherein a relational expression between the speed of the heavy equipment and the brake distance is measured and stored, and the speed of the heavy equipment is calculated from a change over time of three-dimensional coordinates of the heavy equipment; A deviation monitoring method for a heavy equipment for remote construction, wherein a brake distance corresponding to the speed is obtained from the relational expression, and the obtained brake distance is used as a predetermined lower limit of the three-dimensional distance.
【請求項3】請求項1又は2の監視方法において、前記
重機に衛星航行システムによる位置測定器と無線送信機
を取付け、前記受信局に前記無線送信機から受信する無
線受信機を設け、前記重機を前記撮像機対の視野内の複
数の基準点に移動させ且つ各基準点において前記位置測
定器により施工域内の三次元座標を測定してその測定信
号を前記無線送信機から送信し、前記受信局の無線受信
機で受信した三次元座標と前記受信局の画像受信機で受
信したステレオ画像対上における前記基準点の像の二次
元座標とを比較することにより前記ステレオ画像計測法
の変換パラメタを定めてなる遠隔施工用重機の逸脱監視
方法。
3. The monitoring method according to claim 1, wherein a position measuring device by a satellite navigation system and a wireless transmitter are attached to the heavy equipment, and the receiving station is provided with a wireless receiver for receiving from the wireless transmitter. Moving the heavy equipment to a plurality of reference points in the field of view of the imager pair and measuring the three-dimensional coordinates in the construction area by the position measuring device at each reference point, transmitting the measurement signal from the wireless transmitter, The stereo image measurement method is converted by comparing the three-dimensional coordinates received by the radio receiver of the receiving station with the two-dimensional coordinates of the reference point image on the stereo image pair received by the image receiver of the receiving station. Departure monitoring method for heavy equipment for remote construction that defines parameters.
【請求項4】請求項1から3の何れかの監視方法におい
て、前記撮像機対の各光軸を互いに直交させてなる遠隔
施工用重機の逸脱監視方法。
4. A method according to claim 1, wherein each optical axis of said pair of image pickup devices is orthogonal to each other.
【請求項5】請求項1から4の何れかの監視方法におい
て、前記重機に所定色の視標を取付け、前記ステレオ画
像対から前記所定色の像を抽出することにより該画像対
上における前記重機の像の二次元座標を検出してなる遠
隔施工用重機の逸脱監視方法。
5. The monitoring method according to claim 1, wherein an optotype of a predetermined color is attached to the heavy equipment, and the image of the predetermined color is extracted from the stereo image pair. A departure monitoring method for a heavy equipment for remote construction, comprising detecting two-dimensional coordinates of an image of the heavy equipment.
【請求項6】請求項5の監視方法において、施工域内に
複数の前記重機を配置し且つ各重機にそれぞれ異なる所
定色の視標を取付けてなる遠隔施工用重機の逸脱監視方
法。
6. The monitoring method according to claim 5, wherein a plurality of said heavy machines are arranged in a construction area, and targets of different colors are attached to the respective heavy machines.
JP16031196A 1996-06-20 1996-06-20 Departure monitoring method for heavy equipment for remote construction Expired - Lifetime JP2968207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16031196A JP2968207B2 (en) 1996-06-20 1996-06-20 Departure monitoring method for heavy equipment for remote construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16031196A JP2968207B2 (en) 1996-06-20 1996-06-20 Departure monitoring method for heavy equipment for remote construction

Publications (2)

Publication Number Publication Date
JPH1011134A JPH1011134A (en) 1998-01-16
JP2968207B2 true JP2968207B2 (en) 1999-10-25

Family

ID=15712222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16031196A Expired - Lifetime JP2968207B2 (en) 1996-06-20 1996-06-20 Departure monitoring method for heavy equipment for remote construction

Country Status (1)

Country Link
JP (1) JP2968207B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514973B2 (en) * 2015-06-30 2019-05-15 株式会社トプコン Field management system, flight detection method and program
JP6813952B2 (en) * 2016-02-23 2021-01-13 株式会社日立プラントコンストラクション Temporary module assembly system

Also Published As

Publication number Publication date
JPH1011134A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
EP3450636B1 (en) Construction machine
JP5618840B2 (en) Aircraft flight control system
US10527413B2 (en) Outside recognition device
JP5775632B2 (en) Aircraft flight control system
CN115597659B (en) Intelligent safety management and control method for transformer substation
KR101885704B1 (en) Calibration system, and calibration method for work machine
JP6673641B2 (en) Ground collapse detection system
WO2002065786A1 (en) Method and apparatus for omni-directional image and 3-dimensional data acquisition with data annotation and dynamic range extension method
CN112334733A (en) Calibration device for imaging device, monitoring device, working machine, and calibration method
JP6001914B2 (en) Target position specifying device, target position specifying system, and target position specifying method
KR101944816B1 (en) Detection Automatic System of Excavating Work
JP2968207B2 (en) Departure monitoring method for heavy equipment for remote construction
JP6482856B2 (en) Monitoring system
US7839490B2 (en) Single-aperture passive rangefinder and method of determining a range
JP6751383B2 (en) Unmanned aerial vehicle
US20230074477A1 (en) System and method for object monitoring, localization, and controlling
KR101575032B1 (en) Underground structure field control system based on ubi-gis technique
JP2003075148A (en) Displacement measuring instrument using digital still camera
JP6581280B1 (en) Monitoring device, monitoring system, monitoring method, monitoring program
JP2012080236A (en) Electronic device, and method and program for displaying captured image area with information
JP2694025B2 (en) Overhead transmission line obstacle approach detection device
JP2015162886A (en) obstacle monitoring system and program
KR101944817B1 (en) Detection Automatic System of Excavating Work Using Mobile Terminal
JP2834007B2 (en) Remote surveying method
JP7206647B2 (en) Fire dispatch aid, method and program