JP2965204B1 - Method for quantifying radioactive materials inside structures by gamma-ray measurement - Google Patents

Method for quantifying radioactive materials inside structures by gamma-ray measurement

Info

Publication number
JP2965204B1
JP2965204B1 JP24012398A JP24012398A JP2965204B1 JP 2965204 B1 JP2965204 B1 JP 2965204B1 JP 24012398 A JP24012398 A JP 24012398A JP 24012398 A JP24012398 A JP 24012398A JP 2965204 B1 JP2965204 B1 JP 2965204B1
Authority
JP
Japan
Prior art keywords
radioactive substance
radioactive
gamma
collimator
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24012398A
Other languages
Japanese (ja)
Other versions
JP2000065935A (en
Inventor
典岳 杉杖
薫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAKUNENRYO SAIKURU KAIHATSU KIKO
Original Assignee
KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAKUNENRYO SAIKURU KAIHATSU KIKO filed Critical KAKUNENRYO SAIKURU KAIHATSU KIKO
Priority to JP24012398A priority Critical patent/JP2965204B1/en
Application granted granted Critical
Publication of JP2965204B1 publication Critical patent/JP2965204B1/en
Publication of JP2000065935A publication Critical patent/JP2000065935A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【要約】 【課題】複雑な形状の構造物内部に存在する放射性物質
が中性子線をあまり放射しない場合でも、構造物を破壊
または分解することなく、γ線を用いて放射性物質を定
量することができる方法を提供する。 【解決手段】形状および材質が既知の構造物(1)内部
の複数領域(2a、3a)にγ線を放出する既知の放射
性物質が存在している場合に、γ線入射面積が異なるコ
リメータ(10、20)を取り付けた複数の計測器(3
0)を通して計測された複数のγ線強度測定結果と、単
位質量の放射性物質からのγ線が前記コリメータを取り
付けた複数の計測器に到達するときのγ線強度の理論計
算結果とから、前記構造物内部で前記放射性物質が存在
している領域およびその領域での放射性物質量を定量す
る。
Kind Code: A1 The present invention provides a method for quantifying a radioactive substance using gamma rays without destroying or decomposing the structure even when the radioactive substance present inside the structure having a complicated shape does not emit much neutron rays. Provide a way to do it. A collimator having a different γ-ray incident area when a known radioactive substance that emits γ-rays is present in a plurality of regions (2a, 3a) inside a structure (1) having a known shape and material. 10 and 20) with multiple measuring instruments (3
0), from a plurality of gamma-ray intensity measurement results measured through 0) and a theoretical calculation result of gamma-ray intensity when gamma rays from a unit mass of radioactive material reach a plurality of measuring instruments equipped with the collimator, An area where the radioactive substance is present inside the structure and the amount of the radioactive substance in the area are quantified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造物内部に密封
された放射性物質の定量方法に関し、特に、放射性物質
を定量する際に構造物を破壊または分解できないような
場合に好ましく適用できる放射性物質の定量方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying a radioactive substance sealed inside a structure, and more particularly to a radioactive substance which can be preferably applied when the structure cannot be destroyed or decomposed when quantifying the radioactive substance. The method relates to a method for quantification of

【0002】[0002]

【従来の技術】構造物内部に密封された放射性物質を定
量する場合、一般に中性子線やγ線を使った非破壊解析
技術が適用されている。
2. Description of the Related Art Non-destructive analysis techniques using neutrons and gamma rays are generally applied when quantifying radioactive materials sealed in a structure.

【0003】中性子は、構造物の形状に関係なく適用で
きる利点がある。しかし、放射性物質が中性子をあまり
放射しない場合、さらには、中性子を多く放射する放射
性物質でもその量が少ない場合には、中性子による構造
物内部の放射性物質の定量はできない。
[0003] Neutrons have the advantage of being applicable irrespective of the shape of the structure. However, if the radioactive material does not emit much neutrons, or if the amount of radioactive material that emits much neutrons is small, the neutron cannot quantify the radioactive material inside the structure.

【0004】一方、γ線は構造物の形状に大きく影響さ
れるため、放射性物質が複雑な形状の構造物内部に存在
するような場合には、γ線を用いる放射性物質の定量化
は困難となる。
On the other hand, since γ-rays are greatly affected by the shape of a structure, it is difficult to quantify radioactive materials using γ-rays when the radioactive material exists inside a structure having a complicated shape. Become.

【0005】[0005]

【発明が解決しようとする課題】上述したように、複雑
な形状の構造物内部に存在する放射性物質を、中性子線
あるいはγ線を測定して定量しようとする場合にはそれ
ぞれ一長一短があり、必ずしも満足すべき方法とはいえ
なかった。
As described above, when quantifying a radioactive substance present inside a structure having a complicated shape by measuring a neutron beam or a gamma ray, there are advantages and disadvantages. It was not a satisfactory method.

【0006】そこで本発明は、複雑な形状の構造物内部
に存在する放射性物質が中性子線をあまり放射しない場
合でも、構造物を破壊または分解することなく、γ線を
用いて放射性物質を定量することができる方法を提供す
ること、さらには、放射性物質が構造物内部の複数領域
に存在している場合でも、放射性物質が存在している領
域を特定し、各領域での放射性物質をそれぞれ定量する
ことができる方法を提供することを課題としてなされた
ものである。
Therefore, the present invention quantifies radioactive materials using γ-rays without destroying or decomposing the structures, even when the radioactive materials present inside the structure having a complicated shape do not emit much neutron rays. To provide a method that allows the radioactive material to be located in multiple regions within the structure.
In the area where radioactive material is present, even if
Identify areas and quantify radioactive material in each area
It is an object of the present invention to provide a method capable of performing such operations.

【0007】[0007]

【課題を解決するための手段】すなわち本発明によるγ
線による構造物内部の放射性物質の定量方法は、形状お
よび材質が既知の構造物内部の複数領域にγ線を放出す
る既知の放射性物質が存在している場合に、γ線入射面
積が異なるコリメータを取り付けた計測器を通して同一
計測点において計測された複数のγ線強度測定結果と、
前記複数領域に存在しかつ前記既知放射性物質と同種の
単位質量の放射性物質からのγ線が前記コリメータを取
り付けた計測器に到達するときの複数のγ線強度理論計
算結果とから、前記構造物内部で前記放射性物質が存在
している複数領域を特定し、各領域での放射性物質量を
それぞれ定量することを特徴とするものである。
That is, γ according to the present invention.
The method of quantifying radioactive substances inside a structure by X-rays is based on a collimator with a different γ-ray incident area when there are known radioactive substances that emit γ-rays in multiple areas inside the structure whose shape and material are known. Same through instrument with attached
A plurality of γ-ray intensity measurement results measured at the measurement point ,
From a plurality of γ-ray intensity calculation results when γ-rays from a radioactive substance having a unit mass of the same kind as the known radioactive substance existing in the plurality of regions reach the measuring instrument equipped with the collimator. Identifying a plurality of regions in which the radioactive material is present inside the structure, and determining the amount of radioactive material in each region.
Each is characterized by being quantified.

【0008】[0008]

【発明の実施の形態】放射性物質が密封されている構造
物の例として、図1に示すような円筒2内部に円柱3が
配設された構造物1を考える。この構造物1には、図5
および図6に示したように、円筒2の内面2aおよび円
柱3の外面3aに少量の放射性物質が付着している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an example of a structure in which a radioactive substance is sealed, consider a structure 1 in which a cylinder 3 is disposed inside a cylinder 2 as shown in FIG. This structure 1 has the structure shown in FIG.
As shown in FIG. 6, a small amount of radioactive substance is attached to the inner surface 2a of the cylinder 2 and the outer surface 3a of the cylinder 3.

【0009】このような放射性物質存在領域2aおよび
3aから放射されるγ線を測定し、放射性物質を定量す
るために、図2〜図3に示すようなγ線入射面積の異な
るコリメータ10および20を使用する。コリメータ1
0は円筒形状を有しており、γ線検出器30の横軸に平
行な外周面を覆うように取り付けられる。コリメータ2
0は図3に示すように円板の中央部に貫通孔を有する円
環形状とし、図4に示すように構造物に対向するγ線検
出器30の前面に取り付けられる。
In order to measure γ-rays radiated from such radioactive substance existing areas 2a and 3a and to quantify the radioactive substance, collimators 10 and 20 having different γ-ray incident areas as shown in FIGS. Use Collimator 1
Reference numeral 0 has a cylindrical shape, and is attached so as to cover the outer peripheral surface of the γ-ray detector 30 parallel to the horizontal axis. Collimator 2
Reference numeral 0 denotes an annular shape having a through hole at the center of the disk as shown in FIG.

【0010】検出器30を同一測定点に配置して、これ
らのコリメータ10、20の組み合わせを変化させるこ
とで、構造物内部のそれぞれの放射性物質存在領域2
a、3aに存在する放射性物質から放射されるγ線の検
出器30への到達の割合が、放射性物質存在領域によっ
て異なってくる。この差を利用して、放射性物質の存在
領域を特定し、その領域にそれぞれ存在する放射性物質
量を定量することができる。
By arranging the detector 30 at the same measurement point and changing the combination of these collimators 10 and 20, each radioactive substance existing area 2 inside the structure is changed.
The ratio of γ-rays radiated from the radioactive substances existing in the areas a and 3a to the detector 30 differs depending on the radioactive substance existing area. Using this difference, identifies the presence area of the radioactive material, it is possible to quantify the radioactive substance content present respectively in the region.

【0011】構造物内部の放射性物質からのγ線を測定
する際には、図5に示したようにコリメータ10のみを
取り付けたγ線検出器30、および図6に示したように
コリメータ10と20を取り付けたγ線検出器30によ
り測定を行う。この複数のγ線強度測定結果を用いて放
射性物質の定量を行うのである。
When measuring γ-rays from a radioactive substance inside a structure, a γ-ray detector 30 equipped with only a collimator 10 as shown in FIG. 5 and a collimator 10 as shown in FIG. The measurement is carried out by the γ-ray detector 30 to which the sensor 20 is attached. The radioactive substance is quantified using the plurality of γ-ray intensity measurement results.

【0012】このγ線強度測定値から放射性物質の定量
を行うためには、放射性物質から放射されるγ線が構造
物によってどの様に遮蔽されるかが予めわからなければ
ならない。構造物によるγ線遮蔽の様子を知るために、
本発明においては理論解析でシミュレーションによる計
算を行う。すなわち、シミュレーションによって下記の
a、a′、b、b′の量、すなわち前記の放射性物質と
同種の放射性物質が前記複数領域に単位量存在している
場合にγ線検出器30で測定される各領域からのγ線強
度の理論値を予め計算しておく。この計算は、実際の構
造物の寸法と材質を使って計算する。
[0012] In order to perform the quantitation of radioactive material from the γ-ray intensity measurements, or γ rays emitted from radioactive material are shielded what kind by structures must from the pre Mewa. In order to know how gamma rays are shielded by structures,
In the present invention, calculation by simulation is performed by theoretical analysis. That is, by simulation, the following a, a ', b, b' amounts, ie ,
When the same type of radioactive substance is present in a unit amount in the plurality of regions, the theoretical value of the γ-ray intensity from each region measured by the γ-ray detector 30 is calculated in advance. This calculation is performed using the actual dimensions and materials of the structure.

【0013】a :円筒2内面からのγ線強度の理論量
(コリメータ10使用) a′:円筒2内面からのγ線強度の理論量(コリメータ
10と20使用) b :円柱3外面からのγ線強度の理論量(コリメータ
10使用) b′:円柱3外面からのγ線強度の理論量(コリメータ
10と20使用)
A: theoretical amount of γ-ray intensity from the inner surface of cylinder 2 (using collimator 10) a ′: theoretical amount of γ-ray intensity from inner surface of cylinder 2 (using collimators 10 and 20) b: γ from outer surface of cylinder 3 Theoretical amount of line intensity (using collimator 10) b ': Theoretical amount of gamma ray intensity from outer surface of cylinder 3 (using collimators 10 and 20)

【0014】次に、求める放射性物質の量とγ線測定結
果を下記のように表す。 X1:円筒2内面に存在する放射性物質の量 X2:円柱3外面に存在する放射性物質の量 G :γ線強度測定結果(コリメータ10使用) G′:γ線強度測定結果(コリメータ10と20使用)
Next, the amount of the radioactive substance to be obtained and the result of the γ-ray measurement are shown as follows. X1: Amount of radioactive material present on the inner surface of cylinder 2 X2: Amount of radioactive material present on the outer surface of cylinder 3 G: γ-ray intensity measurement result (using collimator 10) G ′: γ-ray intensity measurement result (using collimators 10 and 20) )

【0015】これらの各量の関係は次式で表される。 a X1 + b X2 = G …(1) a′X1+b′X2 = G′ …(2)The relationship between these quantities is expressed by the following equation. a X1 + b X2 = G (1) a′X1 + b′X2 = G ′ (2)

【0016】従って、この構造物内部の放射性物質の量
X1、X2は上記(1)式と(2)式から次のように算
出することができる。 X1=(G/b−G′/b′)/(a/b−a′/b′) …(3) X2=(G/a−G′/a′)/(b/a−b′/a′) …(4)
Therefore, the amount of radioactive material inside this structure
X1 and X2 can be calculated from the above equations (1) and (2) as follows. X1 = (G / b−G ′ / b ′) / (a / ba−a ′ / b ′) (3) X2 = (G / a−G ′ / a ′) / (b / ab ′) / A ') ... (4)

【0017】なお、上述した例では、放射性物質存在領
域を2つとしたため、γ線測定をコリメータ10を使用
した場合と、コリメータ10および20を使用した場合
の2通りにしたが、このγ線測定の数は放射性物質存在
領域の数に依存して適宜決定することができる。
In the above-described example, two radioactive substance-existing regions are used. Therefore, the gamma ray measurement is performed in two cases, that is, when the collimator 10 is used and when the collimators 10 and 20 are used. Can be appropriately determined depending on the number of radioactive substance existing regions.

【0018】[0018]

【実施例】原子力施設のプラントに存在する図7に示す
ような構造物内部の放射性物質を、本発明を適用して定
量した。 この構造物は円筒4の中に2個の円柱5、6
が配設された形状を有し、放射性物質は円筒4の内面と
円柱5、6の外面に低密度でほぼ均一に存在している。
EXAMPLE A radioactive substance inside a structure as shown in FIG. 7 existing in a nuclear facility plant was quantified by applying the present invention. This structure has two cylinders 5, 6 in a cylinder 4.
Is disposed, and the radioactive substance is almost uniformly present at a low density on the inner surface of the cylinder 4 and the outer surfaces of the cylinders 5 and 6.

【0019】このとき、単位量当たりの放射性物質から
のγ線強度の理論計算値、求める放射性物質量、γ線検
出器で測定されるγ線強度は、以下のように与えられ
る。 a :円筒4内面からのγ線強度の理論量(コリメータ
10使用) a′:円筒4内面からのγ線強度の理論量(コリメータ
10と20使用) b :円柱5と6外面からのγ線強度の理論量(コリメ
ータ10使用) b′:円柱5と6外面からのγ線強度の理論量(コリメ
ータ10と20使用) X1:円筒4内面に存在する放射性物質の量 X2:円柱5外面に存在する放射性物質の量 X3:円柱6外面に存在する放射性物質の量 G :γ線強度測定結果(コリメータ10使用) G′:γ線強度測定結果(コリメータ10と20使用)
At this time, the theoretical calculation value of the γ-ray intensity from the radioactive substance per unit amount, the amount of the radioactive substance to be obtained, and the γ-ray intensity measured by the γ-ray detector are given as follows. a: theoretical amount of gamma ray intensity from the inner surface of the cylinder 4 (using the collimator 10) a ': theoretical amount of gamma ray intensity from the inner surface of the cylinder 4 (using the collimators 10 and 20) b: gamma rays from the outer surfaces of the cylinders 5 and 6 Theoretical amount of intensity (using collimator 10) b ': Theoretical amount of γ-ray intensity from outer surfaces of cylinders 5 and 6 (using collimators 10 and 20) X1: The amount of radioactive material present on inner surface of cylinder 4 X2: On the outer surface of cylinder 5 X3: Amount of radioactive substance present on the outer surface of the cylinder 6 G: Gamma-ray intensity measurement result (using the collimator 10) G ': γ-ray intensity measurement result (using the collimators 10 and 20)

【0020】なお、円柱5と6はγ線検出器30に対し
て対称の位置にあるため、γ線強度の理論量は共通であ
る。ここでγ線強度の理論量は次の通りである。 円筒4 円柱5、6 コリメータ10使用 a =0.3794 b =1.3499 コリメータ10と20使用 a′=0.1500 b′=0.7755
Since the cylinders 5 and 6 are located symmetrically with respect to the γ-ray detector 30, the theoretical amount of γ-ray intensity is common. Here, the theoretical amount of the γ-ray intensity is as follows. Cylinder 4 Cylinders 5, 6 Use collimator 10 a = 0.3794 b = 1.3499 Use collimators 10 and 20 a '= 0.1500 b' = 0.7755

【0021】また、構造物内部の放射性物質から放射さ
れるγ線量をγ線検出器で測定したときのγ線スペクト
ルを図8(コリメータ10を取り付けた場合)と図9
(コリメータ10と20を取り付けた場合)に示す。こ
の結果から、γ線スペクトルのピークでのγ線量を求め
ると次の通りである。なお、γ線量を求めるγ線エネル
ギーは186eVである。
FIG. 8 (when the collimator 10 is attached) and FIG. 9 show the γ-ray spectrum when the γ-ray radiated from the radioactive substance inside the structure is measured by the γ-ray detector.
(When collimators 10 and 20 are attached). From this result, the γ dose at the peak of the γ-ray spectrum is obtained as follows. The γ-ray energy for obtaining the γ dose is 186 eV.

【0022】放射性物質量を計算する前記(3)式と
(4)式に対応する計算式は、次のようになる。円筒4
に対して: X1=(G/b−G′/b′)/(a/b−a′/
b′) 円柱5、6に対して: X2=X3=1/2×(G/a−G′/a′)/(b/
a−b′/a′) この計算では、円柱については円柱5と6の合計の放射
性物質量が得られるので、1/2を乗じて平均値を与え
ることにする。
Calculation formulas corresponding to the above formulas (3) and (4) for calculating the amount of radioactive material are as follows. Cylinder 4
X1 = (G / b−G ′ / b ′) / (a / ba−a ′ /
b ') For cylinders 5 and 6: X2 = X3 = 1 / 2.times. (G / a-G' / a ') / (b /
ab '/ a') In this calculation, since the total amount of radioactive material of the cylinders 5 and 6 is obtained for the cylinder, the average value is given by multiplying by 1/2.

【0023】上記の計算式に、単位量当たりの放射性物
質からのγ線強度の理論計算値と、γ線検出器で測定さ
れるγ線強度の計測値を代入すると、求める放射性物質
量は次のように計算できる。 なお、算出された上記の値は、放射性物質が存在する高
さ方向の範囲をγ線検出器を中心に幅1mとしたときの
値である。
By substituting the theoretically calculated value of the γ-ray intensity from the radioactive substance per unit amount and the measured value of the γ-ray intensity measured by the γ-ray detector into the above formula, the amount of the radioactive substance to be obtained is It can be calculated as follows. Note that the above calculated values are values when the range in the height direction where the radioactive substance exists is 1 m in width around the γ-ray detector.

【0024】原子力施設のプラントではこの様な構造物
が複数個存在しており、コリメータを用いた上記のごと
き計測と計算を繰り返すことで、プラントに存在してい
る複数の構造物内部に存在している放射性物質の量を計
算することができる。
In a nuclear power plant, a plurality of such structures exist, and by repeating the above-described measurement and calculation using a collimator, the plurality of such structures exist inside the plurality of structures existing in the plant. The amount of radioactive material present can be calculated.

【0025】[0025]

【発明の効果】上述したところからわかるように、本発
明によれば、従来の非破壊解析技術が適用しにくい構造
物内部の放射性物質に対して、構造物を破壊または分解
することなしに、その量を定量化することができ、さら
には、構造物内部の複数領域に存在する放射性物質の量
を各領域ごとにそれぞれ定量することが可能となり、放
射性物質の管理の精度を向上させることができる。
As can be seen from the above description, according to the present invention, a radioactive substance inside a structure, to which conventional nondestructive analysis technology is difficult to apply, can be used without destroying or decomposing the structure. The amount can be quantified and further
Is the amount of radioactive material present in multiple areas inside the structure.
Can be quantified for each region, and the accuracy of management of radioactive substances can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放射性物質を密封する構造物としての容器形状
の一例を示す平面図および側面図。
FIG. 1 is a plan view and a side view showing an example of a container shape as a structure for sealing a radioactive substance.

【図2】円筒状コリメータを取り付けたγ線検出器の例
を示す説明図。
FIG. 2 is an explanatory diagram showing an example of a γ-ray detector to which a cylindrical collimator is attached.

【図3】円環状コリメータの例を示す平面図および断面
図。
FIG. 3 is a plan view and a cross-sectional view illustrating an example of an annular collimator.

【図4】円筒状コリメータと円環状コリメータを取り付
けたγ線検出器の例を示す説明図。
FIG. 4 is an explanatory diagram showing an example of a γ-ray detector to which a cylindrical collimator and an annular collimator are attached.

【図5】図1の構造物内部の放射性物質のγ線を図2の
γ線検出器で測定している例を示す説明図。
FIG. 5 is an explanatory diagram showing an example in which γ-rays of a radioactive substance inside the structure in FIG. 1 are measured by the γ-ray detector in FIG. 2;

【図6】図1の構造物内部の放射性物質のγ線を図4の
γ線検出器で測定している例を示す説明図。
FIG. 6 is an explanatory view showing an example in which γ-rays of a radioactive substance inside the structure of FIG. 1 are measured by the γ-ray detector of FIG. 4;

【図7】別な形状の構造物内部の放射性物質のγ線をγ
線検出器で測定している実施例を示す説明図。
FIG. 7 shows γ-rays of radioactive material inside a structure having another shape as γ.
Explanatory drawing which shows the Example measured by the line detector.

【図8】図7の実施例で1つのコリメータを取り付けた
γ線検出器で測定したγ線スペクトル。
8 is a γ-ray spectrum measured by a γ-ray detector equipped with one collimator in the embodiment of FIG.

【図9】図7の実施例で2つのコリメータを取り付けた
γ線検出器で測定したγ線スペクトル。
9 is a γ-ray spectrum measured by a γ-ray detector equipped with two collimators in the embodiment of FIG. 7;

【符号の説明】[Explanation of symbols]

1: 構造物 2、4: 円筒 3、5,6: 円柱 2a、3a : 放射性物質存在領域 10、20 : コリメータ 30: γ線検出器 1: Structure 2, 4: Cylinder 3, 5, 6: Cylinder 2a, 3a: Radioactive substance existing area 10, 20: Collimator 30: γ-ray detector

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01T 1/00 - 7/12 Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01T 1/00-7/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 形状および材質が既知の構造物内部の複
数領域にγ線を放出する既知の放射性物質が存在してい
る場合に、γ線入射面積が異なるコリメータを取り付け
た計測器を通して同一計測点において計測された複数の
γ線強度測定結果と、前記複数領域に存在しかつ前記既
知放射性物質と同種の単位質量の放射性物質からのγ線
が前記コリメータを取り付けた計測器に到達するときの
複数のγ線強度理論計算結果とから、前記構造物内部で
前記放射性物質が存在している複数領域を特定し、各
域での放射性物質量をそれぞれ定量することを特徴とす
るγ線による構造物内部の放射性物質の定量方法。
1. When a known radioactive substance that emits gamma rays exists in a plurality of regions inside a structure having a known shape and material, the same measurement is performed through a measuring instrument equipped with a collimator having a different gamma ray incidence area. a plurality of γ-ray intensity measurements measured in points, present and the already in the plurality of regions
From a plurality of gamma ray intensity theoretical calculation results when gamma rays from a radioactive substance of the same kind of unit mass as the intellectual radioactive substance reach the measuring instrument equipped with the collimator, the radioactive substance is present inside the structure. identify a plurality of areas are quantitative methods of radioactive materials internals radioactive material amount by γ-rays, which comprises quantifying each in each territory <br/> zone.
JP24012398A 1998-08-26 1998-08-26 Method for quantifying radioactive materials inside structures by gamma-ray measurement Expired - Fee Related JP2965204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24012398A JP2965204B1 (en) 1998-08-26 1998-08-26 Method for quantifying radioactive materials inside structures by gamma-ray measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24012398A JP2965204B1 (en) 1998-08-26 1998-08-26 Method for quantifying radioactive materials inside structures by gamma-ray measurement

Publications (2)

Publication Number Publication Date
JP2965204B1 true JP2965204B1 (en) 1999-10-18
JP2000065935A JP2000065935A (en) 2000-03-03

Family

ID=17054847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24012398A Expired - Fee Related JP2965204B1 (en) 1998-08-26 1998-08-26 Method for quantifying radioactive materials inside structures by gamma-ray measurement

Country Status (1)

Country Link
JP (1) JP2965204B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013043898A2 (en) 2011-09-22 2013-03-28 Ut-Battelle, Llc Adaptors for radiation detectors

Also Published As

Publication number Publication date
JP2000065935A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP5039033B2 (en) Method for X-ray and gamma-ray spectrophoton dosimetry
US7902519B2 (en) Monitoring
EP2978377B1 (en) Method of phase gradient radiography and arrangement of an imaging system for application of the method
KR102115382B1 (en) System and method for derivation of radioactivity distribution according to depth of a concrete structure
Silva et al. Tube defects inspection technique by using Compton gamma-rays backscattering
JP2965204B1 (en) Method for quantifying radioactive materials inside structures by gamma-ray measurement
JP3009358B2 (en) Measuring method of contamination distribution inside radioactively contaminated piping
JPS61107183A (en) Method for measuring radioactive quantity of radioactive waste contained in receptacle
JP2703409B2 (en) Radioactivity measurement method
JP3075647B2 (en) Design method of X-ray inspection apparatus and X-ray inspection apparatus
Nir-El et al. Minimum detectable activity in in situ γ-ray spectrometry
Mariscotti et al. Gamma-ray imaging for void and corrosion assessment
JPH09230051A (en) Radioactivity quantity measuring method for radioactive waste solidified body
JP2635860B2 (en) Radioactivity evaluation method for solidified radioactive waste
JP5926362B1 (en) Radioactivity concentration measuring apparatus and radioactivity concentration measuring method
JP2020027079A (en) Radioactivity analysis device
Keyser Characterization of room temperature detectors using the proposed IEEE standard
JPH1048342A (en) Measuring method for radioactivity
Stepanov et al. Application of gamma-ray imager for non-destructive testing
JP3234716B2 (en) Area measurement method used for X-ray analysis
Cheng et al. A sensitive high resolution neutron imaging detector
Simakov et al. Benchmarking of evaluated nuclear data for bismuth by spherical shell transmission experiments with central T (d, n) and Cf-252 neutron sources
Eilbert et al. Partial body calcium determination in bone by proton activation analysis
Park et al. Applicability of a mobile in situ gamma detector with different scan speeds for evaluating hotspots in decommissioning sites
Mariscotti et al. Gamma-ray imaging for void and corrosion assessment in PT girders

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees