JP2834007B2 - Remote surveying method - Google Patents

Remote surveying method

Info

Publication number
JP2834007B2
JP2834007B2 JP6238301A JP23830194A JP2834007B2 JP 2834007 B2 JP2834007 B2 JP 2834007B2 JP 6238301 A JP6238301 A JP 6238301A JP 23830194 A JP23830194 A JP 23830194A JP 2834007 B2 JP2834007 B2 JP 2834007B2
Authority
JP
Japan
Prior art keywords
image
dimensional coordinates
moving
imaging devices
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6238301A
Other languages
Japanese (ja)
Other versions
JPH08101035A (en
Inventor
良和 宮内
俊文 佐藤
素久 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6238301A priority Critical patent/JP2834007B2/en
Publication of JPH08101035A publication Critical patent/JPH08101035A/en
Application granted granted Critical
Publication of JP2834007B2 publication Critical patent/JP2834007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は離隔式測量方法に関し、
とくに三次元画像計測法を用いて対象の形状を計測する
離隔式測量方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote surveying method,
In particular, the present invention relates to a remote surveying method for measuring a shape of an object using a three-dimensional image measuring method.

【0002】[0002]

【従来の技術】人の立入り禁止区域や人に危険が伴う区
域で作業を行なう場合に、ブルドーザやダンプトラック
等の作業機械群(以下、重機ということがある)を十分
に離れた安全な位置に設けた操作室から遠隔操作するこ
とにより、作業区域内を無人化することがある。遠隔操
作方法の一例は、作業区域に設けた撮像機により作業区
域の画像を遠隔操作室へ伝送し、遠隔操作室の操作員が
伝送画像を見ながら重機の遠隔操作を行なうものであ
る。
2. Description of the Related Art When working in an area where people are restricted or an area where there is a danger to people, a safe position sufficiently separated from a group of working machines (hereinafter, sometimes referred to as heavy equipment) such as bulldozers and dump trucks. In some cases, remote operation from the operation room provided in the office may make the inside of the work area unmanned. One example of a remote control method is to transmit an image of a work area to a remote control room by an image pickup device provided in the work area, and an operator in the remote control room remotely controls the heavy equipment while viewing the transmitted image.

【0003】[0003]

【発明が解決しようとする課題】しかし、作業区域内を
無人化する遠隔操作による作業では、構築した切土や盛
土その他作業対象の形状を人が直接測量することはでき
ない。作業対象の形状の測量は作業の品質を管理する上
で極めて重要であるが、従来は無人区域内で実施できる
適当な測量方法がなかったので、遠隔操作による作業に
ついて品質管理が十分に行ない得ない問題点がある。
However, in the work by remote control in which the inside of the work area is unmanned, it is impossible for a person to directly measure the shape of the cut, embankment or other work to be constructed. Surveying the shape of the work is extremely important in managing the quality of the work, but since there has been no suitable survey method that can be performed in unmanned areas, quality control of work by remote control can be sufficiently performed. There are no problems.

【0004】この問題点解決のため、作業区域からの伝
送画像に基づくステレオ画像計測法による測量方法が考
えられる。図5及び式(1)〜(12)を参照してステレオ画
像計測法を本発明の理解に必要な程度に簡単に説明す
る。ステレオ画像計測法では、異なる位置に設けた複数
の撮像機6a、6bにより対象2を異なる向きから撮影し、
各撮像機6a、6bの画像における対象2の像の二次元座標
から対象2の三次元形状を求める。
In order to solve this problem, a surveying method using a stereo image measuring method based on a transmission image from a work area is considered. With reference to FIG. 5 and equations (1) to (12), the stereo image measurement method will be briefly described to the extent necessary for understanding the present invention. In the stereo image measurement method, the object 2 is photographed from different directions by a plurality of imaging devices 6a and 6b provided at different positions,
The three-dimensional shape of the object 2 is obtained from the two-dimensional coordinates of the image of the object 2 in the images of the respective imaging devices 6a and 6b.

【0005】[0005]

【数1】 (Equation 1)

【0006】地表座標系における対象2上の点Pの三次
元座標を(X、Y、Z)、撮像機6aの画像座標系における点P
の像Paの二次元座標を(Xa、Ya)、撮像機6bの画像座標系
における点Pの像Pbの二次元座標を(Xb、Yb)とすると、
各座標の同次座標系表現を用いて、点Pから像Pa及び像P
bへの変換式をそれぞれ式(1)(2)で表わすことができ
る。ここで(X、Y、Z、1)T、(Xa、Ya、1)T及び(Xb、Yb、
1)Tはそれぞれ同次座標系表現による点P、像Pa及び像Pb
の座標を表す。但し、肩書のTは転置行列を示す。各撮
像機6a、6bの画像から座標(Xa、Ya)及び(Xb、Yb)を求め
て式(1)(2)に代入し、式(3)(4)で表されるHa及びHbを用
いて式(1)(2)を展開・整理すると式(5)〜(8)が得られ
る。式(9)で定義する行列F、Q、Vを用いて式(5)〜
(8)を纏めるとF=QV(式(10))となり、逆行列Q-1
の存在を条件として式(11)により座標(X、Y、Z)が算出
できる。なお3台以上の撮像機によるステレオ画像計測
も可能であり、撮像機の台数に応じて行列F、Qの行数
が増える。
[0006] The three-dimensional coordinates of the point P on the object 2 in the ground coordinate system are represented by (X, Y, Z), and the point P in the image coordinate system of the imaging device 6a.
The two-dimensional coordinates of the image Pa of (Xa, Ya), the two-dimensional coordinates of the image Pb of the point P in the image coordinate system of the imaging device 6b is (Xb, Yb),
Using the homogeneous coordinate system representation of each coordinate, the image Pa and the image P
The conversion formulas to b can be expressed by formulas (1) and (2), respectively. Where (X, Y, Z, 1) T , (Xa, Ya, 1) T and (Xb, Yb,
1) T is a point P, an image Pa, and an image Pb in a homogeneous coordinate system, respectively.
Represents the coordinates of Here, T in the title indicates a transposed matrix. The coordinates (Xa, Ya) and (Xb, Yb) are obtained from the images of the respective imaging devices 6a and 6b, and are substituted into the equations (1) and (2) .Ha and Hb represented by the equations (3) and (4) are obtained. Expressions (5) to (8) are obtained by expanding and rearranging Expressions (1) and (2) using the above. Using matrices F, Q, and V defined in equation (9), equations (5) to
When (8) is put together, F = QV (equation (10)), and the inverse matrix Q -1
The coordinates (X, Y, Z) can be calculated by Expression (11) on condition that there is Note that stereo image measurement by three or more imaging devices is also possible, and the number of rows of the matrices F and Q increases according to the number of imaging devices.

【0007】しかしステレオ画像計測法による測量で
は、前記式(1)(2)で用いた行列A及びB等の変換パラメ
ータが撮像機6a及び6bの位置・姿勢・レンズの焦点距離
等に応じて変化するため、測量前に変換パラメータの同
定が不可欠となる。従来は、予め測量された基準点等の
ない無人区域内でステレオ画像計測法の変換パラメータ
を短時間に且つ正確に求める適当な方法がなかったの
で、無人区域内での測量にステレオ画像計測法を適用す
ることが難しかった。
However, in the surveying by the stereo image measuring method, the conversion parameters such as the matrices A and B used in the above equations (1) and (2) depend on the position / posture of the imaging devices 6a and 6b, the focal length of the lens, and the like. Because of the change, identification of the transformation parameters before surveying is essential. Conventionally, there has been no suitable method for quickly and accurately obtaining the conversion parameters of the stereo image measurement method in an unmanned area having no reference points measured in advance. It was difficult to apply.

【0008】そこで本発明の目的は、無人区域内におい
てステレオ画像計測法により対象の形状を測量する隔離
式測量方法を提供するにある。
It is an object of the present invention to provide an isolated surveying method for measuring the shape of an object in an unmanned area by a stereo image measuring method.

【0009】[0009]

【課題を解決するための手段】図1を参照するに、本発
明の離隔式測量方法は、地表の対象2を臨む位置に対象
2のステレオ画像を撮影する複数の撮像機6a、6b及び各
撮像機6a、6bの出力画像を地表の受信局4へ向けて送信
する画像送信機7を設け、衛星航行システムによる位置
測定機9とその測定信号の無線送信機10と受信局4から
の離隔操作信号に応じて駆動される地表移動手段12とを
有する移動体3を各撮像機6a、6bの視野内の基準位置へ
移動させ、基準位置において位置測定機9により移動体
3の地表上の三次元座標を測定してその測定信号を無線
送信機10から送信し、受信局4の無線受信機14で受信し
た移動体3の三次元座標と受信局4の画像受信機13で受
信した各撮像機6a、6bの出力画像における移動体3の像
の二次元座標とを対応させ、移動体3を異なる基準位置
へ移動させながら前記三次元座標の測定から前記三次元
座標と二次元座標との対応までのサイクルを繰返すこと
によりステレオ画像計測法の変換パラメータを求め、変
換パラメータを用いて各撮像機6a、6bの出力画像におけ
る対象2の像の二次元座標から対象2の地表上の三次元
座標をステレオ画像計測法により測量してなるものであ
る。
Referring to FIG. 1, a remote surveying method according to the present invention includes a plurality of image pickup devices 6a and 6b for photographing a stereo image of an object 2 at a position facing the object 2 on the ground surface, and An image transmitter 7 for transmitting the output images of the imaging devices 6a and 6b toward the receiving station 4 on the ground surface is provided, and the position measuring device 9 by the satellite navigation system, the radio transmitter 10 of the measurement signal, and the distance from the receiving station 4 to the position measuring device 9 The moving body 3 having the ground moving means 12 driven according to the operation signal is moved to a reference position in the field of view of each of the imaging devices 6a and 6b, and at the reference position, the position measuring device 9 moves the moving body 3 on the ground. The three-dimensional coordinates are measured, the measurement signal is transmitted from the wireless transmitter 10, and the three-dimensional coordinates of the mobile unit 3 received by the wireless receiver 14 of the receiving station 4 and each of the signals received by the image receiver 13 of the receiving station 4 are received. The two-dimensional coordinates of the image of the moving body 3 in the output images of the imaging devices 6a and 6b By repeating the cycle from the measurement of the three-dimensional coordinates to the correspondence between the three-dimensional coordinates and the two-dimensional coordinates while moving the moving body 3 to a different reference position, a conversion parameter of the stereo image measurement method is obtained, and the conversion parameter is used. The three-dimensional coordinates of the object 2 on the surface of the ground are measured from the two-dimensional coordinates of the image of the object 2 in the output images of the respective imaging devices 6a and 6b by a stereo image measurement method.

【0010】変換パラメータにはステレオ画像計測法に
おける前記式(1)(2)の行列A及びB等が含まれる。また
衛星航行システムとは、地球の周りの円軌道を周回する
三個以上の衛星からの電波を受信し、その伝搬時間を測
定して得られた衛星からの距離を半径とした球面を各衛
星について求め、三球面の交差点から測定位置の地球表
面上の座標を求めるGPS(Global Positioning System)と
呼ばれるシステムのことである。
The conversion parameters include the matrices A and B in the above-mentioned equations (1) and (2) in the stereo image measurement method. A satellite navigation system is a satellite that receives radio waves from three or more satellites orbiting the Earth in a circular orbit and measures the propagation time to create a spherical surface whose radius is the distance from the satellite obtained. And a system called GPS (Global Positioning System) that obtains the coordinates of the measurement position on the earth's surface from the intersection of the three spherical surfaces.

【0011】[0011]

【作用】図1は無人区域内に構築した盛土等の対象2の
測量を行なう実施例を示す。対象2のステレオ画像を撮
影する各撮像機6a、6bの視野内へ移動体3を移動させ、
各撮像機6a、6bの出力画像を画像送信機7から画像受信
機13へ画像伝送し、受信局4において移動体3を含む対
象2のステレオ画像を受信する。図中15a及び15bは撮像
機6a、6bからの伝送画像を表示するモニタを示す。また
移動体3上のGPS位置測定機9により地表上の三次元座
標を測定し、その測定信号を無線送信機10から送信する
ことにより、受信局4において移動体3の三次元座標を
受信する。GPSによれば移動体3の三次元座標が短時間
に且つ正確に求められる。
FIG. 1 shows an embodiment in which an object 2 such as an embankment constructed in an unmanned area is surveyed. The moving body 3 is moved into the field of view of each of the imaging devices 6a and 6b for capturing a stereo image of the object 2,
The output images of the respective imaging devices 6a and 6b are transmitted from the image transmitter 7 to the image receiver 13, and the receiving station 4 receives a stereo image of the object 2 including the moving body 3. In the figure, reference numerals 15a and 15b denote monitors for displaying transmission images from the imaging devices 6a and 6b. Also, the three-dimensional coordinates on the ground surface are measured by the GPS position measuring device 9 on the moving body 3 and the measurement signal is transmitted from the wireless transmitter 10 so that the receiving station 4 receives the three-dimensional coordinates of the moving body 3. . According to the GPS, the three-dimensional coordinates of the moving body 3 can be obtained quickly and accurately.

【0012】図2を参照するに、対象2近傍の基準位置
P1へ移動体3を移動させた場合、図2(B)に示す撮像機
6aの出力画像及び図2(C)に示す撮像機6bの出力画像か
らそれぞれ移動体3の像の二次元座標Pa1=(Xa1、Ya1)
及びPb1=(Xb1、Yb1)が検出でき、無線受信機14により
移動体3の地表上の三次元座標P1=(X1、Y1、Z1)が得ら
れる。座標Pa1と座標P1を式(5)(6)へ代入することによ
り式(12)(13)が得られる。行列Aを構成するA11〜A34
12個の変換パラメータを同定するためには、少なくとも
6(=12/2)の異なる基準位置において式(12)(13)に相当
する式を求める必要があり、例えば図2に示すように他
の異なる5つの基準位置P2〜P6へ順次移動体3を移動さ
せて式(12)(13)に相当する式を求める。この場合、基準
位置P1〜P6が全て同一平面上に存在してはならない。式
(16)で定義される行列X、Y、Rを用い、A34=1と置い
て式(17)の変形を行なえば、式(18)のように行列Y即ち
行列Aが同定できる。行列Bについても、座標Pb1と座
標P1を式(7)(8)に代入して式(14)(15)を求め、各基準位
置P2〜P6において式(14)(15)に相当する式を求めること
により、行列Aの場合と同様に同定することができる。
Referring to FIG. 2, a reference position near object 2 is shown.
When moving the movable body 3 to P 1, the imaging apparatus shown in FIG. 2 (B)
The two-dimensional coordinates Pa 1 = (Xa 1 , Ya 1 ) of the image of the moving object 3 from the output image of 6a and the output image of the imaging device 6b shown in FIG.
And Pb 1 = (Xb 1 , Yb 1 ) can be detected, and the three-dimensional coordinates P 1 = (X 1 , Y 1 , Z 1 ) of the mobile unit 3 on the ground can be obtained by the wireless receiver 14. By substituting the coordinates Pa 1 and the coordinates P 1 into equations (5) and (6), equations (12) and (13) are obtained. A 11 to A 34 of the matrix A
In order to identify the twelve conversion parameters, it is necessary to find equations corresponding to equations (12) and (13) at least at 6 (= 12/2) different reference positions. For example, as shown in FIG. 5 different by sequentially moving the movable body 3 to the reference position P 2 to P 6 of obtaining the expression corresponding to the formula (12) (13). In this case, the reference position P 1 to P 6 must not exist all on the same plane. formula
By using the matrices X, Y, and R defined by (16) and performing a modification of equation (17) with A 34 = 1, matrix Y, ie, matrix A, can be identified as in equation (18). For even matrix B, and coordinates Pb 1 and the coordinate P 1 Equation (7) (8) into equation (14) (15) is obtained, wherein at each reference position P 2 to P 6 (14) (15) Can be identified in the same way as in the case of the matrix A.

【0013】[0013]

【数2】 (Equation 2)

【0014】要するに本発明は、GPS位置測定機9で地
表上の三次元座標を測定しながら移動体3を移動させる
ことにより、各撮像機6a、6bの視野内に複数の基準点を
創設するので、予め測量された基準点等のない無人区域
内においてもステレオ画像計測法の変換パラメータの同
定が行なえる。尚、行列A、Bの同定には上述した様に
少なくとも6基準位置に基づく必要があるが、7以上の
基準位置に基づいて変換パラメータを同定してもよい。
基準位置を増やすことにより、変換パラメータ同定の精
度の向上が期待できる。
In short, according to the present invention, a plurality of reference points are created within the field of view of each of the imaging devices 6a and 6b by moving the moving body 3 while measuring three-dimensional coordinates on the ground surface with the GPS position measuring device 9. Therefore, the conversion parameters of the stereo image measurement method can be identified even in an unmanned area having no reference point or the like measured in advance. Note that the identification of the matrices A and B needs to be based on at least six reference positions as described above, but the conversion parameters may be identified based on seven or more reference positions.
By increasing the reference position, it is expected that the accuracy of the conversion parameter identification will be improved.

【0015】式(1)(2)における行列A、Bの変換パラメ
ータが求まれば、従来技術に基づいてステレオ画像計測
が可能となる。即ち、撮像機6aの出力画像から対象2上
の特定点の像、例えば対象の突出部A等の像の二次元座
標(Xa、Ya)を検出し、撮像機6bの出力画像から(Xa、Ya)
と対応する特定点Aの像の二次元座標(Xb、Yb)を検出
し、各二次元座標から式(9)の行列F、Qを算出するこ
とにより、式(10)(11)により特定点Aの地表上の三次元
座標(X、Y、Z)が求められる。なお図1では2台の撮像
機を用いているが、3台以上の撮像機によるステレオ画
像計測を行なうこともできる。撮像機の増加によりステ
レオ画像計測の精度の向上が期待できる。
If the conversion parameters of the matrices A and B in the equations (1) and (2) are determined, stereo image measurement can be performed based on the prior art. That is, two-dimensional coordinates (Xa, Ya) of an image of a specific point on the target 2, for example, an image of the projection A of the target, etc., are detected from the output image of the imaging device 6a, and (Xa, Ya)
By detecting the two-dimensional coordinates (Xb, Yb) of the image of the specific point A corresponding to and calculating the matrices F and Q of the equation (9) from each two-dimensional coordinate, the equations (10) and (11) are used. The three-dimensional coordinates (X, Y, Z) of the point A on the ground are obtained. In FIG. 1, two imaging devices are used, but stereo image measurement can be performed by three or more imaging devices. Improvement of the accuracy of stereo image measurement can be expected by increasing the number of imaging devices.

【0016】こうして本発明の目的である「無人区域内
においてステレオ画像計測法により対象の形状を測量す
る隔離式測量方法」の提供が達成できる。
Thus, the object of the present invention, that is, the provision of the "isolation type surveying method for surveying the shape of an object by a stereo image measuring method in an unmanned area" can be achieved.

【0017】[0017]

【実施例】図1の実施例では移動体3上の所定位置に視
標11を取付け、各撮像機6a、6bの出力画像から移動体3
の像の二次元座標に替えて視標11の像の二次元座標を検
出し、視標11の二次元座標及び三次元座標に基づいて変
換パラメータを同定している。例えば視標11を特定形状
及び/又は特定色とし、各撮像機6a、6bの出力画像に対
して従来技術に属する形状抽出処理及び/又は色抽出処
理を施すことにより、視標11の像の二次元座標の検出を
簡単化できる。視標11の地表上の三次元座標は、位置測
定機11による三次元座標と前記所定位置とから算出でき
る。
In the embodiment shown in FIG. 1, an optotype 11 is attached to a predetermined position on the moving body 3 and the moving body 3 is obtained from the output images of the imaging devices 6a and 6b.
The two-dimensional coordinates of the image of the target 11 are detected in place of the two-dimensional coordinates of the target image, and the conversion parameters are identified based on the two-dimensional coordinates and the three-dimensional coordinates of the target 11. For example, the target 11 has a specific shape and / or a specific color, and the output image of each of the imaging devices 6a and 6b is subjected to a shape extraction process and / or a color extraction process belonging to the related art, whereby the image of the target 11 is obtained. Detection of two-dimensional coordinates can be simplified. The three-dimensional coordinates of the target 11 on the ground can be calculated from the three-dimensional coordinates of the position measuring device 11 and the predetermined position.

【0018】図3は4視標11a〜11dをそれぞれ所定位置
に取付けた移動体3の実施例を示す。複数の視標11a〜1
1dを取付けることにより、移動体3の一回の移動で複数
の視標11a〜11dの二次元座標と三次元座標との対応付け
が可能となる。例えば図3の移動体を図2の基準位置P1
〜P6へ移動させた場合、合計24視標による変換パラメー
タの同定が可能となるので、移動体3の少ない移動によ
り変換パラメータの精度の高い同定が期待できる。但し
視標11の数は図示例に限定されない。
FIG. 3 shows an embodiment of the moving body 3 in which four targets 11a to 11d are mounted at predetermined positions, respectively. Multiple targets 11a-1
By attaching 1d, it is possible to associate the two-dimensional coordinates and the three-dimensional coordinates of the plurality of targets 11a to 11d with one movement of the moving body 3. For example, the moving body in FIG. 3 is moved to the reference position P 1 in FIG.
When moving to a to P 6, since the identification of the transformation parameter by a total of 24 target is possible, a high identification can be expected accuracy of the transformation parameters by small movement of the movable body 3. However, the number of the targets 11 is not limited to the illustrated example.

【0019】また図1の実施例は受信局4からの離隔操
作信号により地表を移動する撮影用移動体5を設け、撮
像機6a、6b及び画像送信機7を撮影用移動体5に姿勢制
御可能に取付けている。本発明で用いる画像送信機7及
び画像受信機13は有線伝送式又は無線伝送式とすること
ができるが、撮像機6a、6bを撮影用移動体5に取付けた
場合は、有線伝送ケーブル等が撮影用移動体5の行動範
囲を制限するのを回避するため、図1に示すように無線
伝送式とするのが好ましい。画像無線伝送では指向性の
高い伝送アンテナを用いる必要があるため、画像送信機
7の送信アンテナ7aと画像受信機13の受信アンテナ13a
とを常に対向させておく必要がある。図1では撮影用移
動体5に送信アンテナの姿勢制御手段8を取付け、姿勢
制御手段8により送信アンテナ7aの向きを受信アンテナ
13aと対向する向きに自動制御しながら撮影用移動体5
を移動させ、撮像機6a、6bを対象2に臨む位置まで移動
させている。
In the embodiment shown in FIG. 1, a photographing moving body 5 that moves on the ground surface in accordance with a separation operation signal from the receiving station 4 is provided, and the imaging devices 6a and 6b and the image transmitter 7 are controlled by the photographing moving body 5 for attitude control. Installed as possible. The image transmitter 7 and the image receiver 13 used in the present invention can be of a wired transmission type or a wireless transmission type. However, when the imaging devices 6a and 6b are attached to the photographing mobile body 5, a wired transmission cable or the like is used. In order to avoid restricting the range of movement of the moving object 5 for photographing, it is preferable to use a wireless transmission type as shown in FIG. Since it is necessary to use a highly directional transmission antenna in image wireless transmission, the transmission antenna 7a of the image transmitter 7 and the reception antenna 13a of the image receiver 13 are used.
Must always be opposed to each other. In FIG. 1, the attitude control means 8 of the transmission antenna is attached to the moving object 5 for photographing, and the orientation of the transmission antenna 7a is changed by the attitude control means 8 to the reception antenna.
Moving body 5 for photography while automatically controlling in the direction opposite to 13a
To move the imaging devices 6a and 6b to a position facing the object 2.

【0020】図4(A)は、撮像機6a、6bの姿勢制御手段
8aを設けた撮影用移動体5の実施例を示す。図示例の姿
勢制御手段8aは撮影用移動体5上に垂直に立ち上げた支
柱17と支柱17の頂部に取付けた水平支持腕16と水平支持
腕16上に摺動自在に取付けられた雲台19a、19bとを有
し、各雲台19a、19bにそれぞれ撮像機6a、6bを取付けて
いる。図4(B)を参照するに、各雲台19a(19b)は互いに
垂直な2本の回転軸L及びMを有し、回転軸Lの回りの
回転により撮像機6a(6b)の方位を制御し、回転軸Mの回
りの回転により撮像機6a(6b)の仰角を制御することがで
きる。摺動モータ18a(18b)の駆動により撮像機6a(6b)間
の間隔を制御し、回転モータ20a(20b)及び21a(21b)の駆
動により撮像機6a(6b)の方位及び仰角を制御する。各モ
ータを受信局からの離隔操作信号により駆動する。
FIG. 4A shows the attitude control means of the imaging devices 6a and 6b.
An embodiment of the imaging moving body 5 provided with 8a is shown. The attitude control means 8a in the illustrated example includes a column 17 vertically raised on the photographing moving body 5, a horizontal support arm 16 mounted on the top of the column 17, and a pan head slidably mounted on the horizontal support arm 16. 19a and 19b, and the imaging devices 6a and 6b are respectively attached to the camera platforms 19a and 19b. Referring to FIG. 4B, each camera platform 19a (19b) has two rotation axes L and M perpendicular to each other, and the rotation of the rotation about the rotation axis L changes the orientation of the imaging device 6a (6b). By controlling the rotation around the rotation axis M, the elevation angle of the imaging device 6a (6b) can be controlled. The distance between the imaging devices 6a (6b) is controlled by driving the sliding motors 18a (18b), and the azimuth and elevation angle of the imaging devices 6a (6b) are controlled by driving the rotation motors 20a (20b) and 21a (21b). . Each motor is driven by a separation operation signal from the receiving station.

【0021】[0021]

【発明の効果】以上説明したように、本発明の離隔式測
量方法は、地表の対象のステレオ画像を撮影する複数の
撮像機の視野内の基準位置へ衛星航行システムによる位
置測定機を取付けた移動体を移動させ、各撮像機の画像
における移動体の像の二次元座標と位置測定機による移
動体の三次元座標とを対応させることによりステレオ画
像計測法の変換パラメータを求め、その変換パラメータ
を用いて前記対象のステレオ画像計測を行なうので、無
人区域内において離隔操作により構築した対象の形状を
正確に測量することができ、遠隔施工の品質管理の高度
化を達成することができる。
As described above, in the remote surveying method of the present invention, the position measuring device by the satellite navigation system is attached to the reference position in the field of view of a plurality of imagers for photographing a stereo image of the object on the ground. By moving the moving body, the conversion parameters of the stereo image measurement method are obtained by associating the two-dimensional coordinates of the image of the moving body in the image of each imaging device with the three-dimensional coordinates of the moving body by the position measuring device, and the conversion parameters Since the stereo image measurement of the object is performed using the method, the shape of the object constructed by the separation operation in the unmanned area can be accurately measured, and the quality control of remote construction can be advanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の一実施例の説明図であるFIG. 1 is an explanatory diagram of one embodiment of the present invention.

【図2】は、本発明の作用を示す説明図であるFIG. 2 is an explanatory view showing the operation of the present invention.

【図3】は、本発明の他の実施例の説明図である。FIG. 3 is an explanatory diagram of another embodiment of the present invention.

【図4】は、本発明の更に他の実施例の説明図である。FIG. 4 is an explanatory diagram of still another embodiment of the present invention.

【図5】は、ステレオ画像計測法の説明図である。FIG. 5 is an explanatory diagram of a stereo image measurement method.

【符号の説明】[Explanation of symbols]

2 対象 3 移動体 4 受信局 5 撮影用移動体 6a、6b 撮像機 7 画像送信機 8、8a 姿勢制御手段 9 位置測定機 10 無線送信機 11 視標 12 移動手段 13 画像受信機 14 無線送信機 15 モニタ 16 水平支持腕 17 支柱 18a、18b 摺動モータ 20a、20b 回転モータ 21a、21b 回転モータ。 2 Target 3 Moving object 4 Receiving station 5 Imaging moving object 6a, 6b Imager 7 Image transmitter 8, 8a Attitude control means 9 Position measuring device 10 Wireless transmitter 11 Target 12 Moving means 13 Image receiver 14 Wireless transmitter 15 Monitor 16 Horizontal support arm 17 Post 18a, 18b Sliding motor 20a, 20b Rotary motor 21a, 21b Rotary motor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−255910(JP,A) 特開 平5−280983(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01C 1/00 - 15/14 G01S 5/14 G06T 7/00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-255910 (JP, A) JP-A-5-280983 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01C 1/00-15/14 G01S 5/14 G06T 7/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】地表の対象を臨む位置に前記対象のステレ
オ画像を撮影する複数の撮像機及び前記各撮像機の出力
画像を地表の受信局へ向けて送信する画像送信機を設
け、衛星航行システムによる位置測定機とその測定信号
の無線送信機と前記受信局からの離隔操作信号に応じて
駆動される地表移動手段とを有する移動体を前記各撮像
機の視野内の基準位置へ移動させ、前記基準位置におい
て前記位置測定機により前記移動体の地表上の三次元座
標を測定してその測定信号を前記無線送信機から送信
し、前記受信局の無線受信機で受信した前記移動体の三
次元座標と前記受信局の画像受信機で受信した前記各撮
像機の出力画像における前記移動体の像の二次元座標と
を対応させ、前記移動体を異なる基準位置へ移動させな
がら前記三次元座標の測定から前記三次元座標と二次元
座標との対応までのサイクルを繰返すことによりステレ
オ画像計測法の変換パラメータを求め、前記変換パラメ
ータを用いて前記各撮像機の出力画像における前記対象
の像の二次元座標から前記対象の地表上の三次元座標を
ステレオ画像計測法により測量してなる離隔式測量方
法。
1. A satellite navigation system comprising: a plurality of imagers for photographing a stereo image of the object at a position facing the object on the ground; and an image transmitter for transmitting an output image of each of the imagers to a receiving station on the ground. A moving object having a position measuring device by the system, a radio transmitter of the measurement signal, and a ground moving means driven in accordance with a separation operation signal from the receiving station is moved to a reference position within the field of view of each of the imaging devices. The three-dimensional coordinates of the moving object on the ground surface are measured by the position measuring device at the reference position, the measurement signal is transmitted from the wireless transmitter, and the moving object received by the wireless receiver of the receiving station is transmitted. The three-dimensional coordinates correspond to the two-dimensional coordinates of the image of the moving body in the output image of each of the imaging devices received by the image receiver of the receiving station, and the three-dimensional movement is performed while moving the moving body to a different reference position. Of coordinates By repeating the cycle from the determination to the correspondence between the three-dimensional coordinates and the two-dimensional coordinates, the conversion parameters of the stereo image measurement method are obtained, and using the conversion parameters, two of the target images in the output images of the respective imaging devices are obtained. A remote surveying method comprising measuring three-dimensional coordinates on the ground surface of the object from three-dimensional coordinates by a stereo image measuring method.
【請求項2】請求項1の離隔式測量方法において、前記
移動体上の所定位置に視標を取付け、前記位置測定機の
測定した三次元座標と前記所定位置とから前記視標の地
表上の三次元座標を算出し、前記各撮像機の出力画像か
ら前記移動体の像の二次元座標に替えて前記視標の像の
二次元座標を検出し、前記視標の三次元座標と前記視標
の像の二次元座標とを対応させることにより前記変換パ
ラメータを求めてなる離隔式測量方法。
2. The remote surveying method according to claim 1, wherein an optotype is attached to a predetermined position on the moving body, and a three-dimensional coordinate measured by the position measuring device and the predetermined position are used to determine the position of the optotype on the ground surface. The three-dimensional coordinates of the target are detected, and the two-dimensional coordinates of the image of the optotype are detected in place of the two-dimensional coordinates of the image of the moving object from the output images of the respective imaging devices. A separation type surveying method in which the conversion parameter is obtained by associating two-dimensional coordinates of a target image with the two-dimensional coordinates.
【請求項3】請求項2の離隔式測量方法において、前記
移動体上の複数の異なる所定位置にそれぞれ視標を取付
け、前記基準位置毎に前記複数の視標の三次元座標と前
記複数の視標の像の二次元座標とを対応させることによ
り前記変換パラメータを求めてなる離隔式測量方法。
3. The remote surveying method according to claim 2, wherein a plurality of optotypes are respectively attached to a plurality of different predetermined positions on the moving body, and three-dimensional coordinates of the plurality of optotypes and the plurality of optotypes are provided for each of the reference positions. A separation type surveying method in which the conversion parameter is obtained by associating two-dimensional coordinates of a target image with the two-dimensional coordinates.
【請求項4】請求項1、2又は3の離隔式測量方法にお
いて、前記画像送信機及び画像受信機をそれぞれ無線画
像送信機及び無線画像受信機とし、前記受信局からの離
隔操作信号により地表を移動する撮影用移動体に前記複
数の撮像機と前記画像送信機とを姿勢制御可能に取付
け、前記画像送信機の送信アンテナを前記画像受信機の
受信アンテナと対向する向きに自動制御しながら前記撮
影用移動体を移動させることにより前記各撮像機を前記
対象に臨ませてなる離隔式測量方法。
4. The remote surveying method according to claim 1, wherein the image transmitter and the image receiver are a wireless image transmitter and a wireless image receiver, respectively, and a ground operation signal is received from the receiving station. The plurality of image pickup devices and the image transmitter are mounted on the moving object for photographing so that the posture can be controlled, and the transmission antenna of the image transmitter is automatically controlled in a direction facing the reception antenna of the image receiver. A remote-type surveying method in which each of the imaging devices faces the object by moving the photographing moving body.
JP6238301A 1994-10-03 1994-10-03 Remote surveying method Expired - Fee Related JP2834007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238301A JP2834007B2 (en) 1994-10-03 1994-10-03 Remote surveying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238301A JP2834007B2 (en) 1994-10-03 1994-10-03 Remote surveying method

Publications (2)

Publication Number Publication Date
JPH08101035A JPH08101035A (en) 1996-04-16
JP2834007B2 true JP2834007B2 (en) 1998-12-09

Family

ID=17028171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238301A Expired - Fee Related JP2834007B2 (en) 1994-10-03 1994-10-03 Remote surveying method

Country Status (1)

Country Link
JP (1) JP2834007B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141954A (en) * 1996-11-06 1998-05-29 Komatsu Ltd Device for detecting obstruction on track for moving body
CN1567384A (en) * 2003-06-27 2005-01-19 史中超 Method of image acquisition, digitized measure and reconstruction of three-dimensional object
JP6062217B2 (en) * 2012-11-11 2017-01-18 鹿島建設株式会社 Particle size measuring method, system and program for accumulated granular material

Also Published As

Publication number Publication date
JPH08101035A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US9773420B2 (en) Measuring system
US7184088B1 (en) Apparatus and method for obtaining 3D images
JP7203105B2 (en) CALIBRATION DEVICE, MONITORING DEVICE, WORKING MACHINE, AND CALIBRATION METHOD FOR IMAGE SENSOR
JP6138326B1 (en) MOBILE BODY, MOBILE BODY CONTROL METHOD, PROGRAM FOR CONTROLLING MOBILE BODY, CONTROL SYSTEM, AND INFORMATION PROCESSING DEVICE
WO2005028999A2 (en) Measurement methods and apparatus
Nagai et al. UAV borne mapping by multi sensor integration
EP3443331B1 (en) Mobile imaging of an object using penetrating radiation
CN214090044U (en) Excavator and excavator remote display system
JP4077385B2 (en) Global coordinate acquisition device using image processing
KR101764222B1 (en) System and method for high precise positioning
JP2003064725A (en) Unmanned mechanical earth work system
JP2015010911A (en) Airborne survey method and device
US20220099442A1 (en) Surveying System
JP2018138923A (en) Measuring system
Zalud et al. Calibration and evaluation of parameters in a 3D proximity rotating scanner
JP2834007B2 (en) Remote surveying method
US11869159B2 (en) High density 3D environment capture with guided mixed reality
JPH08134958A (en) Work support image system for remote construction
KR101348801B1 (en) System of image processing based on gis for editing changed land scope with image composition
JP3014336B2 (en) Remote construction support image system
JP2968207B2 (en) Departure monitoring method for heavy equipment for remote construction
JP3186658B2 (en) Rolling stone measurement method by remote control
JP2002005658A (en) System for photographing stereo image
JP2023048409A (en) Survey system
Nagai et al. Semi-Real-Time Direct Geo-Referencing of Integrated Laser Scanning and CCD Sensor by Combining GPS/IMU and Bundle Block Adjustment of CCD Images

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees