JP2967256B2 - Method for melting and removing solids such as ingots and slag - Google Patents

Method for melting and removing solids such as ingots and slag

Info

Publication number
JP2967256B2
JP2967256B2 JP31246793A JP31246793A JP2967256B2 JP 2967256 B2 JP2967256 B2 JP 2967256B2 JP 31246793 A JP31246793 A JP 31246793A JP 31246793 A JP31246793 A JP 31246793A JP 2967256 B2 JP2967256 B2 JP 2967256B2
Authority
JP
Japan
Prior art keywords
fuel gas
solidified
gas injection
iron oxide
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31246793A
Other languages
Japanese (ja)
Other versions
JPH07120167A (en
Inventor
一夫 前田
頼儀 三上
文雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31246793A priority Critical patent/JP2967256B2/en
Publication of JPH07120167A publication Critical patent/JPH07120167A/en
Application granted granted Critical
Publication of JP2967256B2 publication Critical patent/JP2967256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属容器およびそ
の付帯設備に操業時に付着、滞留する地金、スラグ等の
固化物の溶融除去方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten metal container and a method for melting and removing solidified substances such as slag and slag which adhere to and stay in a molten metal container during operation.

【0002】[0002]

【従来の技術】転炉、取鍋、脱ガス炉等の溶融金属容器
およびその付帯設備では、操業において地金、スラグ等
が付着固化し、あるいは溶融金属の湯面に浮遊滞留し、
原料の装入、容器移動、溶融金属のサンプリング、測
温、解体等の障害となっている。この固化物の除去方法
としては、鉄製パイプから酸素を固化物面に噴射し、鉄
製パイプに着火・燃焼させ、その燃焼熱により固化物を
加熱、溶融させ、酸素の噴射により溶流させる方法が一
般に行われている。しかし、固化物自体が高温状態の場
合には着火源として作用するが、固化物が低温の場合で
は鉄製パイプに着火できないことから、固化物の溶融除
去はできない。
2. Description of the Related Art In a molten metal container such as a converter, a ladle, a degassing furnace, and ancillary facilities thereof, in operation, ingots, slag, and the like adhere and solidify, or float and stagnate on a molten metal surface.
This is an obstacle to charging of raw materials, moving containers, sampling of molten metal, measuring temperature, and dismantling. As a method of removing the solidified material, a method of injecting oxygen from the iron pipe to the surface of the solidified material, igniting and burning the steel pipe, heating and melting the solidified material by the combustion heat, and causing the solidified material to flow by injection of oxygen. Generally done. However, when the solidified material itself is in a high temperature state, it acts as an ignition source. However, when the solidified material is at a low temperature, the iron pipe cannot be ignited, so that the solidified material cannot be melted and removed.

【0003】また、固化物にある物体を打ち当て、その
衝撃力により固化物を付着面から剥離させる除去方法も
実施されている。物体を打ち当てる方法は、作業が簡便
で、時間当たりの除去量が多い反面、固化物が強固に付
着している場合には、ある物体を固化物に当てる衝撃力
だけでは固化物の剥離除去ができないばかりでなく、固
化物の付いている母材を除去時の衝撃により変形、損傷
することが問題となる。
[0003] Further, a removal method is also practiced in which an object is hit against the solidified material and the solidified material is separated from the adhered surface by the impact force. The method of hitting an object is simple and requires a large amount of removal per unit of time.However, if the solidified object is firmly adhered, the solid object is separated and removed only by the impact force applied to the object. In addition to the problem, not only can the base material with the solidified material be deformed or damaged by an impact at the time of removal, but also there is a problem.

【0004】そこで、燃料ガスの火炎で固化物の温度を
固化物の溶融温度以上に保つと同時に噴射した鉄粉末を
燃焼させて固化物温度を上昇させることで溶融物量を増
大させ、さらに酸素ガスを固化物表面に生成した溶融物
に吹付けて溶流除去する方法が、特開平2−28709
2号公報に提案されている。しかしながら、この方法で
は、比較的時間が掛かり、さらに迅速な固化物除去方法
が期待されている。
[0004] Therefore, the temperature of the solidified material is maintained at a temperature equal to or higher than the melting temperature of the solidified material by the flame of the fuel gas, and at the same time, the amount of the molten material is increased by burning the injected iron powder to raise the temperature of the solidified material. Japanese Patent Application Laid-Open No. 2-28709 discloses a method of spraying a molten material formed on the surface of a solidified material to remove a melt.
No. 2 proposes this. However, this method requires a relatively long time, and a quicker method for removing solids is expected.

【0005】[0005]

【発明が解決しようとする課題】従来技術では除去しよ
うとする固化物の温度、あるいは付着面での付着状態に
より、作業効率や除去速度が大きく異なり、安定した除
去作業が実施できない。すなわち、鉄製パイプから酸素
を噴射させる方法では、固化物温度が低下すると鉄製パ
イプに着火しなくなり、固化物の除去はできない。
In the prior art, the work efficiency and the removal speed greatly differ depending on the temperature of the solidified material to be removed or the state of attachment on the attachment surface, and a stable removal operation cannot be performed. That is, in the method of injecting oxygen from the iron pipe, when the solidified material temperature decreases, the iron pipe does not ignite and the solidified material cannot be removed.

【0006】また、ある物体を打ち当てる方法では、固
化物と母材の付着が強固であれば固化物を除去できない
ばかりか、除去の見通しがつかないために操業に支障を
きたしたり、固化物の付いている母材を損傷する等の問
題がある。
In the method of hitting a certain object, if the solidified material and the base material are strongly adhered to each other, not only the solidified material cannot be removed, but also it is difficult to remove the solidified material. There is a problem such as damaging the base material with the mark.

【0007】さらに、燃料ガスの火炎と鉄粉末の燃焼温
度および酸素を噴射する方法では、一層の固化物除去速
度の向上を図る必要がある。本発明は、固化物の温度、
付着状態、浮上状態に影響を受けず、高速かつ、安定し
た除去速度の得られる除去方法を提供することを目的と
する。
Further, in the method of injecting the combustion temperature of the flame of the fuel gas and the iron powder and the oxygen, it is necessary to further improve the solid removal rate. The present invention relates to the temperature of the solidified product,
It is an object of the present invention to provide a removal method that can obtain a high-speed and stable removal rate without being affected by an attached state and a floating state.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決すべく提供されたもので、その要旨とするところは、
下記のとおりである。 (1)材料孔を中央に配置し、その周囲に複数の燃料ガ
ス噴射孔を材料孔の同心円上に多段に周設して地金、ス
ラグ等の固化物を溶融除去する方法において、燃料ガス
噴射孔から燃料ガスを噴射すると共に、材料孔から粒径
0.15mm以下の金属アルミ15〜60wt%、残部
が粒径0.4mm以下の酸化鉄からなる混合材料を噴射
して地金、スラグ等の固化物を溶融除去することを特徴
とする。 (2)材料孔を中央に配置し、その周囲に複数の燃料ガ
ス噴射孔を材料孔の同心円上に多段に周設し、材料孔と
最内周の燃料ガス噴射孔の間に複数のガス噴射孔を周設
して地金、スラグ等の固化物を溶融除去する方法におい
て、燃料ガス噴射孔から燃料ガスを噴射すると共に、材
料孔から粒径0.15mm以下の金属アルミ15〜60
wt%、残部が粒径0.4mm以下の酸化鉄からなる混
合材料を噴射すると共に、前記ガス噴射孔からガス噴射
孔出口でのガス流速100m/sec以上となるように
固化物表面の除去部に噴射して地金、スラグ等の固化物
を溶融除去することを特徴とする。
SUMMARY OF THE INVENTION The present invention has been provided to solve the above problems, and the gist of the invention is as follows.
It is as follows. (1) A method in which a material hole is disposed at the center and a plurality of fuel gas injection holes are provided around the hole in multiple stages around concentric circles of the material hole to melt and remove solidified materials such as ingots and slag. A fuel gas is injected from the injection hole, and a mixed material comprising 15-60 wt% of metal aluminum having a particle size of 0.15 mm or less and a balance of iron oxide having a particle size of 0.4 mm or less is injected from the material hole to form a metal or slag. It is characterized by solidification such as melting. (2) A material hole is arranged at the center, a plurality of fuel gas injection holes are provided around the material hole in multiple stages on a concentric circle of the material hole, and a plurality of gas injection holes are provided between the material hole and the innermost fuel gas injection hole. In the method of melting and removing solids such as ingots and slag by providing injection holes, a fuel gas is injected from fuel gas injection holes and metal aluminum having a particle size of 0.15 mm or less from material holes.
Injecting a mixed material consisting of iron oxide having a particle size of 0.4 mm or less with the balance being 0.4% by weight and removing the solidified material surface so that the gas flow rate from the gas injection hole to the gas injection hole outlet is 100 m / sec or more. To melt and remove solidified materials such as ingots and slag.

【0009】[0009]

【作用】本発明の固化物溶融除去方法は、燃料ガスの火
炎と共に金属アルミと酸化鉄の混合材料を付着又は湯面
上の地金スラグ等の固化物に噴射することで、瞬時に固
化物を溶融させ、生成した溶融物の粘性が低いため溶融
物自体が溶流して新たな固化物表面を露出することで安
定した除去速度が得られる。
According to the method of the present invention, a mixed material of metallic aluminum and iron oxide is attached or sprayed onto a solidified material such as metal slag on a molten metal surface together with the flame of the fuel gas, thereby instantaneously solidifying the solidified material. Is melted, and the resulting melt has a low viscosity, so that the melt itself flows and exposes a new solidified surface, whereby a stable removal rate can be obtained.

【0010】つまり、燃料ガスの火炎で固化物表面温度
を金属アルミと酸化鉄の混合材料が着火する温度まで上
昇させると共に燃料ガスの火炎通過時に加熱された金属
アルミと酸化鉄が固化物表面に衝突と同時に燃焼して高
温を発生する。金属アルミと酸化鉄の燃焼温度は溶融金
属容器で発生する固化物温度に比較して十分高いため、
生成した溶融物の粘性は低下し、溶融物は容易に溶流し
新たな固化物表面を露出する。上記の溶融、溶流を繰り
返すことにより高速かつ安定した除去速度が得られる。
溶融物の溶流を阻害する状況にある場合、ガスを溶融物
に吹付て飛散させるが、溶融物の粘性が低いため容易に
飛散させることができ、除去速度を大幅に下げることな
く継続して除去できる。
That is, the surface temperature of the solidified material is raised to the temperature at which the mixed material of metal aluminum and iron oxide is ignited by the flame of the fuel gas, and the metal aluminum and iron oxide heated when the fuel gas passes through the flame are deposited on the surface of the solidified material. Combustion occurs at the same time as collision, producing high temperatures. Since the combustion temperature of metal aluminum and iron oxide is sufficiently higher than the solidification temperature generated in the molten metal container,
The viscosity of the resulting melt decreases, and the melt readily flows to expose a new solidified surface. A high-speed and stable removal rate can be obtained by repeating the above melting and flow.
In the situation where the flow of the melt is obstructed, the gas is sprayed on the melt and scattered.However, the viscosity of the melt is low and can be easily scattered, and the removal speed is continuously reduced without drastically decreasing the removal rate. Can be removed.

【0011】本発明においては、混合材料の金属アルミ
の粒径を0.02〜0.15mm、酸化鉄の粒径を0.
1〜0.4mmとして、金属アルミと酸化鉄が固化物表
面に衝突した時点での燃焼効率を向上させることから好
ましい。すなわち、金属アルミの粒径が0.02mm未
満では、燃料ガスの火炎通過時に火炎外に飛散して固化
物に衝突する金属アルミ量が不足するため燃焼効率が低
下する。
In the present invention, the particle size of metallic aluminum of the mixed material is 0.02 to 0.15 mm, and the particle size of iron oxide is 0.1 to 0.1 mm.
The thickness is preferably 1 to 0.4 mm from the viewpoint of improving the combustion efficiency when metal aluminum and iron oxide collide with the surface of the solidified material. That is, when the particle diameter of the metal aluminum is less than 0.02 mm, the amount of the metal aluminum that scatters out of the flame when the fuel gas passes through the flame and collides with the solidified material is insufficient, so that the combustion efficiency is reduced.

【0012】また、金属アルミの粒径が0.15mmを
超えると燃料ガスの火炎通過時の加熱が不十分となるた
め固化物衝突時の金属アルミの温度が低く燃焼効率が低
下する。さらに燃焼効率を高位に維持するためには金属
アルミの粒径0.03〜0.1mmであることが好まし
い。酸化鉄の粒径が0.1mm未満では、混合材料噴射
直後から燃料ガスの火炎内で酸化鉄と金属アルミの燃焼
が始まり固化物衝突までの火炎内で燃焼は、ほぼ終了す
るため固化物の除去に有効な燃焼効率は低下する。酸化
鉄の粒径が0.4mmを超えると燃料ガスの火炎通過時
の加熱が不十分となるため固化物衝突時の酸化鉄の温度
が低く燃焼効率が低下する。また、固化物衝突時のリバ
ウンド量が多くなり固化物衝突時の酸化鉄量が不足する
ため燃焼効率が低下するので、さらに燃焼効率を高位に
維持するためには酸化鉄の粒径0.15〜0.3mmで
あることが好ましい。
On the other hand, if the particle diameter of the metal aluminum exceeds 0.15 mm, the heating of the fuel gas during the passage of the flame becomes insufficient, so that the temperature of the metal aluminum at the time of solidified collision is low and the combustion efficiency is reduced. Further, in order to maintain the combustion efficiency at a high level, the metal aluminum preferably has a particle size of 0.03 to 0.1 mm. If the particle size of the iron oxide is less than 0.1 mm, the combustion of the iron oxide and metallic aluminum starts immediately after the injection of the mixed material in the flame of the fuel gas, and the combustion in the flame up to the collision with the solidified material is almost completed. The effective combustion efficiency for removal is reduced. If the particle size of the iron oxide exceeds 0.4 mm, the heating of the fuel gas during the passage of the flame becomes insufficient, so that the temperature of the iron oxide at the time of solidified collision is low and the combustion efficiency is reduced. In addition, since the rebound amount at the time of solidified matter collision increases and the amount of iron oxide at the time of solidified matter collision becomes insufficient, the combustion efficiency is reduced. It is preferably about 0.3 mm.

【0013】また、混合材料の金属アルミを15〜60
wt%、残部を酸化鉄として、金属アルミと酸化鉄が固
化物表面に衝突した時点での除去速度を向上させること
から好ましい。すなわち、混合材料の金属アルミが15
wt%未満で残部が酸化鉄の場合、金属アルミは全量酸
化反応するものの、同時に固化物表面に溶融した酸化鉄
が付着して除去を阻害するため除去速度は低下する。ま
た、金属アルミが60wt%を超えて残部が酸化鉄の場
合、未反応の溶融した金属アルミが固化物表面に付着し
て除去を阻害するため除去速度は低下する。さらに除去
速度を高位に維持するためには金属アルミ30〜50w
t%であることが好ましい。
Also, the mixed material of metallic aluminum is 15 to 60.
In terms of wt% and the remainder being iron oxide, it is preferable to improve the removal rate when metal aluminum and iron oxide collide with the solidified material surface. That is, the metal aluminum of the mixed material is 15
When the content is less than wt% and the balance is iron oxide, the metal aluminum undergoes an oxidation reaction in its entirety, but at the same time, the molten iron oxide adheres to the surface of the solidified material to inhibit the removal, so that the removal rate is reduced. Further, when the metal aluminum exceeds 60 wt% and the balance is iron oxide, the unreacted molten metal aluminum adheres to the surface of the solidified material and hinders the removal, so that the removal rate is reduced. In order to further maintain the removal speed at a high level, metal aluminum 30 to 50 w
It is preferably t%.

【0014】ガス噴射孔から噴射するガス流速を100
m/sec以上として、生成した溶融物の飛散効率を向
上させることから好ましい。すなわち、ガス流速100
m/sec未満では生成した溶融物の全量飛散ができず
に除去部に滞留するため除去速度が低下する。ガス流速
100m/sec以上では生成した溶融物の全量飛散が
でき、除去部は常に新たな固化物が露出するため除去速
度は安定する。
The flow velocity of the gas injected from the gas injection holes is 100
m / sec or more is preferable since the scattering efficiency of the generated melt is improved. That is, the gas flow rate 100
If it is less than m / sec, the entire amount of the generated melt cannot be scattered and stays in the removing portion, so that the removing speed is reduced. At a gas flow rate of 100 m / sec or more, the entire amount of the generated melt can be scattered, and the removal portion is constantly exposed to a new solidified material, so that the removal speed is stable.

【0015】なお、噴射ガスは溶融物を飛散することが
目的であるため、溶融物に集中して吹付ることが重要で
ある。また、溶融物が滞留していないときにガスを噴射
することは無駄であるばかりでなく除去部を冷却するた
め除去速度は低下する。このため、固化物の滞留状況に
より適宜ガス噴射部位、ガス噴射量、ガス噴射時間等を
選定すれば良い。なお、本発明において、ガス流速を規
定するものではないが、通常の除去工程において送風機
の能力あるいは送風用電力のコスト低減の観点から通常
250m/sec以下であれば良い。
Since the purpose of the injection gas is to scatter the molten material, it is important to spray the concentrated gas on the molten material. Injecting gas when the melt is not staying is not only wasteful, but also reduces the removal rate because the removal part is cooled. Therefore, the gas injection site, the gas injection amount, the gas injection time, and the like may be appropriately selected depending on the state of stay of the solidified matter. In the present invention, the gas flow rate is not specified, but may be usually 250 m / sec or less from the viewpoint of reducing the capacity of the blower or the cost of the blowing power in the normal removal step.

【0016】表1は、燃料ガスと共に金属アルミと酸化
鉄の混合材料を噴射する固化物溶融除去方法において、
金属アルミと酸化鉄の粒径、配合割合とその除去速度の
関係を示したものである。実験条件は表1の下方に示し
た通りである。
Table 1 shows a solidified material melting and removing method in which a mixed material of metallic aluminum and iron oxide is injected together with a fuel gas.
It shows the relationship between the particle size and mixing ratio of metal aluminum and iron oxide and the removal rate thereof. The experimental conditions are as shown in the lower part of Table 1.

【0017】表中条件1から条件3は固化物と除去装置
の距離を変えて固化物の除去を行った。除去速度の最も
大きかった距離は条件2の800mmで、800mmよ
り除去装置を近づけても、離しても除去速度は低下す
る。表中条件4から条件9は条件1から条件3で除去速
度の大きかった距離800mm(条件2)で金属アルミ
の粒径を変えて固化物の除去を行った。
In the conditions 1 to 3 in the table, solids were removed by changing the distance between the solids and the removing device. The distance at which the removal rate was the largest was 800 mm in Condition 2, and the removal rate was reduced even if the removal apparatus was moved closer or further than 800 mm. In the conditions 4 to 9 in the table, the solidified material was removed by changing the particle size of metallic aluminum at a distance of 800 mm (condition 2) at which the removal rate was large in conditions 1 to 3.

【0018】除去速度の大きかった金属アルミの粒径は
条件5から条件8の0.02〜0.15mmで、この範
囲を外れると除去速度は低下する。表中条件10から条
件15は条件1から条件3および条件4から条件9で除
去速度の大きかった距離800mm(条件2)と金属ア
ルミ粒径0.06mm(条件7)で酸化鉄の粒径を変え
て固化物の除去を行った。除去速度の大きかった酸化鉄
の粒径は条件10から条件15の0.15〜0.4mm
と条件7の0.1mmでこの範囲を外れると除去速度は
低下する。
The particle diameter of the metal aluminum having a large removal rate is 0.02 to 0.15 mm in the condition 5 to the condition 8, and if it is out of this range, the removal rate is reduced. In the table, the conditions 10 to 15 correspond to the distance 800 mm (condition 2) and the metal aluminum particle diameter 0.06 mm (condition 7) at which the removal rate was large in the conditions 1 to 3 and the conditions 4 to 9 and the particle diameter of the iron oxide was reduced. The solidified material was removed in a different manner. The particle diameter of the iron oxide having a large removal rate is 0.15 to 0.4 mm in the condition 10 to the condition 15
If the condition 7 is outside the above range at 0.1 mm, the removal rate is reduced.

【0019】表中条件16から条件22は条件1から条
件3、条件4から条件9および条件10から条件15で
除去速度の大きかった距離800mm(条件2)、金属
アルミの粒径0.06mm(条件7)および酸化鉄の粒
径0.2mm(条件12)で金属アルミの配合割合を変
えて固化物の除去を行った。除去速度の大きかった金属
アルミの配合割合は条件17から条件21の15〜60
%でこの範囲を外れると除去速度は低下する。酸化鉄と
してはFeO、Fe2 3 、Fe3 4 のいずれか1種
あるいは2種以上組み合わせて使用して良い。好ましく
はFe2 3 が良い。燃料ガスとしてプロパン−酸素に
限定するものでなく、固化物を金属アルミと酸化鉄の混
合材料の着火温度まで瞬時に加熱でき、かつ、燃料ガス
の火炎中で金属アルミと酸化鉄の混合材料を固化物表面
で瞬時に着火するよう加熱できる、例えばアセチレン−
酸素、COG−酸素、プロパン−空気、アセチレン−空
気、COG−空気等であっても良い。
In the table, conditions 16 to 22 correspond to conditions 1 to 3; conditions 4 to 9 and conditions 10 to 15 have a distance 800 mm (condition 2) at which the removal rate is large, and a particle diameter of metal aluminum of 0.06 mm (condition 2). Solidification was removed by changing the mixing ratio of metallic aluminum under condition 7) and a particle size of iron oxide of 0.2 mm (condition 12). The mixing ratio of the metal aluminum having a high removal rate is 15 to 60 in the condition 17 to the condition 21.
If it is out of this range in%, the removal rate decreases. As the iron oxide, any one of FeO, Fe 2 O 3 , and Fe 3 O 4 or a combination of two or more thereof may be used. Preferably, Fe 2 O 3 is good. The fuel gas is not limited to propane-oxygen, and the solidified material can be instantaneously heated to the ignition temperature of the mixed material of metallic aluminum and iron oxide, and the mixed material of metallic aluminum and iron oxide can be heated in the fuel gas flame. It can be heated to ignite instantly on the solidified surface, for example, acetylene-
It may be oxygen, COG-oxygen, propane-air, acetylene-air, COG-air, or the like.

【0020】[0020]

【表1】 [Table 1]

【0021】表2は燃料ガス、金属アルミと酸化鉄の混
合材料を噴射すると共にガスを噴射する固化物除去方法
において、金属アルミ、酸化鉄の粒径、配合割合を表1
の条件12と同一として噴射ガス流速とその除去速度の
関係を示したものである。実験条件は表2の下方に示し
ている通りである。
Table 2 shows the particle size and the mixing ratio of metal aluminum and iron oxide in the method for removing solidified material by injecting a fuel gas, a mixed material of metal aluminum and iron oxide and injecting the gas.
The relationship between the flow rate of the injected gas and the removal rate is shown as the same as the condition 12 above. The experimental conditions are as shown in the lower part of Table 2.

【0022】表中条件23から条件25は固化物と除去
装置の距離を変えて固化物の除去を行った。除去速度の
最も大きかった距離は条件24の500mmで500m
mより除去装置を近づけても、離しても除去速度は低下
する。表中条件26から条件30は条件23から条件2
5で除去速度の大きかった距離500mm(条件24)
で噴射ガス流速を変えて固化物の除去を行った。除去速
度の大きかった噴射ガス流速は条件28から条件30の
100〜140m/secで100m/secより小さ
いと除去速度は低下する。
From condition 23 to condition 25 in the table, the solidified material was removed by changing the distance between the solidified material and the removing device. The distance at which the removal rate was the largest was 500 mm in the condition 24 of 500 mm.
The removal rate decreases even if the removal device is moved closer or further than m. In the table, conditions 26 to 30 correspond to conditions 23 to 2
Distance 500mm where removal speed was large in 5 (condition 24)
The solidified material was removed by changing the flow rate of the injection gas. If the jet gas flow velocity at which the removal rate was large is 100 to 140 m / sec in the conditions 28 to 30 and is smaller than 100 m / sec, the removal rate decreases.

【0023】表中条件31は条件23から条件25およ
び条件26から条件30で除去速度が最も大きかった距
離500mm(条件24)と噴射ガス流速140m/s
ec(条件30)で噴射ガスを連続噴射して固化物の除
去を行った。ガスを連続して噴射した場合断続的に噴射
したときより除去速度は低下する。
In the table, the condition 31 is the distance 500 mm (condition 24) at which the removal rate was the largest under the conditions 23 to 25 and the conditions 26 to 30 and the injection gas flow rate 140 m / s.
At ec (condition 30), the injection gas was continuously injected to remove solidified matter. When gas is continuously injected, the removal rate is lower than when intermittently injected.

【0024】噴射ガスは酸素に限定するものでなく、溶
融物を飛散できる気体であれば良く、例えば空気、窒素
等が使用できる。噴射ガスの噴射方向は、溶融物が生成
する方向に集中するよう傾けることで除去速度の向上が
図れる。燃料ガスとしてプロパン−酸素に限定するもの
でなく、固化物を金属アルミと酸化鉄の混合材料の着火
温度まで瞬時に加熱でき、かつ、燃料ガスの火炎中で金
属アルミと酸化鉄の混合材料を固化物表面で瞬時に着火
するよう加熱できる、例えばアセチレン−酸素、COG
−酸素、プロパン−空気、アセチレン−空気、COG−
空気等であっても良い。
The injection gas is not limited to oxygen, but may be any gas that can scatter the melt, such as air and nitrogen. The removal rate can be improved by inclining the injection direction of the injection gas so as to concentrate on the direction in which the melt is generated. The fuel gas is not limited to propane-oxygen, and the solidified material can be instantaneously heated to the ignition temperature of the mixed material of metallic aluminum and iron oxide, and the mixed material of metallic aluminum and iron oxide can be heated in the fuel gas flame. Can be heated to ignite instantly on the solidified surface, eg acetylene-oxygen, COG
-Oxygen, propane-air, acetylene-air, COG-
It may be air or the like.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【実施例】本発明方法を実施するための第1実施例の除
去装置の断面図(a)及び正面図(b)を図3に示す。
図3において、金属アルミと酸化鉄の混合材料および燃
料ガスを噴射する除去装置6は、金属アルミと酸化鉄の
混合材料を噴射する材料孔1を中央に配置し、材料孔1
の周囲に複数の燃料ガス噴射孔2を材料孔1の同心円上
に多段に周設している。材料孔1を除去装置6の中央に
配置したのは、金属アルミと酸化鉄の混合材料を搬送ガ
スにより固化物表面に集中させて衝突させるためであ
る。燃料ガス噴射孔2は金属アルミと酸化鉄の混合材料
が衝突する固化物面を燃料ガスの火炎で照射する必要が
あるため、材料孔1の周囲に配置する。
FIG. 3 is a sectional view (a) and a front view (b) of a removing apparatus according to a first embodiment for carrying out the method of the present invention.
In FIG. 3, the removing device 6 for injecting the mixed material of metallic aluminum and iron oxide and the fuel gas arranges the material hole 1 for injecting the mixed material of metallic aluminum and iron oxide at the center.
A plurality of fuel gas injection holes 2 are provided around the concentric circle of the material hole 1 in multiple stages. The material hole 1 is arranged at the center of the removing device 6 in order to cause the mixed material of metallic aluminum and iron oxide to concentrate and collide with the solidified material surface by the carrier gas. The fuel gas injection hole 2 is arranged around the material hole 1 because it is necessary to irradiate the solidified surface where the mixed material of metal aluminum and iron oxide collides with the flame of the fuel gas.

【0027】転炉炉口の固化物(地金、スラグ)除去時
の外観図である図1において、固化物8は炉内側の内張
耐火物と炉外側の鉄皮を付着母材としている。固化物8
に対して除去装置6を距離Lの位置に保持し、燃料ガス
噴射孔2から予混合したプロパン、酸素を噴射して固化
物8の温度で着火した。
In FIG. 1, which is an external view of a converter furnace at the time of removing solidified material (metal, slag) from the furnace mouth, the solidified material 8 uses a refractory lining inside the furnace and a steel shell outside the furnace as a base material. . Solidification 8
, The propane and oxygen premixed were injected from the fuel gas injection hole 2 to ignite at the temperature of the solidified material 8.

【0028】固化物8の除去開始部の表面温度は燃料ガ
ス燃焼後約10秒で金属アルミと酸化鉄の混合材料が着
火する温度(約1200℃)に達した。この時点で金属
アルミと酸化鉄の混合材料を噴射し、固化物の溶融と同
時に溶流して除去が始まる。ここで燃料ガスの火炎は固
化物8の表面温度が金属アルミと酸化鉄の混合材料の着
火温度以上となるように保持する。金属アルミと酸化鉄
の混合材料の燃焼温度は固化物の融点に対して十分高い
ため生成した溶融物の粘性は低く、溶融物生成と同時に
除去部から溶流し新たな固化物面を露出する。
The surface temperature at the start of the removal of the solidified material 8 reached a temperature (about 1200 ° C.) at which the mixed material of metallic aluminum and iron oxide ignited about 10 seconds after burning the fuel gas. At this point, a mixed material of metal aluminum and iron oxide is sprayed, and the solidified material is melted at the same time as the molten material, and the removal starts. Here, the flame of the fuel gas is maintained such that the surface temperature of the solidified material 8 becomes equal to or higher than the ignition temperature of the mixed material of metallic aluminum and iron oxide. Since the combustion temperature of the mixed material of metal aluminum and iron oxide is sufficiently high with respect to the melting point of the solidified material, the viscosity of the generated molten material is low.

【0029】このように溶融物生成、溶流、固化物面露
出を繰り返すことにより除去が継続して行なえ、除去途
中に除去装置6を移動することにより除去は移動方向に
沿って行なわれる。ここで、燃料ガス量、距離L、金属
アルミと酸化鉄の粒径および金属アルミの配合割合の各
数値は表1の条件12と同一にした。しかし、距離Lは
固化物表面に凹凸があるため600〜1000mmの範
囲で変動した。
As described above, the removal can be continued by repeating the generation of the melt, the flow of the melt, and the exposure of the solidified surface, and the removal is performed along the moving direction by moving the removing device 6 during the removal. Here, the numerical values of the fuel gas amount, the distance L, the particle size of the metal aluminum and the iron oxide, and the mixing ratio of the metal aluminum were the same as the condition 12 in Table 1. However, the distance L fluctuated in the range of 600 to 1000 mm due to irregularities on the surface of the solidified material.

【0030】転炉炉口全周にわたり原料装入容器が挿入
できない程度に付着していた固化物を除去した結果を鉄
製パイプから酸素を噴射させる従来法1と燃料ガス、鉄
粉末と共に酸素を噴射する従来法2と比較して表3に示
す。
The conventional method of injecting oxygen from an iron pipe and injecting oxygen together with fuel gas and iron powder, the result of removing solidified material adhering to the extent that the raw material charging container cannot be inserted over the entire periphery of the converter furnace opening, and injecting oxygen together with fuel gas and iron powder The results are shown in Table 3 in comparison with the conventional method 2.

【0031】スラグ、地金の混在した固化物は転炉炉口
の全周にわたって平均厚さ1000mmで付着してい
た。本発明では、操業間の時間(20分)で炉口全周に
わたり厚さ100mmの固化物を残して除去できた。こ
れに対し従来法1、2では、本発明の3倍の時間を掛け
たが炉口全周の1/3あるいは2/3しか除去できず、
しかも除去できなかった固化物の厚さは除去前の1/2
と多く、次回操業後に再度除去せねばならない状況のた
め操業効率が著しく低下する。
The solidified material in which the slag and the ingot were mixed adhered with an average thickness of 1000 mm over the entire circumference of the converter furnace port. In the present invention, it was possible to remove the solidified material having a thickness of 100 mm over the entire circumference of the furnace port in the time between operations (20 minutes). On the other hand, in the conventional methods 1 and 2, it took three times as long as the present invention, but only 1/3 or 2/3 of the entire circumference of the furnace opening could be removed.
Moreover, the thickness of the solid matter that could not be removed is 1 / of that before removal.
In many cases, the operation must be removed again after the next operation, which significantly reduces the operation efficiency.

【0032】[0032]

【表3】 [Table 3]

【0033】本発明方法を実施するための第2実施例の
除去装置の断面図(a)及び正面図(b)を図4に示
す。図4において、金属アルミと酸化鉄の混合材料、燃
料ガスと共にガスを噴射す除去装置7は、金属アルミと
酸化鉄の混合材料を噴射する材料孔1を中央に配置し、
材料孔1の周囲に複数の燃料ガス噴射孔2を材料孔1の
同心円上に多段に周設し、材料孔1と最内周の燃料ガス
噴射孔2の間に複数のガス噴射孔3を各ガス噴射孔3の
噴射方向4が材料孔1の噴射方向5に向くように周設し
ている。
FIG. 4 shows a sectional view (a) and a front view (b) of a removing apparatus according to a second embodiment for carrying out the method of the present invention. In FIG. 4, a removing device 7 for injecting a gas together with a mixed material of metallic aluminum and iron oxide and a fuel gas arranges a material hole 1 for injecting a mixed material of metallic aluminum and iron oxide in the center,
A plurality of fuel gas injection holes 2 are provided around the material hole 1 in multiple stages on a concentric circle of the material hole 1, and a plurality of gas injection holes 3 are provided between the material hole 1 and the innermost fuel gas injection hole 2. The gas injection holes 3 are provided so that the injection direction 4 of the gas injection holes 3 is directed to the injection direction 5 of the material holes 1.

【0034】材料孔1を除去装置7の中央に配置したの
は、金属アルミと酸化鉄の混合材料を搬送ガスにより固
化物表面に集中させて衝突させるためである。ガス噴射
孔3を材料孔1と燃料ガス噴射孔2の間に配置したの
は、金属アルミと酸化鉄の混合材料を固化物表面衝突時
に燃焼して生成した溶融物が溶流を阻害され継続して除
去できない場合に、滞留した溶融物を飛散させるため配
置しており、燃料ガス噴射孔2の外周に配置してもガス
噴射孔3から噴射するガスが燃料ガスの火炎に隔てられ
ているため滞留している溶融物の飛散効率が悪くなる。
The material hole 1 is arranged at the center of the removing device 7 in order to cause the mixed material of metallic aluminum and iron oxide to concentrate and collide with the solidified material surface by the carrier gas. The gas injection holes 3 are disposed between the material holes 1 and the fuel gas injection holes 2 because the melt produced by burning a mixed material of metallic aluminum and iron oxide at the time of collision with the solidified material is hindered by the melt flow and continues. When it is not possible to remove the melted gas, it is arranged to scatter the retained melt. Even if it is arranged on the outer periphery of the fuel gas injection hole 2, the gas injected from the gas injection hole 3 is separated by the flame of the fuel gas. Therefore, the scattering efficiency of the staying molten material is deteriorated.

【0035】また、各ガス噴射孔3の噴射方向4を材料
孔1の噴射方向5に向くようしたのは、滞留している溶
融物にガス噴射孔3から噴射するガスを集中させるため
である。燃料ガス噴射孔2は金属アルミと酸化鉄の混合
材料が衝突する固化物面を燃料ガスの火炎で照射するこ
とと、前記のガス噴射孔3から噴射するガスを滞留して
いる溶融物の飛散を効率よく行なうため、材料孔1、ガ
ス噴射孔3の外周に配置する。
The reason why the injection direction 4 of each gas injection hole 3 is directed to the injection direction 5 of the material hole 1 is to concentrate the gas injected from the gas injection holes 3 on the retained molten material. . The fuel gas injection hole 2 irradiates the solid material surface where the mixed material of metallic aluminum and iron oxide collides with the flame of the fuel gas, and the scattering of the molten material retaining the gas injected from the gas injection hole 3. In order to perform the process efficiently, they are arranged on the outer periphery of the material hole 1 and the gas injection hole 3.

【0036】取鍋炉口の固化物(地金とスラグ)除去時
の外観図である図2において、固化物11は炉内側の内
張耐火物を付着母材としている。固化物11に対して除
去装置7を距離Mの位置に保持し、燃料ガス噴射孔2か
ら予め混合したプロパン、酸素を噴射してコークス炉ガ
スを燃料とする点火トーチにより着火した。
In FIG. 2, which is an external view of the ladle furnace opening when solidified materials (metal and slag) are removed, the solidified material 11 uses a refractory lining inside the furnace as an adhesion base material. The removing device 7 was held at a position of a distance M with respect to the solidified material 11, and propane and oxygen mixed in advance were injected from the fuel gas injection holes 2 to ignite with an ignition torch using coke oven gas as fuel.

【0037】固化物11の除去開始部の表面温度は、燃
料ガス燃焼後約12秒で金属アルミと酸化鉄の混合材料
が着火する温度(約1200℃)に達した。この時点で
金属アルミと酸化鉄の混合材料を噴射し、固化物の溶融
と同時に溶流して除去が始まる。ここで燃料ガスの火炎
は固化物11の表面温度が金属アルミと酸化鉄の混合材
料の着火温度以上となるように保持する。金属アルミと
酸化鉄の混合材料の燃焼温度は固化物の融点に対して十
分高いため生成した溶融物の粘性は低く、溶融物生成と
同時に除去部から溶流し新たな固化物面を露出する。
The surface temperature at the start of the removal of the solidified material 11 reached a temperature (about 1200 ° C.) at which the mixed material of metallic aluminum and iron oxide ignited about 12 seconds after the combustion of the fuel gas. At this point, a mixed material of metal aluminum and iron oxide is sprayed, and the solidified material is melted at the same time as the molten material, and the removal starts. Here, the flame of the fuel gas is maintained such that the surface temperature of the solidified material 11 becomes equal to or higher than the ignition temperature of the mixed material of metallic aluminum and iron oxide. Since the combustion temperature of the mixed material of metal aluminum and iron oxide is sufficiently high with respect to the melting point of the solidified material, the viscosity of the generated molten material is low.

【0038】このように溶融物生成、溶流、固化物面露
出を繰り返すことにより除去が継続して行なえ、除去途
中に除去装置7を移動することにより除去は移動方向に
沿って行なわれる。しかし、固化物の付着位置(例えば
水平状態)、除去部の固化物形状(例えば除去部が周囲
に対して凹状)、溶融物生成量(固化物の融点が低く溶
流量が制約される)等により溶融物が除去部に滞留する
場合がある。その場合、ガス噴射孔3よりガスを噴射し
て溶融物を飛散させる。溶融物が滞留しなくなった場合
は噴射ガスを停止し、再度溶融物が滞留するとガスを噴
射する。このように、溶融物の滞留状況からガスの噴
射、停止を行い除去部に溶融物が滞留しないようガスの
噴射を制御する。
As described above, the removal can be continued by repeating the generation of the melt, the flow of the melt, and the exposure of the surface of the solidified material, and the removal is performed along the moving direction by moving the removing device 7 during the removal. However, the position where the solidified material is attached (for example, in a horizontal state), the shape of the solidified material in the removed portion (for example, the removed portion is concave with respect to the surroundings), the amount of melt produced (the melting point of the solidified material is low and the melt flow rate is restricted), etc. This may cause the melt to stay in the removal section. In this case, a gas is injected from the gas injection holes 3 to scatter the melt. When the melt no longer stays, the injection gas is stopped, and when the melt stays again, the gas is injected. In this manner, gas injection and stop are performed based on the stagnation state of the melt, and the gas injection is controlled so that the melt does not stagnate in the removing unit.

【0039】ここで、燃料ガス量、距離M、金属アルミ
と酸化鉄の粒径、金属アルミの配合割合およびガス噴射
速度の各数値は表2の条件30と同一にした。しかし、
距離Mは固化物表面に凹凸があるため400〜700m
mの範囲で変動した。また、ガス噴射速度は、溶融物の
滞留状況からガス流速が100〜140m/secとな
るよう酸素ガスの流量で制御し、かつ、ガスの噴射およ
び停止も制御した。
Here, the values of the fuel gas amount, the distance M, the particle size of the metal aluminum and iron oxide, the mixing ratio of the metal aluminum, and the gas injection speed were the same as the conditions 30 in Table 2. But,
The distance M is 400 to 700 m because the surface of the solidified material has irregularities.
m. In addition, the gas injection speed was controlled by the flow rate of the oxygen gas so that the gas flow rate was 100 to 140 m / sec based on the retention state of the melt, and the injection and stop of the gas were also controlled.

【0040】取鍋炉口全周にわたり、脱ガス設備が設置
できない程度に付着していた固化物を除去した結果を鉄
製パイプから酸素を噴射させる従来法1と燃料ガス、鉄
粉末と共に酸素を噴射する従来法2と比較して表4に示
す。スラグ、地金の混在した固化物は取鍋炉口の全周に
わたって平均厚さ500mmで付着していた。本発明で
は、操業上許される時間(20分)で炉口全周にわたり
厚さ50mmの固化物を残して除去できた。これに対し
従来法1、2では、本発明の約3倍の時間を掛けたが炉
口全周の1/4あるいは1/3しか除去できず、しかも
除去できなかった固化物の厚さは除去前の3/5と多
く、操業できないため内張耐火物の損傷を覚悟に解体機
による機械除去を行った。このように解体機による除
去、内張耐火物の損傷部補修により操業に著しく支障を
きたした。
A conventional method of injecting oxygen from an iron pipe using the result of removing solidified material adhering to the extent that a degassing facility cannot be installed over the entire circumference of the ladle furnace mouth, and injecting oxygen together with fuel gas and iron powder Table 4 shows a comparison with the conventional method 2. The solidified material in which the slag and the ingot were mixed was attached with an average thickness of 500 mm over the entire circumference of the ladle opening. In the present invention, it was possible to remove the solidified material having a thickness of 50 mm over the entire circumference of the furnace port in a time allowed for operation (20 minutes). On the other hand, in the conventional methods 1 and 2, it took about three times as long as that of the present invention, but only 1/4 or 1/3 of the entire circumference of the furnace opening could be removed. Since the operation was not possible due to the large 3/5 before the removal, the machine was removed by a dismantling machine in preparation for damage to the refractory lining. In this way, removal by the demolition machine and repair of the damaged part of the refractory lining significantly hindered the operation.

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【発明の効果】本発明により、固化物の温度、付着状
態、浮遊滞留状態に影響を受けず、高速かつ、安定した
除去速度で固化物を溶融除去できるため、第1実施例の
固化物除去結果の表3では従来法に比し1/3の除去時
間でほぼ全量の固化物を除去できた。また、第2実施例
の固化物除去結果の表4では従来法に比し1/3以下の
除去時間でほぼ全量の固化物を除去できた。このように
短時間で固化物を除去できるため、操業への影響は皆無
であった。
According to the present invention, the solidified material can be melted and removed at a high speed and at a stable removal rate without being affected by the temperature, the adhesion state, and the suspended state of the solidified material. In Table 3 of the results, almost the entire amount of solidified material could be removed in one-third the removal time compared to the conventional method. In addition, in Table 4 of the solidified matter removal results of the second example, almost the entire amount of solidified matter could be removed in less than 1/3 of the conventional method. Since the solidified material can be removed in such a short time, there was no influence on the operation.

【0043】また、本発明方法は、取鍋等の溶融金属容
器に収容された溶融金属湯面上に浮遊する固化スラグの
溶融除去に用いれば、溶融金属の精錬処理中のサンプリ
ング、温度測定時のスラグ割りを不要としプローブを迅
速に溶融金属中に浸漬することができる。また、この
際、溶融化したスラグの再固化を防止し、数回のプロー
ブ浸漬を可能とするため保温材を添加しておくこともで
きる等の優れた効果をもたらすものである。
Further, the method of the present invention can be used for melting and removing solidified slag floating on the surface of a molten metal contained in a molten metal container such as a ladle. The probe can be quickly immersed in the molten metal without the need for slag splitting. Further, at this time, an excellent effect of preventing solidification of the molten slag and adding a heat insulating material to enable several times of probe immersion can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の転炉炉口の固化物除去時
の外観を示した図。
FIG. 1 is a diagram showing an appearance of a converter furnace opening according to a first embodiment of the present invention when solidified material is removed.

【図2】本発明の第2実施例の取鍋炉口の固化物除去時
の外観を示した図。
FIG. 2 is a view showing an appearance of a ladle furnace opening according to a second embodiment of the present invention when solidified material is removed.

【図3】本発明の第1実施例の転炉炉口の固化物除去に
使用した除去装置を示した図であり(a)は断面図、
(b)は正面図。
FIG. 3 is a diagram showing a removing apparatus used for removing solidified material from a converter furnace mouth according to a first embodiment of the present invention, wherein (a) is a sectional view,
(B) is a front view.

【図4】本発明の第2実施例の取鍋炉口の固化物除去に
使用した除去装置を示した図であり(a)は断面図、
(b)は正面図。
FIG. 4 is a view showing a removing device used for removing solidified material from a ladle furnace opening according to a second embodiment of the present invention, wherein (a) is a sectional view,
(B) is a front view.

【符号の説明】[Explanation of symbols]

1 材料孔 2 燃料ガス噴射孔 3 ガス噴射孔 4 ガス噴射孔の噴射方向 5 材料孔の噴射方向 6、7 除去装置 8、11 固化物 L、M 除去装置と固化物間の距離 DESCRIPTION OF SYMBOLS 1 Material hole 2 Fuel gas injection hole 3 Gas injection hole 4 Injection direction of gas injection hole 5 Injection direction of material hole 6, 7 Removal device 8, 11 Solidified material L, M Distance between removal device and solidified material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F27D 3/15 F27D 23/02 C21C 5/46 104 C10B 43/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F27D 3/15 F27D 23/02 C21C 5/46 104 C10B 43/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】材料孔を中央に配置し、その周囲に複数の
燃料ガス噴射孔を材料孔の同心円上に多段に周設して地
金、スラグ等の固化物を溶融除去する方法において、燃
料ガス噴射孔から燃料ガスを噴射すると共に、材料孔か
ら粒径0.15mm以下の金属アルミ15〜60wt
%、残部が粒径0.4mm以下の酸化鉄からなる混合材
料を噴射して地金、スラグ等の固化物を溶融除去するこ
とを特徴とする地金、スラグ等の固化物溶融除去方法。
1. A method of disposing solid material such as metal, slag, etc. by disposing a material hole in the center and surrounding a plurality of fuel gas injection holes around the concentric circle of the material hole in multiple stages. The fuel gas is injected from the fuel gas injection hole, and the metal aluminum having a particle size of 0.15 mm or less 15 to 60 wt.
%, And a solid material such as ingots and slag is melted and removed by injecting a mixed material composed of iron oxide having a particle size of 0.4 mm or less with the balance being 0.4 mm or less.
【請求項2】材料孔を中央に配置し、その周囲に複数の
燃料ガス噴射孔を材料孔の同心円上に多段に周設し、材
料孔と最内周の燃料ガス噴射孔の間に複数のガス噴射孔
を周設して地金、スラグ等の固化物を溶融除去する方法
において、燃料ガス噴射孔から燃料ガスを噴射すると共
に、材料孔から粒径0.15mm以下の金属アルミ15
〜60wt%、残部が粒径0.4mm以下の酸化鉄から
なる混合材料を噴射すると共に、前記ガス噴射孔からガ
ス噴射孔出口でのガス流速100m/sec以上となる
ように固化物表面の除去部に噴射して地金、スラグ等の
固化物を溶融除去することを特徴とする地金、スラグ等
の固化物溶融除去方法。
2. A material hole is disposed at the center, a plurality of fuel gas injection holes are provided around the material hole in multiple stages on a concentric circle of the material hole, and a plurality of fuel gas injection holes are provided between the material hole and the innermost fuel gas injection hole. In the method of melting and removing solidified material such as ingots and slag by surrounding gas injection holes, a fuel gas is injected from the fuel gas injection holes, and a metal aluminum 15 having a particle size of 0.15 mm or less is formed from the material holes.
A mixed material consisting of iron oxide having a particle size of 0.4 mm or less and a balance of not more than 60 wt% is injected, and the solidified material surface is removed so that the gas flow rate from the gas injection hole to the gas injection hole outlet is 100 m / sec or more. A method for melting and removing solidified materials such as ingots and slag by injecting into a part to melt and remove solidified materials such as ingots and slag.
JP31246793A 1993-10-25 1993-10-25 Method for melting and removing solids such as ingots and slag Expired - Fee Related JP2967256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31246793A JP2967256B2 (en) 1993-10-25 1993-10-25 Method for melting and removing solids such as ingots and slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31246793A JP2967256B2 (en) 1993-10-25 1993-10-25 Method for melting and removing solids such as ingots and slag

Publications (2)

Publication Number Publication Date
JPH07120167A JPH07120167A (en) 1995-05-12
JP2967256B2 true JP2967256B2 (en) 1999-10-25

Family

ID=18029556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31246793A Expired - Fee Related JP2967256B2 (en) 1993-10-25 1993-10-25 Method for melting and removing solids such as ingots and slag

Country Status (1)

Country Link
JP (1) JP2967256B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578749B1 (en) * 2001-07-13 2006-05-12 주식회사 포스코 Removal method of rebound loss

Also Published As

Publication number Publication date
JPH07120167A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US6805724B2 (en) Method for particulate introduction for metal furnaces
HU215723B (en) Process for producing metal and/or metal alloys in melt reducing ladle and ladle for this process
KR20050008809A (en) Refining ferroalloys
JP2967256B2 (en) Method for melting and removing solids such as ingots and slag
JPH10176212A (en) Method for preventing flow-out of slag at the time of discharging molten steel
WO2009145084A1 (en) Gas cupola for melting metal
EP0816517B1 (en) Preventing skull accumulation on a steelmaking lance
JP4689782B2 (en) Method for coating slag on converter furnace wall and method for managing converter furnace bottom during slag coating
JPS5930468A (en) Removing method of clogging in nozzle
JP3515043B2 (en) Method and apparatus for removing lance insertion port of vacuum refining vessel
JP4455791B2 (en) Coating method for refractories in the furnace
JP2897656B2 (en) How to remove ingots in converter
JP3297797B2 (en) Lance and method of removing ingots in furnace using the lance
JP3256408B2 (en) Equipment for removing adhered molten metal
JP2851552B2 (en) Oxygen blowing lance
JP7485939B2 (en) Apparatus for melting pig iron and method for melting pig iron
JP2575076B2 (en) Removal method of slag and slag adhering to refractory container
JP2851554B2 (en) Oxygen blowing lance
JP2575075B2 (en) Removal method of slag and slag adhering to refractory container
JPH11279619A (en) Method for removing lance deposit for refing molten metal and device therefor
JP2011208267A (en) Top-blown lance for converter, and converter refining method
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JPH07109352B2 (en) Device for removing deposits of molten metal container and method for removing the same
JPS58666Y2 (en) Air crushed slag production equipment
JPH0741815A (en) Method for coating slag on furnace bottom and furnace wall surface in converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990622

LAPS Cancellation because of no payment of annual fees