JPH07318321A - Method and apparatus for evaluation of film thickness of thin film - Google Patents

Method and apparatus for evaluation of film thickness of thin film

Info

Publication number
JPH07318321A
JPH07318321A JP11567094A JP11567094A JPH07318321A JP H07318321 A JPH07318321 A JP H07318321A JP 11567094 A JP11567094 A JP 11567094A JP 11567094 A JP11567094 A JP 11567094A JP H07318321 A JPH07318321 A JP H07318321A
Authority
JP
Japan
Prior art keywords
film thickness
thin film
measured
transmittance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11567094A
Other languages
Japanese (ja)
Inventor
Yuichi Fukushima
祐一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP11567094A priority Critical patent/JPH07318321A/en
Publication of JPH07318321A publication Critical patent/JPH07318321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate a film thickness simply and with high precision by measuring the transmittance and the reflection factor of a thin film when light at a prescribed wavelength is incident on the thin film-whose film thickness is unknown. CONSTITUTION:In a standard sample 1, a thin film 12 of chromium oxide or the like in a thickness of d1 is formed on a quartz substrate 11. In a standard sample 2, a thin film 13 of chromium oxide or the like in a thickness of d2 is formed on a quartz substrate 11. In a data input part 21, individual measured values of the film thickness, the transmittance and the reflection factor of the standard samples 1, 2 as well as of the transmittance and the reflection factor of a thin film, to be measured, whose film thickness is unknown are input from the outside. An arithmetic part 22 finds individual computed values of the refractive index and the attenuation coefficient of the standard samples 1, 2 as well as of the film thickness of the thin film to be measured, and it judges and evaluates a solution in which an optical constant coincides with values of the film thickness, the transmittance and the reflection factor by the standard samples 1, 2. The individual measured values and the individual computed values are stored in a data storage part 23 temporarily or permanently, and a data output part 24 outputs the individual measured values and the individual computed values to the outside as an RT chart or numerical values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜の膜厚評価方法お
よび膜厚評価装置に係り、特に、IC、LSI等の半導
体集積回路の製造装置の光学部品に代表されるような、
精巧かつ均一な光学特性を有する薄膜光学素子を製造す
る際に用いて好適な薄膜の膜厚評価方法および膜厚評価
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film thickness evaluation method and a thin film thickness evaluation apparatus, and more particularly, as represented by an optical component of a semiconductor integrated circuit manufacturing apparatus such as IC or LSI.
The present invention relates to a thin film thickness evaluation method and a film thickness evaluation device suitable for use in manufacturing a thin film optical element having delicate and uniform optical characteristics.

【0002】[0002]

【従来の技術】従来、例えば、半導体集積回路のリソグ
ラフィ工程において用いられる光学マスク、液晶ディス
プレイの一部品として用いられるカラーフィルター、露
光装置の一部品として用いられる光学レンズ、CCD撮
像管の一部品として用いられるCCDフィルター等、光
学的画像処理や画像転写を行う際の重要な部品として薄
膜光学素子が知られている。これらの薄膜光学素子に要
求される特性は用途により様々であるが、多くは、薄膜
に所定の波長の光を入射した場合の透過率、反射率、屈
折率、減衰係数等の光学定数、膜厚、位相差等の光学特
性が直接光学素子の性能に関わってくる。したがって、
これらの光学特性を直接または間接に測定し評価するこ
とが不可欠であり、これらの光学特性については、通
常、厳しい評価基準が設定されている。
2. Description of the Related Art Conventionally, for example, as an optical mask used in a lithography process of a semiconductor integrated circuit, a color filter used as one component of a liquid crystal display, an optical lens used as one component of an exposure apparatus, and one component of a CCD image pickup tube. A thin film optical element is known as an important component when performing optical image processing or image transfer such as a CCD filter used. The characteristics required for these thin film optical elements vary depending on the application, but in many cases, the optical constants such as transmittance, reflectance, refractive index, and attenuation coefficient when a light of a predetermined wavelength is incident on the thin film, the film Optical characteristics such as thickness and phase difference are directly related to the performance of the optical element. Therefore,
It is indispensable to directly or indirectly measure and evaluate these optical characteristics, and strict evaluation standards are usually set for these optical characteristics.

【0003】また、前記薄膜光学素子を製造する際に
は、種々の光学特性を測定・評価するための方法および
装置を確立しておくことが必要である。図6は、従来の
薄膜光学素子の光学特性の測定方法の一例を示す図であ
り、目的となる試料を作製した後に、膜厚測定、透過率
・反射率測定、屈折率、減衰係数等の光学定数の各測定
を別々に行なっている。上記各測定においては、通常、
それぞれの特性に対して専用の測定装置が用いられる。
もちろん、目的によっては上記の各測定すべてを実施す
る必要はなく、また、場合によっては上記以外の光学特
性、例えば偏光、複屈折、吸光度等を追加して測定する
こともある。
In manufacturing the thin film optical element, it is necessary to establish a method and an apparatus for measuring and evaluating various optical characteristics. FIG. 6 is a diagram showing an example of a conventional method for measuring the optical characteristics of a thin film optical element. After a target sample is prepared, film thickness measurement, transmittance / reflectance measurement, refractive index, attenuation coefficient, etc. Each measurement of optical constants is done separately. In each of the above measurements,
A dedicated measuring device is used for each characteristic.
Of course, depending on the purpose, it is not necessary to carry out all the above-mentioned measurements, and in some cases, optical characteristics other than the above, such as polarization, birefringence, absorbance, etc., may be additionally measured.

【0004】ここで、上記の各測定方法について詳述す
る。まず、膜厚の測定方法について説明する。膜厚の測
定方法としては様々な方法があるが、一般に、接触測定
と非接触測定とに大きく分けることができ、前者は直針
式段差測定法、後者は多重反射干渉法や偏光解析法等が
代表的な測定方法である。前記直針式段差測定法は、例
えば、ダイヤモンド針のような、一定の針圧を有する高
硬度の微小な針を測定すべき薄膜の溝部に落して走査さ
せ、この走査時の針の上下振動を電気信号に変換し膜厚
を求める方法であり、膜厚はチャート用紙等に直接出力
されるか内蔵するコンピュータにより演算後デイスプレ
イ等に表示されるのが一般的であり、比較的簡便である
ため、実際の生産工程中でもよく用いられる方法であ
る。
Here, each of the above measuring methods will be described in detail. First, the method of measuring the film thickness will be described. There are various methods for measuring the film thickness, but generally they can be roughly divided into contact measurement and non-contact measurement. The former is a straight needle type step measurement method, the latter is multiple reflection interferometry and ellipsometry. Is a typical measurement method. In the straight needle type step measuring method, for example, a minute needle of high hardness having a constant needle pressure, such as a diamond needle, is dropped into a groove portion of a thin film to be measured and scanned, and vertical vibration of the needle at the time of this scanning. Is a method of calculating the film thickness by converting into an electric signal, and the film thickness is generally output directly to a chart paper or the like or is displayed on the display after calculation by a built-in computer, which is relatively simple. Therefore, this method is often used in the actual production process.

【0005】また、多重反射干渉法や偏光解析法は、薄
膜表面及び基板表面の各反射光をそれぞれ測定し、膜内
の多重干渉効果を考慮して光学計算によって膜厚または
光学定数を求める方法であり、高精度の測定が可能で、
非接触のため製品を傷つけずに済むという特徴がある。
中でも偏光解析法を適用した偏光解析装置は、条件設定
にやや難しい面があるが、測定系の感度を上げることに
より高精度の測定が可能であり、測定値はコンピュータ
を用いて迅速に計算できるため、多用されている。
Further, the multiple reflection interferometry or ellipsometry is a method of measuring each reflected light on the surface of the thin film and the surface of the substrate and obtaining the film thickness or the optical constant by optical calculation in consideration of the multiple interference effect in the film. It is possible to measure with high precision,
There is a feature that the product is not damaged because it is non-contact.
Among them, the ellipsometer applying the ellipsometry method has some difficulty in setting the conditions, but it is possible to perform highly accurate measurements by increasing the sensitivity of the measurement system, and the measured values can be calculated quickly using a computer. Therefore, it is often used.

【0006】次に、透過率及び反射率の測定方法につい
て説明する。薄膜の透過率および反射率を測定するに
は、通常、分光光度計が用いられる。この分光光度計に
より光学素子の光の吸収、反射等を測定することがで
き、前記透過率は空気または基板を比較基準として用い
た場合の透過光のエネルギー強度比として、また、反射
率は反射光のエネルギー強度比として定義される。図7
は、前記薄膜光学素子の光の波長と透過率(T)及び反
射率(R)との関係を表わした分光曲線の一例を示す図
である。ここでは、測定範囲内の任意の波長における透
過率及び反射率を得ることができる。なお、透過率及び
反射率は、薄膜の材質の違い、すなわち薄膜の光学定数
の違い、および膜厚に依存する。
Next, a method of measuring the transmittance and the reflectance will be described. A spectrophotometer is usually used to measure the transmittance and reflectance of a thin film. With this spectrophotometer, the absorption, reflection, etc. of light from an optical element can be measured.The transmittance is the energy intensity ratio of the transmitted light when air or a substrate is used as a reference, and the reflectance is the reflection. It is defined as the energy intensity ratio of light. Figure 7
FIG. 4 is a diagram showing an example of a spectral curve showing the relationship between the wavelength of light of the thin film optical element and the transmittance (T) and reflectance (R). Here, the transmittance and reflectance at any wavelength within the measurement range can be obtained. The transmittance and the reflectance depend on the material of the thin film, that is, the optical constant of the thin film, and the film thickness.

【0007】次に、屈折率、減衰係数等の光学定数の測
定方法について説明する。屈折率及び減衰係数は、薄膜
を構成する物質の組成及び構造によって決定される物性
であり、光吸収のある物質では複素屈折率として定義さ
れ、複素屈折率(nmul.=n−ik)の実数部(n)を
屈折率、虚数部(k)を減衰係数(または消衰係数)と
称している。これらの光学定数は光と物質の相互作用の
大小を表す基本量であり、殆どの光学現象について常に
支配的となる重要な物性である。前記屈折率は、物理量
としては真空中の光速度(c)と媒質中の光速度(v)
との比(c/v)として定義されるが、薄膜の屈折率を
求める場合には、通常、光学的測定、すなわち反射偏光
測定等によって光の偏光及び位相成分から屈折率を求め
ている。また、減衰係数も同様に光学的測定により求め
られる。光学定数の測定方法としては、偏光解析法また
はクラマース・クローニッヒ(Kramers−Kro
nig)解析法等による反射光測定が一般的に行われて
いる。
Next, a method for measuring optical constants such as a refractive index and an attenuation coefficient will be described. The refractive index and the extinction coefficient are physical properties that are determined by the composition and structure of the material that forms the thin film, and are defined as the complex refractive index in a material that absorbs light, and the complex refractive index (n mul. = N-ik) The real part (n) is called the refractive index, and the imaginary part (k) is called the attenuation coefficient (or extinction coefficient). These optical constants are basic quantities that represent the magnitude of the interaction between light and matter, and are important physical properties that are always dominant in most optical phenomena. The refractive index is a physical quantity of light velocity (c) in vacuum and light velocity (v) in a medium.
It is defined as the ratio (c / v) to the refractive index of the thin film, but when obtaining the refractive index of the thin film, the refractive index is usually obtained from the polarization and phase components of light by optical measurement, that is, reflection polarization measurement. Similarly, the attenuation coefficient is also obtained by optical measurement. The optical constants can be measured by ellipsometry or Kramers-Kroch.
Nig) Reflected light measurement by an analysis method or the like is generally performed.

【0008】一方、光学理論によれば、上述した様な各
光学特性の間には特有の関係があることが知られてお
り、この光学理論に基づいて、波長(λ)と、屈折率
(n)及び減衰係数(k)等の光学定数と、膜厚(d)
とにより、透過率(T)および反射率(R)を求めるこ
とができる。なお、この光学理論とは、広義には光の回
折及び干渉現象を扱う理論であり、狭義には光学薄膜理
論として知られるものである。この光学理論は、例え
ば、ボルン、ウオルフ(Born,Wolf)共著:
「光学の原理「I〜III」(東海大学出版会、197
5)等に詳しく述べられている。以下に、単層薄膜の計
算式を示す。図9に示すように、屈折率が各々n0とn2
の2つの媒質の間に屈折率n1の一様な厚みd1の薄膜が
あり、境界面aから境界面bへと垂直方向に光が透過す
る場合を考える。反射率R及び透過率Tはフレネルの法
則を用いて次式で表わされる。
On the other hand, according to the optical theory, it is known that there is a peculiar relationship between the above-mentioned optical characteristics. Based on this optical theory, the wavelength (λ) and the refractive index ( n) and optical constants such as attenuation coefficient (k) and film thickness (d)
With, the transmittance (T) and the reflectance (R) can be obtained. The optical theory is a theory that handles diffraction and interference phenomena of light in a broad sense, and is known as an optical thin film theory in a narrow sense. This optical theory is, for example, written by Born and Wolf:
"Principles of optics" I-III "(Tokai University Press, 197)
5) etc. are described in detail. The calculation formula for a single-layer thin film is shown below. As shown in FIG. 9, the refractive indices are n0 and n2, respectively.
Consider a case where there is a thin film having a uniform thickness d1 with a refractive index n1 between the two media and the light is transmitted in the vertical direction from the boundary surface a to the boundary surface b. The reflectance R and the transmittance T are expressed by the following equations using Fresnel's law.

【数1】 δ1=4πn1d1/λ ……(2) T=1−R ……(3) 吸収のある金属薄膜のような場合は屈折率を複素数とし
て扱うため、上記よりも複雑な式となるが、同様にして
求めることができる。この光学理論に基づいて、薄膜の
透過率、反射率及び膜厚の各測定値から該薄膜の屈折率
(n)及び減衰係数(k)等の光学定数を求めることが
でき、この方法は一般に「RT法」と称されている。
[Equation 1] δ1 = 4πn1d1 / λ (2) T = 1-R (3) Since the refractive index is treated as a complex number in the case of an absorbing metal thin film, the formula is more complicated than the above, but the same applies. Can be asked. Based on this optical theory, optical constants such as the refractive index (n) and the attenuation coefficient (k) of the thin film can be obtained from the measured values of the transmittance, reflectance and film thickness of the thin film. It is called “RT method”.

【0009】図10は、いわゆるRTチャートと称され
るもので、各透過率(T)及び反射率(R)における屈
折率(n)と減衰係数(k)との関係を示す図である。
このRTチャートは、光の波長と被測定物である薄膜の
膜厚とを固定し、屈折率(n)及び減衰係数(k)と反
射率(R)、屈折率(n)及び減衰係数(k)と透過率
(T)の各関係を計算により求め、その結果を等高線図
として表したものである。ここでは、便宜的に2種類の
等高線図を重ねて表示してある。このRTチャートで
は、屈折率(n)及び減衰係数(k)の各値から反射率
(R)及び透過率(T)が求められ、逆に反射率(R)
及び透過率(T)の各値から屈折率(n)及び減衰係数
(k)が求められる。
FIG. 10 is a so-called RT chart and shows the relationship between the refractive index (n) and the attenuation coefficient (k) at each transmittance (T) and reflectance (R).
In this RT chart, the wavelength of light and the film thickness of the thin film that is the object to be measured are fixed, and the refractive index (n) and attenuation coefficient (k) and reflectance (R), refractive index (n) and attenuation coefficient ( The relation between k) and the transmittance (T) is calculated and the result is shown as a contour map. Here, two types of contour maps are displayed in an overlapping manner for convenience. In this RT chart, the reflectance (R) and the transmittance (T) are obtained from the respective values of the refractive index (n) and the attenuation coefficient (k), and conversely the reflectance (R)
The refractive index (n) and the attenuation coefficient (k) are obtained from the respective values of the transmittance and the transmittance (T).

【0010】ただし、後者の場合、屈折率(n)及び減
衰係数(k)の解は一つとは限らず複数存在することが
有り得る。この場合、実際の屈折率(n)及び減衰係数
(k)を決定するためには、同一条件で作製した薄膜に
おいては、通常、屈折率(n)及び減衰係数(k)は膜
厚によって変化しないと仮定することができるから、薄
膜のいくつかの異なる膜厚についてそれぞれ反射率
(R)及び透過率(T)を測定し、適合する解を決定す
ればよい。このRTチャートによれば、屈折率(n)及
び減衰係数(k)から反射率(R)及び透過率(T)が
読みとれ、逆に反射率(R)及び透過率(T)から屈折
率(n)及び減衰係数(k)を読みとることもできるの
で、簡便に特性値を得ることができる。
However, in the latter case, the solutions of the refractive index (n) and the attenuation coefficient (k) are not limited to one, and there may be a plurality of solutions. In this case, in order to determine the actual refractive index (n) and attenuation coefficient (k), in a thin film manufactured under the same conditions, the refractive index (n) and the attenuation coefficient (k) usually change depending on the film thickness. Since it can be assumed that this is not the case, the reflectance (R) and the transmittance (T) of each of several different thin film thicknesses may be measured to determine a suitable solution. According to this RT chart, the reflectance (R) and the transmittance (T) can be read from the refractive index (n) and the attenuation coefficient (k), and conversely from the reflectance (R) and the transmittance (T) to the refractive index ( Since n) and the damping coefficient (k) can be read, the characteristic value can be easily obtained.

【0011】[0011]

【発明が解決しようとする課題】ところで、上述した直
針式段差測定法では、測定する薄膜表面の粗さによって
ノイズが発生するため、測定誤差が大きくまた測定値が
不安定になりやすいという問題点があった。走査速度を
遅くすればノイズが低減し、ある程度精度を高めること
が可能であるが、時間がかなりかかることとなり、簡便
性が失われてしまう。また、薄膜に測定可能な溝部を形
成するためには、薄膜を基板上に成膜した後にパターン
形成を行わなければならず、一種の破壊試験を行うこと
となり、測定に供された薄膜は製品として使用できなく
なってしまうという問題点があった。
By the way, in the above-mentioned straight needle type step measuring method, since noise is generated due to the roughness of the surface of the thin film to be measured, the measurement error is large and the measured value tends to be unstable. There was a point. If the scanning speed is slowed down, noise can be reduced and the accuracy can be improved to some extent, but it takes a lot of time and the convenience is lost. In addition, in order to form a measurable groove in a thin film, it is necessary to form a pattern on the substrate after forming the thin film, which means that a kind of destructive test is performed. There was a problem that it could not be used as.

【0012】また、偏光解析法による膜厚測定は、基板
表面の反射の影響が光学計算において除去しきれず、正
確な測定値が得られない場合があるという問題点があっ
た。理論的には、偏光解析における膜厚の値は計算上周
期解として複数の解が得られるため、最適値の判定には
別の情報、例えば膜厚範囲が製造条件上から限定できる
場合等、が必要である。特に膜厚が薄い場合には、膜厚
の周期解の間隔が狭くなるため、最適値の選択が難しく
なる。また、測定波長が紫外域である場合には基板材料
によっては光学特性の変化が大きくなるため、基板の反
射による影響が相対的に大きくなり、膜厚測定に影響を
及ぼすことがあった。
In addition, the film thickness measurement by the ellipsometry method has a problem that the influence of the reflection on the substrate surface cannot be completely removed in the optical calculation and an accurate measured value may not be obtained. Theoretically, the value of the film thickness in ellipsometry can be obtained as a plurality of solutions as a periodic solution in calculation, and therefore different information for determining the optimum value, for example, when the film thickness range can be limited from the manufacturing conditions, is necessary. Especially when the film thickness is small, the interval of the periodic solution of the film thickness becomes narrow, so that it becomes difficult to select the optimum value. Further, when the measurement wavelength is in the ultraviolet region, the change in the optical characteristics becomes large depending on the substrate material, so that the influence of the reflection of the substrate becomes relatively large, which may affect the film thickness measurement.

【0013】さらに、この偏光解析法では、膜表面およ
び基板表面などの境界面において光学定数が非常に鋭敏
に変化するために、薄膜の平均的な特性解析が複雑にな
ってしまうという問題点があった。具体的には、例え
ば、薄膜表面に極薄の酸化層が存在する場合や、基板と
薄膜との境界層が混合組成になっている場合等において
は、薄膜内部と酸化層や境界層の光学定数が異なるため
に、これらの層の影響を過敏に受けることとなり、測定
値が変化したり誤差が大きくなったり等の問題点があっ
た。したがって、測定の際にこれらの誤差要因を排除
し、より正確な膜厚測定値を得るためには、高度な光学
的知識および多くの予備実験による種々の条件での光学
特性の把握が必要であった。以上により、薄膜の膜厚測
定においては、非接触でかつ簡便な測定を要求される場
合には、前記のいずれの方法を用いても、この要求を満
足することは困難であった。
Further, in this ellipsometry, there is a problem that the average characteristic analysis of the thin film becomes complicated because the optical constants change very sharply at the boundary surface such as the film surface and the substrate surface. there were. Specifically, for example, when there is an extremely thin oxide layer on the surface of the thin film, or when the boundary layer between the substrate and the thin film has a mixed composition, the optical properties of the inside of the thin film and the oxide layer or boundary layer are Since the constants are different, they are sensitive to the influence of these layers, and there are problems that the measured value changes and the error increases. Therefore, in order to eliminate these error factors during measurement and obtain a more accurate film thickness measurement value, it is necessary to have a high degree of optical knowledge and grasp the optical characteristics under various conditions through many preliminary experiments. there were. From the above, when non-contact and simple measurement is required in the film thickness measurement of a thin film, it is difficult to satisfy this requirement by using any of the above methods.

【0014】一方、RT法では、各特性値をRTチャー
トから読みとるので、各特性値の精度はRTチャートの
目盛の精度により限定され精度を高めることができず、
また読みとり誤差が生じることも避けられないという問
題点がある。もちろん、RTチャートの目盛りを細分化
する等により精度を高めることもできるが、チャートの
枚数が増加するために作成の手間がかかり、実際には測
定誤差や計算誤差により精度に限界がある。また、RT
チャートは波長及び膜厚をパラメータとし、これらの値
に依存するため、必要な波長、膜厚に応じて多数のチャ
ートを用意する必要があり、また、測定波長、膜厚等が
変更される都度、新たにRTチャートを作成する必要が
ある等、測定以前の準備に労力がかかり不便であった。
On the other hand, in the RT method, since each characteristic value is read from the RT chart, the accuracy of each characteristic value is limited by the accuracy of the scale of the RT chart and cannot be improved.
There is also a problem that reading errors are unavoidable. Of course, the accuracy can be improved by subdividing the scale of the RT chart, but the number of charts increases, which requires time and effort for preparation, and the accuracy is actually limited due to measurement errors and calculation errors. Also, RT
Since the chart uses wavelength and film thickness as parameters and depends on these values, it is necessary to prepare a large number of charts according to the required wavelength and film thickness, and also when the measurement wavelength, film thickness, etc. are changed. However, it was inconvenient because of the labor required for preparation before the measurement, such as the need to newly create an RT chart.

【0015】本発明は、上記事情に鑑みてなされたもの
であって、簡便かつ高精度の膜厚評価を可能にする薄膜
の膜厚評価方法および膜厚評価装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thin film thickness evaluation method and a thin film thickness evaluation apparatus that enable simple and highly accurate film thickness evaluation. .

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な薄膜の膜厚評価方法および膜厚評
価装置を採用した。すなわち、請求項1記載の薄膜の膜
厚評価方法は、所定の波長の光を膜厚未知の薄膜に入射
し、該薄膜の透過率および反射率を測定し、これら透過
率および反射率と前記薄膜の屈折率及び減衰係数とから
前記薄膜の膜厚を求めることを特徴としている。
In order to solve the above problems, the present invention employs the following thin film thickness evaluation method and film thickness evaluation apparatus. That is, in the thin film thickness evaluation method according to claim 1, light having a predetermined wavelength is incident on a thin film of unknown film thickness, and the transmittance and reflectance of the thin film are measured. The film thickness of the thin film is obtained from the refractive index and the attenuation coefficient of the thin film.

【0017】また、請求項2記載の薄膜の膜厚評価方法
は、所定の波長の光を1つ以上の標準薄膜に入射し、各
標準薄膜の膜厚、透過率および反射率を測定し、これら
の測定値から前記標準薄膜の屈折率及び減衰係数を求
め、次いで、所定の波長の光を膜厚未知の被測定薄膜に
入射し、該被測定薄膜の透過率および反射率を測定し、
この透過率および反射率の測定値と、前記標準薄膜の屈
折率及び減衰係数とから前記被測定薄膜の膜厚を求める
ことを特徴としている。
According to a second aspect of the present invention, there is provided a thin film thickness evaluation method, wherein light having a predetermined wavelength is incident on one or more standard thin films, and the thickness, transmittance and reflectance of each standard thin film are measured. Obtaining the refractive index and the attenuation coefficient of the standard thin film from these measured values, then, incident light of a predetermined wavelength on the thin film to be measured unknown film thickness, to measure the transmittance and reflectance of the thin film to be measured,
The film thickness of the thin film to be measured is determined from the measured values of the transmittance and the reflectance and the refractive index and the attenuation coefficient of the standard thin film.

【0018】また、請求項3記載の薄膜の膜厚評価方法
は、請求項2記載の薄膜の膜厚評価方法において、前記
被測定薄膜の膜厚に基づき、該膜厚と該被測定薄膜の所
望の膜厚との比、該被測定薄膜の膜厚を前記所望の膜厚
とした場合の予測透過率および予測反射率を求めること
を特徴としている。
Further, a thin film thickness evaluation method according to claim 3 is the thin film thickness evaluation method according to claim 2, wherein the film thickness and the measured thin film are calculated based on the film thickness of the measured thin film. It is characterized in that a ratio to a desired film thickness and a predicted transmittance and a predicted reflectance when the film thickness of the thin film to be measured is set to the desired film thickness are obtained.

【0019】また、請求項4記載の薄膜の膜厚評価装置
は、標準薄膜の膜厚、透過率および反射率、膜厚未知の
被測定薄膜の透過率および反射率の各測定値を入力する
データ入力部と、前記各測定値に基づき前記標準薄膜の
屈折率及び減衰係数、前記被測定薄膜の膜厚の各計算値
を求め判定・評価する演算部と、前記各測定値及び前記
各計算値を保管するデータ保管部と、前記各測定値及び
前記各計算値を出力するデータ出力部とを備えたことを
特徴としている。
Further, in the thin film thickness evaluation apparatus according to the present invention, the measured values of the standard thin film thickness, the transmittance and the reflectance, and the measured thin film of the unknown thickness and the reflectance are input. A data input part, a refractive index and an attenuation coefficient of the standard thin film based on each measured value, a calculation part for determining and evaluating each calculated value of the film thickness of the measured thin film, each measured value and each calculation A data storage unit for storing values and a data output unit for outputting the measured values and the calculated values are provided.

【0020】また、請求項5記載の薄膜の膜厚評価装置
は、請求項4記載の薄膜の膜厚評価装置において、前記
演算部に、前記被測定薄膜の膜厚に基づき、該膜厚と該
被測定薄膜の所望の膜厚との比、該被測定薄膜の膜厚を
前記所望の膜厚とした場合の予測透過率および予測反射
率の各計算値を求め評価する演算手段を備えたことを特
徴としている。
According to a fifth aspect of the present invention, there is provided a thin film thickness evaluation apparatus according to the fourth aspect, wherein the arithmetic unit is configured to determine the thickness of the thin film based on the thickness of the thin film to be measured. A calculation means was provided for obtaining and evaluating the ratio of the measured thin film to the desired film thickness, and the calculated values of the predicted transmittance and predicted reflectance when the film thickness of the measured thin film is the desired film thickness. It is characterized by that.

【0021】[0021]

【作用】本発明の請求項1記載の薄膜の膜厚評価方法で
は、所定の波長の光を膜厚未知の薄膜に入射した場合の
該薄膜の透過率および反射率を測定することにより、前
記薄膜の膜厚を迅速かつ精度よく求める。
In the thin film thickness evaluation method according to the first aspect of the present invention, the transmittance and the reflectance of the thin film when a light of a predetermined wavelength is incident on the thin film having an unknown thickness are measured. Quickly and accurately determine the thickness of thin films.

【0022】また、請求項2記載の薄膜の膜厚評価方法
では、予め基準となる標準薄膜に所定の波長の光を入射
した場合の屈折率及び減衰係数を求め、次いで、所定の
波長の光を膜厚未知の被測定薄膜に入射した場合の該被
測定薄膜の透過率および反射率を測定することにより、
前記被測定薄膜の膜厚を迅速かつ高精度で求める。
Further, in the thin film thickness evaluation method according to the second aspect, the refractive index and the attenuation coefficient when the light having the predetermined wavelength is incident on the standard thin film serving as a reference are obtained in advance, and then the light having the predetermined wavelength is obtained. By measuring the transmittance and reflectance of the measured thin film when incident on the measured thin film of unknown film thickness,
The film thickness of the thin film to be measured is quickly and accurately determined.

【0023】また、請求項3記載の薄膜の膜厚評価方法
では、前記被測定薄膜の膜厚に基づき、該膜厚と該被測
定薄膜の所望の膜厚との比を求めることにより、所望の
膜厚に対する補正すべき膜厚を容易かつ高精度で求め
る。また、該被測定薄膜の膜厚を前記所望の膜厚とした
場合の予測透過率および予測反射率を求めることによ
り、得られた薄膜の透過率および反射率を測定し、これ
らの測定値を前記予測透過率および予測反射率と比較す
れば、適合する膜厚が迅速に求まる。
Further, in the thin film thickness evaluation method according to the third aspect, a desired value is obtained by obtaining a ratio of the desired film thickness of the measured thin film based on the film thickness of the measured thin film. The film thickness to be corrected with respect to the film thickness of is easily and accurately obtained. Further, the transmittance and the reflectance of the obtained thin film are measured by obtaining the predicted transmittance and the predicted reflectance when the film thickness of the thin film to be measured is the desired film thickness, and these measured values are By comparing the predicted transmittance and the predicted reflectance, a suitable film thickness can be quickly obtained.

【0024】また、請求項4記載の薄膜の膜厚評価装置
では、データ入力部により標準薄膜の膜厚、透過率およ
び反射率、膜厚未知の被測定薄膜の透過率および反射率
の各測定値を入力し、演算部により前記各測定値に基づ
き前記標準薄膜の屈折率及び減衰係数、前記被測定薄膜
の膜厚の各計算値を求め判定・評価し、データ保管部に
より前記各測定値及び前記各計算値を保管する。前記各
測定値及び前記各計算値はデータ出力部により出力され
る。これにより、前記被測定薄膜の膜厚を安定、迅速か
つ高精度で測定することが可能になる。
Further, in the thin film thickness evaluation apparatus according to the present invention, the data input unit measures the thickness, transmittance and reflectance of the standard thin film, and the transmittance and reflectance of the measured thin film of unknown thickness. By inputting a value, the calculation unit determines the refractive index and the attenuation coefficient of the standard thin film based on each measured value, obtains each calculated value of the film thickness of the measured thin film, determines and evaluates it, and each measured value is stored by the data storage unit. And save each calculated value. The measured values and the calculated values are output by the data output unit. This makes it possible to measure the film thickness of the thin film to be measured stably, quickly and with high accuracy.

【0025】また、請求項5記載の薄膜の膜厚評価装置
では、前記演算部に、前記被測定薄膜の膜厚に基づき、
該膜厚と該被測定薄膜の所望の膜厚との比、該被測定薄
膜の膜厚を前記所望の膜厚とした場合の予測透過率およ
び予測反射率の各計算値を求める演算手段を備えたこと
により、薄膜の補正すべき膜厚を容易かつ迅速に求める
ことが可能になり、膜厚の管理を容易かつ迅速に行うこ
とが可能になる。
Further, in the thin film thickness evaluation apparatus according to the fifth aspect, the calculating unit is configured to
Computation means for calculating the ratio between the film thickness and the desired film thickness of the thin film to be measured, and the calculated values of the predicted transmittance and the predicted reflectance when the film thickness of the thin film to be measured is the desired film thickness. With the provision, the film thickness to be corrected of the thin film can be easily and quickly obtained, and the film thickness can be easily and quickly managed.

【0026】[0026]

【実施例】以下、本発明の各実施例について図面に基づ
き説明する。 「実施例1」図1は本発明の実施例1の薄膜の膜厚評価
方法を示す流れ図、図2は標準となる膜厚の異なる2つ
の薄膜光学素子(標準薄膜;以下、標準試料と称する)
各々の光の透過及び反射を示す模式図である。図2に示
す標準試料1は、例えば、透明な石英基板11上に厚み
d1の酸化クロム等の薄膜12が形成され、また、標準
試料2は、例えば、透明な石英基板11上に厚みd2の
酸化クロム等の薄膜13が形成されたものである。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 FIG. 1 is a flow chart showing a method for evaluating the film thickness of a thin film of Example 1 of the present invention, and FIG. 2 is two thin film optical elements having different standard film thicknesses (standard thin film; hereinafter referred to as standard sample). )
It is a schematic diagram which shows the transmission and reflection of each light. In the standard sample 1 shown in FIG. 2, for example, a thin film 12 of chromium oxide or the like having a thickness d1 is formed on a transparent quartz substrate 11, and in the standard sample 2, for example, a thin film 12 having a thickness d2 is formed on the transparent quartz substrate 11. A thin film 13 of chromium oxide or the like is formed.

【0027】また、図3は本発明の実施例1の薄膜の膜
厚評価装置を示すブロック図であり、図において、21
は標準試料1,2の膜厚、透過率および反射率、膜厚未
知の被測定薄膜の透過率および反射率の各測定値を外部
から入力するデータ入力部、22は前記各測定値に基づ
き前記標準薄膜1,2の屈折率及び減衰係数、前記被測
定薄膜の膜厚の各計算値を求め、複数の標準試料1,2
による膜厚と透過率及び反射率の値に対して光学定数が
一致する解を判定・評価する演算部、23は前記各測定
値及び前記各計算値を一時的または永久に保管するデー
タ保管部、24は前記各測定値及び前記各計算値をRT
チャートまたは数値として外部へ出力するデータ出力部
である。この演算部22は、前記の光学特性値のどれか
一つが未知で他の値が既知である場合には、光学理論に
基づき未知の値を算出する副次的機能を備えている。ま
た、図4は、前記膜厚評価装置の作用を示す流れ図であ
る。
FIG. 3 is a block diagram showing a thin film thickness evaluation apparatus of Example 1 of the present invention.
Is a data input section for inputting the measured values of the film thickness, the transmittance and the reflectance of the standard samples 1 and 2 and the measured transmittance and the reflectance of the thin film to be measured whose film thickness is unknown, and 22 is based on the measured values. The calculated values of the refractive index and the attenuation coefficient of the standard thin films 1 and 2 and the film thickness of the thin film to be measured are calculated,
An arithmetic unit for determining and evaluating a solution in which the optical constants match the film thickness, the transmittance, and the reflectance value, and 23 is a data storage unit that temporarily or permanently stores the measured values and the calculated values. 24 indicates the measured value and the calculated value by RT.
It is a data output unit that outputs it as a chart or numerical values to the outside. The calculation unit 22 has a secondary function of calculating an unknown value based on the optical theory when one of the optical characteristic values is unknown and the other values are known. FIG. 4 is a flow chart showing the operation of the film thickness evaluation device.

【0028】次に、前記膜厚評価装置を用いて標準試料
の光学定数を求める方法について説明する。まず、分光
光度計を用いて、波長λの光を標準試料1,2に入射
し、標準試料1の透過光t1における透過率T1及び反
射光r1における反射率R1、標準試料2の透過光t2
における透過率T2及び反射光r2における反射率R2
をそれぞれ測定し、さらに、直針式段差測定法等により
標準試料1,2の各膜厚d1,d2(ただしd1≠d
2)を直接測定する。次いで、前記膜厚評価装置のデー
タ入力部21に、波長λ、標準試料1の膜厚d1、透過
率T1及び反射率R1、標準試料2の膜厚d2、透過率
T2及び反射率R2をそれぞれ入力する。
Next, a method for obtaining the optical constant of the standard sample by using the film thickness evaluation device will be described. First, using a spectrophotometer, light of wavelength λ is incident on the standard samples 1 and 2, and the transmittance T1 of the standard sample 1 at the transmitted light t1 and the reflectance R1 of the reflected light r1 at the standard sample 2 are measured.
T2 in the case of reflection light and reflectance R2 in the reflected light r2
And the respective film thicknesses d1 and d2 of the standard samples 1 and 2 (where d1 ≠ d
2) is measured directly. Then, the wavelength λ, the film thickness d1 of the standard sample 1, the transmittance T1 and the reflectance R1, the film thickness d2 of the standard sample 2, the transmittance T2, and the reflectance R2 are respectively input to the data input unit 21 of the film thickness evaluation apparatus. input.

【0029】演算部22では、前記各測定値、すなわち
波長λ、標準試料1の膜厚d1、透過率T1及び反射率
R1、標準試料2の膜厚d2、透過率T2及び反射率R
2の各値を次式(1)及び(2)に代入することによ
り、標準試料の適合する唯一つの光学定数の解、すなわ
ち唯一の屈折率n及び減衰係数kを求める。計算手順は
以下のようになる。まず、測定した1組のd,R,Tの
値(Yとおく)からn,kの値を求めるには、逐次近似
法(ニュートン・ラフソン法:Newton-Raphson metho
d)を用いて計算する。図5(a)に逐次近似法のアル
ゴリズムを示す。
In the calculation unit 22, the measured values, that is, the wavelength λ, the film thickness d1 of the standard sample 1, the transmittance T1 and the reflectance R1, the film thickness d2 of the standard sample 2, the transmittance T2 and the reflectance R are obtained.
By substituting each value of 2 into the following equations (1) and (2), the solution of only one compatible optical constant of the standard sample, that is, the only refractive index n and the extinction coefficient k are obtained. The calculation procedure is as follows. First, in order to obtain the values of n and k from a set of measured values of d, R and T (denoted as Y), the successive approximation method (Newton-Raphson method) is used.
Calculate using d). FIG. 5A shows an algorithm of the successive approximation method.

【0030】この計算では、前記Yの値と、適当な範囲
に設定したn,kの初期値(Xとおく)とを入力し、初
期値から計算したR,Tの値(Y’とする)と実測値と
の差分をとる。この計算を繰り返して実測値に近づけて
いき、最終的に差がほぼ0になる解の値を求める。ただ
し、初期値の値の取り方によって、すなわち計算の出発
点が異なることによって解の値が異なることがあり得
る。実際の計算手順では目的物質の特性を考慮に入れて
適当なn,kの値の範囲と刻み幅を設定し、そのすべて
の点Xi(ni,ki)について同様な計算を行なって異
なる解を探す。
In this calculation, the values of Y and the initial values of n and k (set as X) set in an appropriate range are input, and the values of R and T calculated from the initial values (Y '). ) And the measured value. This calculation is repeated to bring it closer to the actually measured value, and finally the value of the solution at which the difference becomes almost 0 is obtained. However, the value of the solution may be different depending on how the initial value is taken, that is, the starting point of the calculation is different. In the actual calculation procedure, the appropriate range of n and k values and the step size are set in consideration of the characteristics of the target substance, and the same calculation is performed for all the points Xi (ni, ki) to obtain different solutions. look for.

【0031】次に、図5(b)に示すように、2組以上
の実測値Yi(di,Ri,Ti)について逐次近似法によ
る計算を行い、得られた解の組Xiのうちで一致する
値、すなわち異なる実測値Yに対して共通となる解を求
める。なお、このとき、R,Tの計算式は上述のフレネ
ルの式(1)〜(3)を用いてもよいが、コンピュータ
を用いた計算には以下のマトリックス法による方が便利
である。次式は、マトリックス法による単層膜の場合の
R,Tの計算式である。
Next, as shown in FIG. 5 (b), two or more sets of measured values Yi (di, Ri, Ti) are calculated by the successive approximation method, and a match is found among the obtained solution sets Xi. Value, that is, a common solution for different measured values Y is obtained. At this time, the Fresnel equations (1) to (3) described above may be used as the equations for calculating R and T, but the following matrix method is more convenient for computation using a computer. The following formula is a formula for calculating R and T in the case of a single layer film by the matrix method.

【数2】 N1=n1−ik1 ……(5a) δ1=2πN1d1/λ ……(5b)[Equation 2] N1 = n1-ik1 (5a) δ1 = 2πN1d1 / λ (5b)

【数3】 [Equation 3]

【数4】 [Equation 4]

【0032】例えば、1つの標準試料1のみの測定値か
ら光学定数の値を求める場合には、負の値や複数の値が
理論上求められる可能性があるので、実用的な解の範囲
を予め限定しておくことでより確実に適切な値を求める
ことができる。例えば、n>1.0,k>0とする等で
ある。それでも複数の解が求められた場合には、膜厚の
違いによって光学定数が変化することは無いから、複数
の標準試料1,2間で一致する解のみを適合解とみなす
ことができ、これにより標準試料1,2の光学定数を決
定することができる。すなわち、複数の標準試料1,2
の測定値を用いれば、どのような場合であっても唯一の
光学定数を決定することができる。
For example, when obtaining the value of the optical constant from the measured value of only one standard sample 1, there is a possibility that a negative value or a plurality of values may be theoretically obtained. By limiting in advance, an appropriate value can be obtained more reliably. For example, n> 1.0 and k> 0. If multiple solutions are still obtained, the optical constant does not change due to the difference in film thickness, so only the solution that matches between multiple standard samples 1 and 2 can be regarded as a compatible solution. Thus, the optical constants of the standard samples 1 and 2 can be determined. That is, a plurality of standard samples 1, 2
The measured value of can be used to determine the unique optical constant in any case.

【0033】データ保管部23では、前記波長λ、標準
試料1の膜厚d1、透過率T1及び反射率R1、標準試
料2の膜厚d2、透過率T2及び反射率R2、屈折率n
及び減衰係数kを保管する。ここでは、データ出力部2
4により前記各測定値及び前記各計算値を外部へ取り出
すことができる。
In the data storage unit 23, the wavelength λ, the film thickness d1 of the standard sample 1, the transmittance T1 and the reflectance R1, the film thickness d2 of the standard sample 2, the transmittance T2 and the reflectance R2, and the refractive index n.
And the damping coefficient k. Here, the data output unit 2
4, the measured values and the calculated values can be taken out.

【0034】次に、膜厚未知の薄膜光学素子(以下、目
的試料と称する)の膜厚評価を行う。目的試料は、前記
標準試料1,2と同じ組成の薄膜とするために同一組成
の薄膜材料を同一種類の基板上に同一条件で成膜する。
次に前記目的試料の透過率及び反射率を測定し、これら
の測定値をデータ入力部21に入力する。演算部22で
は、これらの測定値とデータ保管部23に保管された標
準試料の光学定数の値とを用いて、適合する膜厚を求め
ることができる。
Next, the film thickness of a thin film optical element of unknown film thickness (hereinafter referred to as a target sample) is evaluated. The target sample is a thin film material having the same composition as the standard samples 1 and 2, and thin film materials having the same composition are formed on the same type of substrate under the same conditions.
Next, the transmittance and reflectance of the target sample are measured, and these measured values are input to the data input unit 21. The computing unit 22 can obtain a suitable film thickness by using these measured values and the optical constant values of the standard sample stored in the data storage unit 23.

【0035】ここでは、同一条件で作製した薄膜は同じ
光学定数を有すると仮定しており、測定誤差内で充分な
再現性が得られることを確認している。さらに、目標膜
厚を設定した場合には、前記膜厚評価装置により求めら
れた膜厚値と目標膜厚値とのズレ量が求められ、膜厚を
目標膜厚に補正した場合の透過率及び反射率を予測値と
して求めることができる。このように、標準試料と同一
条件の成膜を行い、前記膜厚評価装置を用いることによ
り、透過率及び反射率の測定値のみから膜厚を求め評価
することができる。
Here, it is assumed that the thin films produced under the same conditions have the same optical constants, and it has been confirmed that sufficient reproducibility can be obtained within the measurement error. Further, when the target film thickness is set, the deviation amount between the film thickness value obtained by the film thickness evaluation device and the target film thickness value is obtained, and the transmittance when the film thickness is corrected to the target film thickness Also, the reflectance can be obtained as a predicted value. As described above, by performing film formation under the same conditions as the standard sample and using the film thickness evaluation device, the film thickness can be obtained and evaluated only from the measured values of the transmittance and the reflectance.

【0036】以上説明したように、本実施例の薄膜の膜
厚評価方法によれば、目的試料の透過率及び反射率を測
定するのみで該目的試料の膜厚を迅速かつ高精度で求め
ることができる。また、膜厚未知の目的試料の透過率お
よび反射率を測定し、これらの測定値を前記予測透過率
および予測反射率と比較することにより、適合する膜厚
を迅速に求めることができる。
As described above, according to the method for evaluating the film thickness of a thin film of this embodiment, the film thickness of the target sample can be quickly and highly accurately obtained only by measuring the transmittance and reflectance of the target sample. You can Further, by measuring the transmittance and reflectance of the target sample of unknown film thickness and comparing these measured values with the predicted transmittance and predicted reflectance, the suitable film thickness can be quickly obtained.

【0037】また、本実施例の薄膜の膜厚評価装置によ
れば、膜厚未知の目的試料の膜厚を安定、迅速かつ高精
度で求めることができる。また、前記目的試料の補正す
べき膜厚を容易かつ迅速に測定することができ、膜厚の
管理を容易かつ迅速に行うことができる。
Further, according to the thin film thickness evaluation apparatus of this embodiment, the film thickness of the target sample of unknown film thickness can be obtained stably, quickly and with high accuracy. Further, the film thickness of the target sample to be corrected can be measured easily and quickly, and the film thickness can be controlled easily and quickly.

【0038】「実施例2」図5は本発明の実施例2の薄
膜の膜厚評価方法が適用される、膜厚の異なる複数の薄
膜光学素子各々の光の透過及び反射を示す模式図であ
る。前記薄膜光学素子は、半導体回路のリソグラフィ工
程において投影露光転写用原版(いわゆる光学マスク)
の材料である光学マスクブランクのうち、位相シフト露
光技術の一手段「ハーフトーン位相シフト法」に用いら
れるハーフトーンマスクブランクの製造に用いられるも
のである。
[Embodiment 2] FIG. 5 is a schematic diagram showing light transmission and reflection of each of a plurality of thin film optical elements having different film thicknesses, to which the thin film thickness evaluation method of Embodiment 2 of the present invention is applied. is there. The thin film optical element is a projection exposure transfer master plate (so-called optical mask) in a lithography process of a semiconductor circuit.
Among the optical mask blanks which are the materials of (1), it is used for manufacturing the halftone mask blank used in the "halftone phase shift method" which is one means of the phase shift exposure technique.

【0039】まず、図6(a)に示すように、屈折率
1.47の透明な合成石英基板31上に、酸化クロム膜
32を成膜し、標準となる膜厚の異なる光学マスクブラ
ンク(標準薄膜;以下、標準試料と称する)33を3種
類作製した。成膜方法はインライン式(トレー移動式)
のDCスパッタリング装置を用い、所定の成膜条件でス
パッタリングを行なった。成膜条件は、膜厚、すなわち
成膜時間を変化させるために、トレー移動速度を変える
こととし、他の成膜条件はすべて同一とした。
First, as shown in FIG. 6A, a chromium oxide film 32 is formed on a transparent synthetic quartz substrate 31 having a refractive index of 1.47, and optical mask blanks ( Three types of standard thin films; hereinafter referred to as standard samples) 33 were prepared. In-line type (tray movement type)
Sputtering was performed under the predetermined film forming conditions by using the DC sputtering apparatus described in 1. The film forming condition was that the tray moving speed was changed in order to change the film thickness, that is, the film forming time, and all other film forming conditions were the same.

【0040】次に、図6(b)に示すように、大型基板
用分光光度計を用いて、3種類の標準試料33a〜33
cそれぞれの透過率T1〜T3及び反射率R1〜R3を
測定した。ここでは、空気(屈折率1.0)を基準媒体
(リファレンス)とし、空気に対する標準試料33a〜
33cそれぞれの透過率および反射率(単位;%)を測
定値とした。さらに前記標準試料33a〜33cそれぞ
れの膜厚d1〜d3を、直針式膜厚測定器(装置名;デ
クタック(Dektak))を用いて測定した。測定は
高精度で行えるよう、走査速度を最小の0.001mm
/sとし、10回繰り返し測定しその平均値をとった。
Next, as shown in FIG. 6B, three types of standard samples 33a to 33 are used by using a spectrophotometer for a large substrate.
The respective transmittances T1 to T3 and reflectances R1 to R3 were measured. Here, air (refractive index 1.0) is used as a reference medium (reference), and standard samples 33a to
The transmittance and reflectance (unit:%) of each of the 33c were used as measured values. Further, the film thickness d1 to d3 of each of the standard samples 33a to 33c was measured using a straight needle type film thickness measuring device (device name: Dektak). The minimum scanning speed is 0.001mm so that measurement can be performed with high accuracy.
/ S and the measurement was repeated 10 times, and the average value was taken.

【0041】表1は、前記各標準試料33a〜33c
(表中ではa〜cと表示)の透過率、反射率及び膜厚の
各測定値を示したものである。
Table 1 shows the standard samples 33a to 33c.
The measured values of transmittance, reflectance and film thickness (indicated as a to c in the table) are shown.

【表1】 この透過率、反射率及び膜厚の各測定値を前記膜厚評価
装置に入力し、標準試料33の光学定数として屈折率
2.45、減衰係数0.73を得た。
[Table 1] The measured values of the transmittance, the reflectance, and the film thickness were input to the film thickness evaluation device, and the refractive index of 2.45 and the attenuation coefficient of 0.73 were obtained as the optical constants of the standard sample 33.

【0042】次に、図6(c)に示すように、膜厚未知
の光学マスクブランク(膜厚未知の薄膜;目的試料)4
1を作製した。この目的試料41は、合成石英基板31
上に酸化クロム膜42を標準試料と同一の成膜条件で成
膜した。ここでは、成膜装置のトレー移動速度を任意に
変更し、意図的に膜厚を変化させた。なお、トレー移動
速度と成膜された膜厚との関係は直線的比例関係からや
や外れており、必ずしも一次関数として表わされるもの
ではない。また、トレー内に置かれた基板の位置によっ
ても膜厚にばらつきが生じるため、トレー内の載置位置
についても一定とした。
Next, as shown in FIG. 6C, an optical mask blank of unknown film thickness (thin film of unknown film thickness; target sample) 4
1 was produced. The target sample 41 is a synthetic quartz substrate 31.
A chromium oxide film 42 was formed thereon under the same film forming conditions as the standard sample. Here, the tray moving speed of the film forming apparatus was arbitrarily changed to intentionally change the film thickness. Note that the relationship between the tray moving speed and the film thickness of the formed film deviates slightly from the linear proportional relationship and is not necessarily expressed as a linear function. Further, since the film thickness varies depending on the position of the substrate placed in the tray, the placement position in the tray was also fixed.

【0043】次に、前記大型基板用分光光度計を用い
て、目的試料41の透過率T0及び反射率R0を測定し
たところ、透過率4.3(%)、反射率22.5(%)
であった。次に、これら透過率T0及び反射率R0を前
記膜厚評価装置に入力し、膜厚として115nmを得
た。さらに、目標膜厚(所望の膜厚)を50nmとし、
この数値を前記膜厚評価装置に入力した結果、膜厚ずれ
量(補正すべき膜厚:%)として+130%、目標膜厚
時の予測透過率21.7%、予測反射率24.6%の各
予測値が得られた。また、同様に成膜した膜厚の異なる
目的試料についても、同様にして透過率及び反射率の測
定結果から膜厚を得ることができた。さらに、確認のた
め、膜厚が50nmの目的試料を作製し、上記と同様に
透過率及び反射率を測定したところ、透過率が1.4
%、反射率が25.0%となり、前記予測値とほぼ一致
する結果が得られた。
Next, the transmittance T0 and the reflectance R0 of the target sample 41 were measured by using the spectrophotometer for a large substrate, and the transmittance 4.3 (%) and the reflectance 22.5 (%) were obtained.
Met. Next, the transmittance T0 and the reflectance R0 were input to the film thickness evaluation device to obtain a film thickness of 115 nm. Furthermore, the target film thickness (desired film thickness) is set to 50 nm,
As a result of inputting these numerical values into the film thickness evaluation device, the film thickness deviation amount (film thickness to be corrected:%) is + 130%, the predicted transmittance at the target film thickness is 21.7%, and the predicted reflectance is 24.6%. Each predicted value of was obtained. In addition, for the target samples formed in the same manner and having different film thicknesses, the film thickness could be obtained in the same manner from the measurement results of the transmittance and the reflectance. Further, for confirmation, a target sample having a film thickness of 50 nm was prepared, and the transmittance and the reflectance were measured in the same manner as above, and the transmittance was 1.4.
%, The reflectance was 25.0%, and the results were almost the same as the predicted values.

【0044】以上のように、標準試料の透過率、反射率
および膜厚の直接測定を行い、これらの測定値から光学
定数を求めることにより、目的試料については簡便な透
過率及び反射率の測定のみを行うことで、該目的試料の
膜厚を迅速かつ高精度で求めることができる。また、膜
厚評価装置を用いることで、簡便に目的試料の膜厚を評
価することができる。
As described above, the transmittance, reflectance and film thickness of the standard sample are directly measured, and the optical constants are obtained from these measured values, whereby the transmittance and reflectance of the target sample can be easily measured. By performing only this, the film thickness of the target sample can be quickly and highly accurately obtained. Further, by using the film thickness evaluation device, the film thickness of the target sample can be evaluated easily.

【0045】なお、本実施例では、DCスパッタリング
法により成膜したが、該DCスパッタリング法に限定さ
れることなく、例えば、RFスパッタリング法、蒸着
法、CVD法、イオンプレーティング法等の気相成長
法、液相成長法などによってももちろんよい。また、D
Cスパッタリング装置を用いて成膜したが、該DCスパ
ッタリング装置以外の各種成膜装置を用いた場合におい
ても同様に実施することができる。
Although the film is formed by the DC sputtering method in the present embodiment, the present invention is not limited to the DC sputtering method, and for example, the vapor phase such as the RF sputtering method, the vapor deposition method, the CVD method, the ion plating method, etc. Of course, a growth method, a liquid phase growth method or the like may be used. Also, D
Although the film was formed using the C sputtering apparatus, the same operation can be performed when various film forming apparatuses other than the DC sputtering apparatus are used.

【0046】[0046]

【発明の効果】以上説明したように、本発明の請求項1
記載の薄膜の膜厚評価方法によれば、所定の波長の光を
膜厚未知の薄膜に入射し、該薄膜の透過率および反射率
を測定し、これら透過率および反射率と前記薄膜の屈折
率及び減衰係数とから前記薄膜の膜厚を求めることとし
たので、前記薄膜の膜厚を迅速かつ精度よく求めること
ができる。
As described above, according to the first aspect of the present invention.
According to the thin film thickness evaluation method described, light of a predetermined wavelength is incident on a thin film of unknown film thickness, the transmittance and reflectance of the thin film are measured, and the transmittance and reflectance and the refraction of the thin film are measured. Since the film thickness of the thin film is obtained from the coefficient and the attenuation coefficient, the film thickness of the thin film can be obtained quickly and accurately.

【0047】また、請求項2記載の薄膜の膜厚評価方法
によれば、標準薄膜の膜厚、透過率および反射率の各測
定値から前記標準薄膜の屈折率及び減衰係数を求め、被
測定薄膜の透過率および反射率の測定値と前記標準薄膜
の屈折率及び減衰係数とから前記被測定薄膜の膜厚を求
めることとしたので、前記被測定薄膜の膜厚を迅速かつ
高精度で求めることができる。
Further, according to the thin film thickness evaluation method of the second aspect, the refractive index and the attenuation coefficient of the standard thin film are obtained from the respective measured values of the standard thin film, the transmittance and the reflectance, and the measured film is measured. Since the film thickness of the thin film to be measured is determined from the measured values of the transmittance and reflectance of the thin film and the refractive index and the attenuation coefficient of the standard thin film, the film thickness of the thin film to be measured is quickly and highly accurately obtained. be able to.

【0048】また、請求項3記載の薄膜の膜厚評価方法
によれば、前記被測定薄膜の膜厚に基づき、該膜厚と該
被測定薄膜の所望の膜厚との比、該被測定薄膜の膜厚を
前記所望の膜厚とした場合の予測透過率および予測反射
率を求めることとしたので、得られた薄膜の透過率およ
び反射率を測定し、これらの測定値を前記予測透過率お
よび予測反射率と比較することにより、適合する膜厚を
迅速に求めることができる。
Further, according to the thin film thickness evaluation method of the third aspect, the ratio of the film thickness to the desired film thickness of the measured thin film, the measured film thickness of the measured thin film based on the film thickness of the measured thin film. Since it was decided to obtain the predicted transmittance and the predicted reflectance when the film thickness of the thin film was the desired film thickness, the transmittance and reflectance of the obtained thin film were measured, and these measured values were used as the predicted transmittance. A suitable film thickness can be quickly determined by comparing the index and the predicted reflectance.

【0049】また、請求項4記載の薄膜の膜厚評価装置
によれば、標準薄膜の膜厚、透過率および反射率、膜厚
未知の被測定薄膜の透過率および反射率の各測定値を入
力するデータ入力部と、前記各測定値に基づき前記標準
薄膜の屈折率及び減衰係数、前記被測定薄膜の膜厚の各
計算値を求め判定・評価する演算部と、前記各測定値及
び前記各計算値を保管するデータ保管部と、前記各測定
値及び前記各計算値を出力するデータ出力部とを備えた
ので、前記被測定薄膜の膜厚を安定、迅速かつ高精度で
測定することができる。
Further, according to the thin film thickness evaluation apparatus of the fourth aspect, the measured values of the standard thin film thickness, the transmittance and the reflectance, and the measured thin film of the unknown thickness have the transmittance and the reflectance, respectively. A data input unit for inputting, a refractive index and an attenuation coefficient of the standard thin film based on the measured values, a calculation unit for determining and evaluating calculated values of the film thickness of the measured thin film, and the measured values and the Since the data storage unit for storing each calculated value and the data output unit for outputting each measured value and each calculated value are provided, it is possible to measure the film thickness of the thin film to be measured stably, quickly and highly accurately. You can

【0050】また、請求項5記載の薄膜の膜厚評価装置
によれば、前記演算部に、前記被測定薄膜の膜厚に基づ
き、該膜厚と該被測定薄膜の所望の膜厚との比、該被測
定薄膜の膜厚を前記所望の膜厚とした場合の予測透過率
および予測反射率の各計算値を求め評価する演算手段を
備えたので、前記薄膜の補正すべき膜厚を容易かつ迅速
に求めることができ、膜厚の管理を容易かつ迅速に行う
ことができる。
Further, according to the thin film thickness evaluation apparatus of the fifth aspect, the calculating unit calculates the film thickness and the desired film thickness of the measured thin film based on the film thickness of the measured thin film. Ratio, the calculation means for obtaining and evaluating each calculated value of the predicted transmittance and the predicted reflectance when the film thickness of the thin film to be measured is set to the desired film thickness is provided. It can be easily and quickly obtained, and the film thickness can be easily and quickly controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の薄膜の膜厚評価方法を示す
流れ図である。
FIG. 1 is a flowchart showing a thin film thickness evaluation method of Example 1 of the present invention.

【図2】膜厚の異なる2つの標準試料各々の光の透過及
び反射を示す模式図である。
FIG. 2 is a schematic diagram showing light transmission and reflection of each of two standard samples having different film thicknesses.

【図3】本発明の実施例1の薄膜の膜厚評価装置を示す
ブロック図である。
FIG. 3 is a block diagram showing a thin film thickness evaluation apparatus of Example 1 of the present invention.

【図4】本発明の実施例1の薄膜の膜厚評価装置の作用
を示す流れ図である。
FIG. 4 is a flowchart showing the operation of the thin film thickness evaluation apparatus of Example 1 of the present invention.

【図5】本発明の実施例1の薄膜の膜厚評価装置におけ
る演算部の計算手順を示す流れ図である。
FIG. 5 is a flowchart showing a calculation procedure of a calculation unit in the thin film thickness evaluation apparatus of Example 1 of the present invention.

【図6】本発明の実施例2の薄膜光学素子各々の光の透
過及び反射を示す模式図である。
FIG. 6 is a schematic diagram showing light transmission and reflection of each thin film optical element of Example 2 of the present invention.

【図7】従来の薄膜光学素子の光学特性の測定方法の一
例を示す図である。
FIG. 7 is a diagram showing an example of a conventional method for measuring optical characteristics of a thin film optical element.

【図8】薄膜光学素子の光の波長と透過率及び反射率と
の関係を表わす分光曲線の一例を示す図である。
FIG. 8 is a diagram showing an example of a spectral curve showing the relationship between the wavelength of light of a thin film optical element and the transmittance and reflectance.

【図9】薄膜への入射光において観測される透過率・反
射率と膜中での反射の関係を示す図である。
FIG. 9 is a diagram showing a relationship between transmittance / reflectance observed in incident light on a thin film and reflection in the film.

【図10】薄膜光学素子の各透過率及び反射率における
屈折率と減衰係数との関係を示す図である。
FIG. 10 is a diagram showing a relationship between a refractive index and an attenuation coefficient at each transmittance and reflectance of the thin film optical element.

【符号の説明】[Explanation of symbols]

1,2 標準試料(標準薄膜) 11 石英基板 12 薄膜 13 薄膜 21 データ入力部 22 演算部 23 データ保管部 24 データ出力部 31 合成石英基板 32 酸化クロム膜 33 光学マスクブランク(標準薄膜) 41 膜厚未知の光学マスクブランク(膜厚未知の薄
膜) 42 酸化クロム膜
1 and 2 standard sample (standard thin film) 11 quartz substrate 12 thin film 13 thin film 21 data input unit 22 arithmetic unit 23 data storage unit 24 data output unit 31 synthetic quartz substrate 32 chromium oxide film 33 optical mask blank (standard thin film) 41 film thickness Unknown optical mask blank (thin film of unknown thickness) 42 Chromium oxide film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定の波長の光を膜厚未知の薄膜に入射
し、該薄膜の透過率および反射率を測定し、これら透過
率および反射率と前記薄膜の屈折率及び減衰係数とから
前記薄膜の膜厚を求めることを特徴とする薄膜の膜厚評
価方法。
1. A light having a predetermined wavelength is incident on a thin film of unknown film thickness, the transmittance and reflectance of the thin film are measured, and the transmittance and reflectance and the refractive index and attenuation coefficient of the thin film are used to calculate the A method for evaluating the thickness of a thin film, which comprises determining the thickness of the thin film.
【請求項2】 所定の波長の光を1つ以上の標準薄膜に
入射し、各標準薄膜の膜厚、透過率および反射率を測定
し、これらの測定値から前記標準薄膜の屈折率及び減衰
係数を求め、 次いで、所定の波長の光を膜厚未知の被測定薄膜に入射
し、該被測定薄膜の透過率および反射率を測定し、この
透過率および反射率の測定値と、前記標準薄膜の屈折率
及び減衰係数とから前記被測定薄膜の膜厚を求めること
を特徴とする薄膜の膜厚評価方法。
2. The light having a predetermined wavelength is incident on one or more standard thin films, the film thickness, the transmittance and the reflectance of each standard thin film are measured, and the refractive index and the attenuation of the standard thin film are measured from these measured values. Obtain the coefficient, then, the light of a predetermined wavelength is incident on the thin film to be measured of unknown film thickness, the transmittance and reflectance of the thin film to be measured are measured, and the measured values of this transmittance and reflectance, and the standard A method for evaluating the thickness of a thin film, which comprises obtaining the film thickness of the thin film to be measured from the refractive index and the attenuation coefficient of the thin film.
【請求項3】 前記被測定薄膜の膜厚に基づき、該膜厚
と該被測定薄膜の所望の膜厚との比、該被測定薄膜の膜
厚を前記所望の膜厚とした場合の予測透過率および予測
反射率を求めることを特徴とする請求項2記載の薄膜の
膜厚評価方法。
3. A ratio of the film thickness to a desired film thickness of the film to be measured based on the film thickness of the film to be measured, and a prediction when the film thickness of the film to be measured is set to the desired film thickness. The film thickness evaluation method according to claim 2, wherein the transmittance and the predicted reflectance are obtained.
【請求項4】 標準薄膜の膜厚、透過率および反射率、
膜厚未知の被測定薄膜の透過率および反射率の各測定値
を入力するデータ入力部と、前記各測定値に基づき前記
標準薄膜の屈折率及び減衰係数、前記被測定薄膜の膜厚
の各計算値を求め判定・評価する演算部と、前記各測定
値及び前記各計算値を保管するデータ保管部と、前記各
測定値及び前記各計算値を出力するデータ出力部とを備
えたことを特徴とする薄膜の膜厚評価装置。
4. A film thickness, a transmittance and a reflectance of a standard thin film,
A data input unit for inputting each measured value of the transmittance and reflectance of the measured thin film of unknown film thickness, a refractive index and an attenuation coefficient of the standard thin film based on each measured value, each of the film thickness of the measured thin film A calculation unit for calculating and determining / evaluating calculated values; a data storage unit for storing the measured values and the calculated values; and a data output unit for outputting the measured values and the calculated values. Characteristic thin film thickness evaluation device.
【請求項5】 前記演算部に、前記被測定薄膜の膜厚に
基づき、該膜厚と該被測定薄膜の所望の膜厚との比、該
被測定薄膜の膜厚を前記所望の膜厚とした場合の予測透
過率および予測反射率の各計算値を求め評価する演算手
段を備えたことを特徴とする請求項4記載の薄膜の膜厚
評価装置。
5. The calculation unit causes the ratio of the film thickness to the desired film thickness of the film to be measured, the film thickness of the film to be measured to be the desired film thickness based on the film thickness of the film to be measured. 5. The thin film thickness evaluation apparatus according to claim 4, further comprising arithmetic means for obtaining and evaluating the respective calculated values of the predicted transmittance and the predicted reflectance in the above case.
JP11567094A 1994-05-27 1994-05-27 Method and apparatus for evaluation of film thickness of thin film Pending JPH07318321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11567094A JPH07318321A (en) 1994-05-27 1994-05-27 Method and apparatus for evaluation of film thickness of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11567094A JPH07318321A (en) 1994-05-27 1994-05-27 Method and apparatus for evaluation of film thickness of thin film

Publications (1)

Publication Number Publication Date
JPH07318321A true JPH07318321A (en) 1995-12-08

Family

ID=14668392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11567094A Pending JPH07318321A (en) 1994-05-27 1994-05-27 Method and apparatus for evaluation of film thickness of thin film

Country Status (1)

Country Link
JP (1) JPH07318321A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300811A (en) * 2005-04-22 2006-11-02 Hitachi Displays Ltd Method of measuring film thickness of thin film, method of forming polycrystal semiconductor thin film, manufacturing method for semiconductor device, manufacturing apparatus for the same, and manufacture method for image display
JP2013053916A (en) * 2011-09-02 2013-03-21 Central Research Institute Of Electric Power Industry Method, device and program for detecting corrosion of steel material under coating layer
CN104359412A (en) * 2014-10-01 2015-02-18 上海光刻电子科技有限公司 Method for measuring thickness of chromium film on photomask
CN112881341A (en) * 2021-01-15 2021-06-01 中国科学院光电技术研究所 Method for determining optical constant and thickness of organic film
WO2023006227A1 (en) * 2021-07-30 2023-02-02 Carl Zeiss Smt Gmbh Method and apparatus for determining optical properties of deposition materials used for lithographic masks

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300811A (en) * 2005-04-22 2006-11-02 Hitachi Displays Ltd Method of measuring film thickness of thin film, method of forming polycrystal semiconductor thin film, manufacturing method for semiconductor device, manufacturing apparatus for the same, and manufacture method for image display
JP2013053916A (en) * 2011-09-02 2013-03-21 Central Research Institute Of Electric Power Industry Method, device and program for detecting corrosion of steel material under coating layer
CN104359412A (en) * 2014-10-01 2015-02-18 上海光刻电子科技有限公司 Method for measuring thickness of chromium film on photomask
CN104359412B (en) * 2014-10-01 2017-05-24 上海光刻电子科技有限公司 Method for measuring thickness of chromium film on photomask
CN112881341A (en) * 2021-01-15 2021-06-01 中国科学院光电技术研究所 Method for determining optical constant and thickness of organic film
CN112881341B (en) * 2021-01-15 2023-02-14 中国科学院光电技术研究所 Method for determining optical constant and thickness of organic film
WO2023006227A1 (en) * 2021-07-30 2023-02-02 Carl Zeiss Smt Gmbh Method and apparatus for determining optical properties of deposition materials used for lithographic masks

Similar Documents

Publication Publication Date Title
Woollam et al. Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications
Arndt et al. Multiple determination of the optical constants of thin-film coating materials
EP0350869B1 (en) Method of and apparatus for measuring film thickness
US6392756B1 (en) Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
US6091485A (en) Method and apparatus for optically determining physical parameters of underlayers
JPH0731050B2 (en) Optical film thickness measuring device
US5173746A (en) Method for rapid, accurate measurement of step heights between dissimilar materials
CN109470154B (en) Film thickness initial value measuring method suitable for spectrum ellipsometer
CN111121653B (en) Single-layer film critical thickness estimation value calculation method
Thwaite Phase correction in the interferometric measurement of end standards
JPH07318321A (en) Method and apparatus for evaluation of film thickness of thin film
US11662197B2 (en) Rapid measurement method for ultra-thin film optical constant
Lewis et al. Long-term study of gauge block interferometer performance and gauge block stability
US5717490A (en) Method for identifying order skipping in spectroreflective film measurement equipment
Mielenz Physical parameters in high-accuracy spectrophotometry
JPH07325013A (en) Phase difference evaluating method for thin film and phase difference evaluating apparatus therefor
KR102570084B1 (en) The thickness measurement method using a three-dimensional reflectance surface
JP4032511B2 (en) Method for measuring optical constants of thin films
Hodgkinson The application of fringes of equal chromatic order to the assessment of the surface roughness of polished fused silica
Alexandrov et al. Interference method for determination of the refractive index and thickness
Synowicki et al. Refractive-index measurements of photoresist and antireflective coatings with variable angle spectroscopic ellipsometry
Martı́nez-Antón et al. Spectrogoniometry and the WANTED method for thickness and refractive index determination
JP2992839B2 (en) Method and apparatus for measuring optical constant and film thickness
JP2022052246A (en) Film thickness estimation method and film thickness determination device
JP2850660B2 (en) Film thickness measurement method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030415