JP2967159B2 - Film thickness measurement method - Google Patents

Film thickness measurement method

Info

Publication number
JP2967159B2
JP2967159B2 JP15948390A JP15948390A JP2967159B2 JP 2967159 B2 JP2967159 B2 JP 2967159B2 JP 15948390 A JP15948390 A JP 15948390A JP 15948390 A JP15948390 A JP 15948390A JP 2967159 B2 JP2967159 B2 JP 2967159B2
Authority
JP
Japan
Prior art keywords
film thickness
film
ray
measuring
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15948390A
Other languages
Japanese (ja)
Other versions
JPH0450715A (en
Inventor
聖一 板橋
育夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15948390A priority Critical patent/JP2967159B2/en
Publication of JPH0450715A publication Critical patent/JPH0450715A/en
Application granted granted Critical
Publication of JP2967159B2 publication Critical patent/JP2967159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高精度な膜厚測定法に関するものである。Description: TECHNICAL FIELD The present invention relates to a highly accurate film thickness measuring method.

(従来の技術) 蒸着やスパッタリング、あるいはCVD法により形成し
た薄膜の厚さの測定に用いられる従来の測定方法は、2
種類ある。その一つは、表面に薄膜を形成した部分と、
薄膜を形成していない基板表面が露出している部分との
段差を利用して薄膜の厚さを測定する方法である。これ
らには、(1)先端が細い針で表面を走引しながら、表
面の凹凸の変化を静電容量の変化などに変換して信号を
取り出し測定する触針式、(2)表面に光を照射して光
学的な干渉模様を投影し、干渉模様の変化量で測定する
光干渉法、(3)表面にレーザ光を照射して、表面から
の反射光の強度変化から測定するレーザ反射法、(4)
直接、段差を電子顕微鏡などで観測して測定する方法、
などがある。他の一つは、光学的に透過する薄膜の厚さ
を図る方法であり、(5)薄膜表面での反射光と、基板
表面からの反射光の干渉を利用した光干渉法、(6)光
の偏向角変化を測定して膜厚を図る光偏向法(エリプソ
法)、(7)特性X線を照射してその減衰率から膜厚を
測定する方法、などがある。
(Prior Art) Conventional measuring methods used for measuring the thickness of a thin film formed by vapor deposition, sputtering, or CVD method include the following two methods.
There are types. One of them is a thin film formed on the surface,
This is a method of measuring the thickness of a thin film by using a step with a portion where a substrate surface where a thin film is not formed is exposed. These include (1) a stylus type that converts the change in surface irregularities into a change in capacitance while taking the surface with a thin needle and extracts and measures the signal. (3) Laser reflection by irradiating the surface with laser light and measuring the change in the intensity of light reflected from the surface by projecting an optical interference pattern and measuring the amount of change in the interference pattern Law, (4)
A method of directly measuring and measuring steps with an electron microscope, etc.
and so on. Another method is to measure the thickness of an optically transparent thin film, (5) an optical interference method using interference between light reflected on the surface of the thin film and light reflected from the surface of the substrate, and (6). There are an optical deflection method (ellipso method) for measuring the change in the deflection angle of light to measure the film thickness, and (7) a method for irradiating characteristic X-rays and measuring the film thickness from the attenuation factor.

(発明が解決しようとする課題) 上記の(1)から(4)の、薄膜と基板表面との段差
を測定する膜厚測定では、測定する試料に段差を形成す
る必要がある。そのためには、薄膜形成時に、試料表面
をマスクして段差を形成したり、あるいは、作成した薄
膜の一部をエッチング、または機械的に削除するなどし
て、薄膜下の基板表面を露出した後に、測定せねばなら
ない。これらの方法では、薄膜の材料に関係なく金属や
無機物、有機物でも測定できるが、測定するための試料
作製に時間を要し、容易でない。さらに、基板の粗さが
大きい場合や、薄膜と基板間に作用する応力で薄膜と基
板の境界部で試料が歪んだ場合、10nm以下の膜厚になる
と高い精度で測定が困難になる。
(Problems to be Solved by the Invention) In the film thickness measurement (1) to (4) for measuring a step between a thin film and a substrate surface, it is necessary to form a step on a sample to be measured. For this purpose, when forming a thin film, the surface of the sample under the thin film is exposed by masking the sample surface to form a step, or etching or mechanically removing a part of the formed thin film. Must be measured. These methods can measure metals, inorganic substances, and organic substances irrespective of the material of the thin film. However, it takes time to prepare a sample for measurement, which is not easy. Further, when the roughness of the substrate is large, or when the sample is distorted at the boundary between the thin film and the substrate due to the stress acting between the thin film and the substrate, it becomes difficult to measure with high accuracy when the thickness is 10 nm or less.

上記の(5)と(6)の光学的な方法では、膜厚が10
nm以下でも十分に測定でき、特別に膜厚測定をするため
の段差などを作成する必要もない。しかし、光を透過す
る材料に限定され、膜厚が測定できる対象が狭く、金属
薄膜などでは測定ができない。
In the optical methods (5) and (6), the film thickness is 10
The measurement can be performed sufficiently even at nm or less, and there is no need to create a step for measuring the film thickness. However, it is limited to a material that transmits light, and the target whose film thickness can be measured is narrow, and measurement cannot be performed with a metal thin film or the like.

上記(7)のX線の透過率で薄膜の膜厚を測定する方
法では、第一にX線を十分に透過するような薄い基板上
に薄膜を形成する必要があるために、測定できる対象は
非常に限定される。
In the method (7) for measuring the thickness of a thin film based on the transmittance of X-rays, first, it is necessary to form the thin film on a thin substrate that sufficiently transmits X-rays. Is very limited.

これらの結果から従来、膜の材質や基板に関係なく、
また、試料に段差をつくる必要がなく、0.1nm〜100nmの
膜厚を高精度に測定できる測定法はなかった。特に、光
学的に不透明である金属薄膜の膜厚測定は、段差を利用
した測定法が用いられており、10nm以下の膜厚の測定で
は高精度な測定が困難であった。
From these results, conventionally, regardless of the film material and substrate,
In addition, there is no need to form a step in the sample, and there is no measurement method capable of measuring a film thickness of 0.1 nm to 100 nm with high accuracy. In particular, the thickness of an optically opaque metal thin film is measured using a step, and it is difficult to measure with a thickness of 10 nm or less with high accuracy.

本発明は、上記の欠点を改善するために提案されたも
ので、その目的は膜の材質や基板に依存せず、膜厚を高
精度に測定でき、試料に段差を作る必要のない、薄膜の
膜厚測定方法を提供することにある。
The present invention has been proposed in order to improve the above-mentioned drawbacks, and its purpose is to measure the film thickness with high accuracy without depending on the material and substrate of the film, and it is not necessary to form a step on the sample, and the thin film is used. To provide a method for measuring the film thickness.

(課題を解決するための手段) 上記の目的を達成するため本発明は被測定膜の斜め方
向からX線を照射し、そのX線の反射率を測定し、膜厚
dを次式すなわち ここに、 r01は真空中における複素屈折率n1のX線反射率 r02は真空中における複素屈折率n2のX線反射率 λはX線の波長 δは物質によって定まる定数 βは物質によって定まる定数 φはn0cosθ=n2cosφによって定められる値でn1,n2
は複素屈折率、θは入反射角であり より求めることを特徴とする膜厚測定法を発明の要旨
とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention irradiates the film to be measured with X-rays from an oblique direction, measures the X-ray reflectance, and calculates the film thickness d by the following formula: Here, r 01 is the X-ray reflectivity of the complex refractive index n 1 in vacuum r 02 is the X-ray reflectivity of the complex refractive index n 2 in vacuum λ is the wavelength of X-rays δ 1 is a constant β 1 determined by a substance Is a constant determined by the substance φ is a value determined by n 0 cos θ = n 2 cos φ n 1 , n 2
Is a complex refractive index, and θ is an incident / reflection angle.

(作用) 複素屈折率の異なる媒質の間の反射率r02はフレネル
(Fersnel)の複素振幅の式(1)で表わされることが
知られている。
(Operation) It is known that the reflectance r 02 between media having different complex refractive indices is expressed by the equation (1) of the complex amplitude of Fresnel.

ここで、θは斜入射角、 は、屈折角で、関係を第1図に示す、n0,n2は複素屈折
率で、物質の光学定数δ,βを用いて(2)式で表わさ
れる。
Where θ is the oblique incidence angle, Is a refraction angle, and the relationship is shown in FIG. 1. n 0 and n 2 are complex refractive indices, which are expressed by equation (2) using optical constants δ and β of the substance.

δ,βは元素に固有の値である。また、角度φは、スネ
ル(Snell)の法則(3)から求めることができる。
δ and β are values specific to the element. Further, the angle φ can be obtained from Snell's law (3).

n0cosθ=n2cosφ (3) δ,βは、物質あるいはX線の波長によって異なる
が、ヘンク(Henke)〔アトミイク データ アンド
ニユクレア データ テーブル(ATOMIC DATE AND NUCL
EAR DATA TABLES 27.1-144)(1982)〕等によって表に
まとめられている。また、数種類の元素からなる化合物
についても、計算することができるため、既知の値とし
て用いることができる。
n 0 cos θ = n 2 cos φ (3) Although δ and β differ depending on the substance or the wavelength of the X-ray, Henke [Atomik Data and
NIUCLEA DATA TABLE (ATOMIC DATE AND NUCL
EAR DATA TABLES 27.1-144) (1982)]. In addition, since a compound composed of several kinds of elements can be calculated, it can be used as a known value.

通常、X線の反射率として測定できるのは、複素振幅
の絶対値の2乗であり、式(4)で表わされる。
Usually, what can be measured as the X-ray reflectivity is the square of the absolute value of the complex amplitude, and is expressed by equation (4).

複素屈折率がそれぞれn0,n1の媒質の間の反射率(第
2図)も同様に表わされる。式(5)〜(8)で表わさ
れる。
The reflectance between the media having complex refractive indices n 0 and n 1 (FIG. 2) is similarly represented. Expressions (5) to (8) are used.

n1=1−δ−iβ (6) n0cosθ=n1cosφ (7) 次に、第3図に示すように複素屈折率がn2の基板上
に、n1の単層膜がある場合(両膜とも真空中にある)の
反射率を示す。バーニングによれば、r01,r02を用いる
と、単層膜からの反射率は式(9)で表わされる。
n 1 = 1−δ 1 −iβ 1 (6) n 0 cos θ = n 1 cos φ (7) Next, on the substrate complex refractive index of n 2, as shown in FIG. 3, if there is a single layer film of n 1 the reflectance (in vacuo both membranes). According to burning, when r 01 and r 02 are used, the reflectance from the single-layer film is expressed by Expression (9).

ここでδは、複素屈折率n1の単層膜の厚さがdであると
して で表わされる。
Here, δ is assuming that the thickness of the single-layer film having the complex refractive index n 1 is d. Is represented by

斜入斜角θが、ある角度θより小さな場合、X線は
ほとんど反射される。。この領域を全反射領域という。
臨界角θは、物質の光学定数δを用いて(11)式で表
わされる。
Oblique oblique angle theta is, if smaller than a certain angle theta c, X-rays are hardly reflected. . This area is called a total reflection area.
The critical angle θ c is expressed by equation (11) using the optical constant δ of the substance.

cosθ=1−δ (11) X線領域(波長0.1nm〜10nm)ではδは小さく(<10
-3)、θはほとんどの物質で3.0°以下の値をとる。
cos θ c = 1−δ (11) In the X-ray region (wavelength 0.1 nm to 10 nm), δ is small (<10
-3), θ c has a value of 3.0 ° or less in most materials.

θより大きな角度に対しては、X線の反射率は急激
に減少する。従ってθ>θの領域で |r01|,|r02|≪1の仮定が成り立つ。この仮定のもと
に、(9)式を次のようにr01の項について展開する。
For angles greater than θ c , the X-ray reflectivity sharply decreases. Therefore, the assumption of | r 01 |, | r 02 | ≪1 holds in the region of θ> θ c . Based on this assumption, to expand the section r 01 (9) below as follows.

O(r01 3)はr01に関して3次以上の項である。|r01
|,|r02|≪1であるから、2次以上の項を無視すると、 r012=r02−iδ+(1−e−iδ)r01 (13) と表わされる。実測できる単層膜の反射率R012は|r
012である。
O (r 01 3 ) is a term of third or higher order with respect to r 01 . | r 01
Since |, | r 02 | ≪1, ignoring terms of second and higher order, it is expressed as r 012 = r 02 e− + (1−e− ) r 01 (13) The reflectivity R012 of the single-layer film that can be measured is | r
012 | 2 .

従って、 である。従ってR012は、φの増加に伴って振動する。振
動の周期は、膜厚dに比例するために、振動を測定する
ことによって、膜厚を求めることができる。
Therefore, It is. Therefore, R 012 vibrates as φ increases. Since the cycle of the vibration is proportional to the film thickness d, the film thickness can be obtained by measuring the vibration.

さらに、X線領域では、ほとんどすべての物質でδは
10-3以下と非常に小さいため、すべての物質に対し、1
−δ〜1と類似することができる。
Furthermore, in the X-ray region, δ is almost
Since it is very small at 10 -3 or less, 1
-Δ ~ 1 can be similar.

従って、式(14)及び(7)から、臨界角以上の角度
でX線反射率を測定し、振動の周期ωを求めることによ
って、物質の種類に関係なく、膜厚dを精度良く求める
ことができる。この時ωは と表わされる。
Therefore, from formulas (14) and (7), the X-ray reflectivity is measured at an angle equal to or larger than the critical angle, and the period ω of the vibration is obtained, whereby the film thickness d can be accurately obtained regardless of the type of the substance. Can be. At this time, ω It is expressed as

ここにω:振動の周期 d:膜厚 θ:斜入斜角 n1:複素屈折率 である。Where ω: period of vibration d: film thickness θ: oblique oblique angle n 1 : complex refractive index.

(実施例) 次に本発明の実施例について説明する。(Example) Next, an example of the present invention will be described.

なお実施例は一つの例示であって、本発明の精神を逸
脱しない範囲で、種々の変更あるいは改良を行いうるこ
とは云うまでもない。
The embodiment is merely an example, and it goes without saying that various changes or improvements can be made without departing from the spirit of the present invention.

〔第1の実施例〕 Si(ケイ素)からなる基板の上に、Pt(白金)を形成
し、その膜厚をX線反射率から測定した。
First Example Pt (platinum) was formed on a substrate made of Si (silicon), and the film thickness was measured from X-ray reflectivity.

第4図に、X線反射率測定に用いた装置の構成を示
す。図において1は電子銃、2は金属ターゲットで、こ
の例ではAl(アルミニウム)を用いた。3は、X線フィ
ルターで、薄いBeなどが用いられる。4はスリットで、
5のX線をコリメートしている。X線5の波長は8.34Å
(1‐K線)である。6と7は回転ステージで、6は
サンプル8を、7はX線検出器9をθ‐2θで回転さ
せ、サンプル6のX線反射率を測定する。10は容器てあ
る。空気で減衰される10Å程度の軟X線で測定するとき
は容器10を真空に排除する。PtとSiのλ=8.34Åに対す
る光学定数はそれぞれ、 δPt=1.064×10-3 βPt=3.085×10-4 δSi=1.897×10-4 βSi=8.452×10-6 (16) で非常に小さい。これらの値はヘンク(Henkc)の表
より求めた。SiとPtの臨界角は、それぞれ1.12°,2.64
°である。従ってPtの臨界角以上の角度では、γ01≫γ
02が成り立つ。式(14)は次のように簡略化される。
FIG. 4 shows the configuration of an apparatus used for measuring the X-ray reflectivity. In the figure, 1 is an electron gun, 2 is a metal target, and in this example, Al (aluminum) was used. Reference numeral 3 denotes an X-ray filter made of, for example, thin Be. 4 is a slit,
5 are collimated. The wavelength of X-ray 5 is 8.34Å
(1-K line). Reference numerals 6 and 7 denote rotating stages, 6 rotates the sample 8, and 7 rotates the X-ray detector 9 at θ−2θ, and measures the X-ray reflectance of the sample 6. 10 is a container. When measuring with soft X-rays of about 10 ° attenuated by air, the container 10 is evacuated to a vacuum. The optical constants of Pt and Si with respect to λ = 8.34Å are δ Pt = 1.064 × 10 -3 β Pt = 3.085 × 10 -4 δ Si = 1.897 × 10 -4 β Si = 8.452 × 10 -6 (16) Very small. These values were determined from the Henkc table. The critical angles of Si and Pt are 1.12 ° and 2.64, respectively.
°. Therefore, at angles above the critical angle of Pt, γ 01 ≫γ
02 holds. Equation (14) is simplified as follows.

Pt膜厚がd=300Åであり、λ8.34ÅのX線でX線反
射率を測定した時、第5図に示す振動が観測されるはず
である。また、膜厚dが100Åである場合、振動の周期
は、第6図に示すように、小さくなる。従って、この周
期から膜厚を求めることができる。
When the Pt film thickness is d = 300 ° and the X-ray reflectivity is measured with an X-ray of λ8.34 °, the vibration shown in FIG. 5 should be observed. When the film thickness d is 100 °, the cycle of vibration becomes small as shown in FIG. Therefore, the film thickness can be obtained from this cycle.

第7図に、Pt膜のλ=8.34ÅのX線に対する反射率を
示す。θ=2.64°以上で反射率に振動がみられる。こ
の振動の1周期(2π)を与える斜入射角を、それぞれ
θ,θとする。従って(17)式から が与えられ、m2=m1+1(m1,m2は整数)であるから θ=3.5°、θ=4.15°を与えると、 第7図の点が、実測値であり、実線がd=264Åとし
て計算したX線反射率であり、よく一致する。
FIG. 7 shows the reflectivity of the Pt film to X-rays at λ = 8.34 °. At θ c = 2.64 ° or more, the reflectance shows oscillation. The oblique incident angles giving one cycle (2π) of this vibration are denoted by θ 1 and θ 2 , respectively. Therefore, from equation (17) And m 2 = m 1 +1 (m 1 and m 2 are integers) Given θ 1 = 3.5 ° and θ 2 = 4.15 °, The points in FIG. 7 are the measured values, and the solid line is the X-ray reflectivity calculated with d = 264 °, which agrees well.

〔第2の実施例〕 第8図は、Siの基板上に、絶縁物で、光学的に透明な
石英(SiO2)の薄膜を形成し、X線反射率を測定したも
のである。SiO2の光学定数は、 であり、Siの光学定数 と非常に近い値をもち、光学的にはほとんど同じ物質で
ある。このような物質の組み合わせでも、SiO2の臨界角
1.15°以上で反射率のビートを観測することができる。
ビートの幅から と膜厚を求めることができる。
[Second Embodiment] FIG. 8 shows the result of forming an optically transparent thin film of quartz (SiO 2 ) as an insulator on a Si substrate and measuring the X-ray reflectivity. The optical constant of SiO 2 is Is the optical constant of Si It is a material very close to and optically almost the same material. Even with such a combination of substances, the critical angle of SiO 2
Above 1.15 °, a beat with a reflectance can be observed.
From the width of the beat And the film thickness.

従って、本発明の方法によれば、物質の種類に関係な
く、わずかな光学定数差があれば、膜厚をÅオーダーで
測定することができる。
Therefore, according to the method of the present invention, it is possible to measure the film thickness in the order of Å if there is a slight difference in optical constant regardless of the type of the substance.

〔第3の実施例〕 まず、2枚のSi基板A,Bの上に膜厚d1のCr(クロム)
膜を形成する。基板Aを取り出し、かわりに基板Cを入
れその上に膜厚d2のCr膜を形成する。従って、3種類の
膜厚d1(A),d2(C),d1+d2(B)が得られる。
Third embodiment] First, two sheets of Si substrates A, on the B film thickness d 1 Cr (chromium)
Form a film. The substrate A was taken out, to form a Cr film having a thickness d 2 thereon putting board C instead. Accordingly, three types of film thicknesses d 1 (A), d 2 (C), and d 1 + d 2 (B) are obtained.

この3種類の膜のX線反射率を、それぞれ第9,第10,
第11図に示す。見やすくするために、実験(点線)、計
算値(実線)とも対数をとってある。
The X-ray reflectivities of these three types of films were calculated as ninth, tenth,
As shown in FIG. For the sake of clarity, both the experiment (dotted line) and the calculated value (solid line) are logarithmic.

第9図からは、d1=110Å、第10図からは、d2=290
Å、第11図からはd1+d2=400Åと求められ、よく一致
する。
From FIG. 9, d 1 = 110 °, and from FIG. 10, d 2 = 290 °
Å, from Figure 11 determined to be d 1 + d 2 = 400Å, good agreement.

従って、本発明の方法によれば、Åオーダーの膜厚を
精度良く測定することができる。
Therefore, according to the method of the present invention, a film thickness of the order 膜厚 can be accurately measured.

〔第4の実施例〕 本発明によれば、膜厚測定の分解能は、斜入射角の分
解能に依存する。膜厚を決めるためには、Δθ=θi+1
−θ内に1周期の振動を観測する必要がある。θが小
さい領域ではsinθ〜θであるから 例えば、0.2°より小さな振動の周期を測定すること
が難しいとすると、λ=8.337ÅのX線では1200Å以上
の厚さの膜厚を測定することはできない。また、10°よ
り大きな振動の周期も、X線反射率が急激に減少するこ
とから、測定は難しい。従って、λ=8.337ÅのX線で
は、24Å以下の厚さの膜厚を測定することは難しい。し
かし、λ=1.54ÅのCuK線を用いれば、4.4Å程度の膜厚
測定も可能であり、λ=13.3ÅのCuのL線を用いれば、
1900Åの膜厚まで測定することができる。
Fourth Embodiment According to the present invention, the resolution of the film thickness measurement depends on the resolution of the oblique incident angle. To determine the film thickness, Δθ = θ i + 1
It is necessary to observe the vibrations of one period in the - [theta] i. In the region where θ is small, it is sin θ ~ θ For example, if it is difficult to measure a period of vibration smaller than 0.2 °, it is impossible to measure a film thickness of 1200 ° or more with an X-ray of λ = 8.337 °. In addition, it is difficult to measure the vibration period larger than 10 ° because the X-ray reflectivity sharply decreases. Therefore, it is difficult to measure a film thickness of 24 ° or less with an X-ray of λ = 8.337 °. However, if a CuK line of λ = 1.54 ° is used, it is possible to measure a film thickness of about 4.4 °, and if an L line of Cu of λ = 13.3 ° is used,
It can measure up to a thickness of 1900 mm.

従って、第4図のX線源として、例えばCu(銅)を用
いた場合、K線(波長1.54Å),L線(13.3Å)のX線が
同時に発生するため、X線検出器として、K線とL線を
分離して測定することができる検出器を用い、K線,L線
それぞれの反射率を測定することによって、4Å〜2000
Åの膜厚を測定することができる。X線源のターゲット
としては、Mo,W,Al,Cuはもちろん、どのような物質も使
うことができる。
Therefore, when, for example, Cu (copper) is used as the X-ray source in FIG. 4, X-rays of K-ray (wavelength 1.54 °) and L-ray (13.3 °) are generated at the same time. By measuring the reflectance of each of the K and L lines using a detector that can separate and measure the K and L lines, 4Å to 2000
The film thickness of 膜厚 can be measured. As a target of the X-ray source, any substance can be used as well as Mo, W, Al, and Cu.

〔第5の実施例〕 第12図に、PtのX線反射率測定値を、フーリエ変換し
たものを示す。横軸は振動の周期。ピークの位置から、
膜厚dを求めることができる。
Fifth Embodiment FIG. 12 shows a measured value of the X-ray reflectivity of Pt obtained by performing a Fourier transform. The horizontal axis is the cycle of vibration. From the position of the peak,
The thickness d can be determined.

この方法を用いれば、測定範囲が狭く、測定範囲内に
1周期の振動が入っていない場合でも、dを求めること
ができる利点がある。測定範囲がせまいとピークが広く
ブロードになるため、求める膜厚精度は悪くなる。しか
し、測定範囲を広げ、ピークを鋭くすることで、膜厚測
定精度を上げることができる。
The use of this method has an advantage that d can be obtained even when the measurement range is narrow and there is no one-cycle vibration in the measurement range. If the measurement range is narrow, the peak is broad and broad, so that the required film thickness accuracy is poor. However, by increasing the measurement range and sharpening the peak, the accuracy of film thickness measurement can be improved.

(発明の効果) 以上説明したように、本発明によれば、X線の反射率
の斜入射角に対する振動の周期を測定することで、膜厚
をÅオーダーで精度良く求めることができる。X線は、
ほとんどの物質を透過するため、どのような物質からな
る膜の厚さでも測定でき、しかも、試料に段差などを作
る必要はない。
(Effects of the Invention) As described above, according to the present invention, the film thickness can be accurately obtained in the order of Å by measuring the period of the vibration with respect to the oblique incident angle of the X-ray reflectance. X-rays
Since most substances are transmitted, the thickness of a film made of any substance can be measured, and further, there is no need to make a step on the sample.

さらに、X線の波長を変えることで、1Å〜2000Åの
膜厚を精度良く測定することができる。また、フーリエ
変換を用いることで、振動の1周期を測定できなくと
も、膜厚を求めることができる効果を有する。
Further, by changing the wavelength of the X-ray, a film thickness of 1 to 2000 ° can be accurately measured. Further, by using the Fourier transform, there is an effect that the film thickness can be obtained even if one cycle of vibration cannot be measured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、複素屈折率がn0(=1)とn2(=1−δ
iβ)の界面にX線が入射した時の斜入射角θと、角
度φの関係を示した図。第2図は、複素屈折率がn0(=
1)とn1(=1−δ−iβ)の界面にX線が入射し
た時の斜入射角θと、角度φの関係を示した図、第3図
は、複素屈折率がn2の基板の上の複素屈折率がn1の膜に
X線が入射した時の斜入射角θと、角度φの関係を示し
た図。第4図はX線反射率測定装置の構造を示した図。
第5図は膜厚300ÅのPtのPtの臨界角以上の角度のX線
反射率の計算値と、斜入射角の関係を示した図。第6図
は、膜厚100ÅのPtと、Ptの臨界角以上の角度のX線反
射率の計算値と、斜入射角の関係を示した図。第7図
は、Pt膜のX線反射率と、斜入射角の関係を示した図。
第8図は、SiO2膜のX線反射率と、斜入射角の関係を示
した図。第9図は、膜厚110ÅのCr膜の、X線反射率と
斜入射角の関係を示した図。第10図は、膜厚290ÅのCr
膜の、X線反射率と斜入射角の関係を示した図。第11図
は、膜厚400ÅのCr膜の、X線反射率と斜入射角の関係
を示した図、第12図は、X線反射率のフーリエ変換強度
と、振動の周期との関係を示した図を示す。 1……電子銃、2……ターゲット、3……X線フィルタ
ー、4……スリット、5……X線、6……θ回転ステー
ジ、7……20回転ステージ、8……サンプル、9……X
線検出器、10……容器。
FIG. 1 shows that the complex refractive indices are n 0 (= 1) and n 2 (= 1−δ 2 −).
The figure which showed the relationship between the oblique incidence angle (theta) and angle (phi) when X-rays were incident on the interface of i (beta) 2 ). FIG. 2 shows that the complex refractive index is n 0 (=
1) shows the relationship between the oblique incidence angle θ and the angle φ when X-rays enter the interface between n 1 (= 1−δ 1 −iβ 1 ), and FIG. 3 shows that the complex refractive index is n. FIG. 6 is a diagram showing a relationship between an oblique incident angle θ and an angle φ when X-rays enter a film having a complex refractive index of n 1 on a substrate 2 . FIG. 4 is a view showing a structure of an X-ray reflectivity measuring device.
FIG. 5 is a diagram showing the relationship between the calculated value of the X-ray reflectivity at an angle equal to or larger than the critical angle of Pt of Pt having a thickness of 300 ° and the oblique incident angle. FIG. 6 is a diagram showing a relationship between Pt having a film thickness of 100 °, a calculated value of X-ray reflectivity at an angle equal to or larger than the critical angle of Pt, and an oblique incident angle. FIG. 7 is a diagram showing the relationship between the X-ray reflectivity of the Pt film and the oblique incident angle.
FIG. 8 is a diagram showing the relationship between the X-ray reflectivity of the SiO 2 film and the oblique incident angle. FIG. 9 is a diagram showing the relationship between the X-ray reflectivity and the oblique incident angle of a 110 ° -thick Cr film. Figure 10 shows a 290 mm thick Cr film.
The figure which showed the relationship between the X-ray reflectance of a film, and the oblique incidence angle. FIG. 11 is a diagram showing the relationship between the X-ray reflectivity and the oblique incident angle of the 400 ° -thick Cr film, and FIG. 12 is a diagram showing the relationship between the Fourier transform intensity of the X-ray reflectivity and the period of vibration. FIG. 1 ... Electron gun, 2 ... Target, 3 ... X-ray filter, 4 ... Slit, 5 ... X-ray, 6 ... θ rotation stage, 7 ... 20 rotation stage, 8 ... Sample, 9 ... ... X
Line detector, 10 …… Container.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定膜の斜め方向からX線を照射し、そ
のX線の反射率を測定し、膜厚dを次式すなわち ここに、 r01は真空中における複素屈折率n1のX線反射率 r02は真空中における複素屈折率n2のX線反射率 λはX線の波長 δは物質によって定まる定数 βは物質によって定まる定数 φはn0cosθ=n2cosφによって定められる値でn1,n2
複素屈折率、θは入反射角であり より求めることを特徴とする膜厚測定法
1. A film to be measured is irradiated with X-rays from an oblique direction, the reflectance of the X-rays is measured, and the film thickness d is calculated by the following equation: Here, r 01 is the X-ray reflectivity of the complex refractive index n 1 in vacuum r 02 is the X-ray reflectivity of the complex refractive index n 2 in vacuum λ is the wavelength of X-rays δ 1 is a constant β 1 determined by a substance Is a constant determined by the substance. Φ is a value determined by n 0 cos θ = n 2 cos φ, where n 1 and n 2 are complex refractive indices, and θ is an incident / reflection angle.
JP15948390A 1990-06-18 1990-06-18 Film thickness measurement method Expired - Lifetime JP2967159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15948390A JP2967159B2 (en) 1990-06-18 1990-06-18 Film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15948390A JP2967159B2 (en) 1990-06-18 1990-06-18 Film thickness measurement method

Publications (2)

Publication Number Publication Date
JPH0450715A JPH0450715A (en) 1992-02-19
JP2967159B2 true JP2967159B2 (en) 1999-10-25

Family

ID=15694758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15948390A Expired - Lifetime JP2967159B2 (en) 1990-06-18 1990-06-18 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JP2967159B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810492B (en) * 2011-06-03 2015-08-05 中国科学院微电子研究所 Process monitoring method after metal gate CMP
CN102820237B (en) * 2011-06-11 2015-08-05 中国科学院微电子研究所 method for measuring metal thickness in semiconductor device
CN118583095A (en) * 2024-08-06 2024-09-03 长沙韶光芯材科技有限公司 Online monitoring method for coating thickness of special-shaped glass substrate

Also Published As

Publication number Publication date
JPH0450715A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
McCrackin et al. Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry
EP0747666B1 (en) Method and apparatus for characterising multilayer thin film systems and for measuring the distance between two surfaces in the presence of thin films
JP2967159B2 (en) Film thickness measurement method
JP5095422B2 (en) Method for measuring film thickness of thin film laminate
Hunter Measurement of optical constants in the vacuum ultraviolet spectral region
McCrackin et al. Treasure of the past VII: Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry
JP4032511B2 (en) Method for measuring optical constants of thin films
JPH08152307A (en) Method and apparatus for measuring optical constants
JP2890588B2 (en) Method of measuring film thickness
JPH06288902A (en) Attenuated total reflactance type thin film evaluating device
US5796098A (en) Sensor for rotational velocity and rotational acceleration
JP2002286442A (en) Measurement technology for very thin film oxide
JPH07318321A (en) Method and apparatus for evaluation of film thickness of thin film
JP3401058B2 (en) Method and apparatus for measuring optical properties of thin film
JPS6179142A (en) Infrared absorption analysis method
JP2524799B2 (en) Light incident angle detector
JP2022139206A (en) Method for x-ray diffraction of thin film
JPH07325013A (en) Phase difference evaluating method for thin film and phase difference evaluating apparatus therefor
TWI224671B (en) High-precision measurement method of optical refractive index
JP3007944B2 (en) A method for determining the optical properties of thin films.
Jungk Determination of optical constants. A null‐method for non‐absorbing surface films
JPH0296639A (en) Method and jig for measuring infrared absorption spectrum
JPH03146846A (en) Method for measuring density of thin film
JPH066504Y2 (en) X-ray exposure mask
JP2580943B2 (en) Measuring method for unevenness of single crystal substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080820

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

EXPY Cancellation because of completion of term