JP2963931B2 - Vibration barrel polishing of structural ceramics - Google Patents

Vibration barrel polishing of structural ceramics

Info

Publication number
JP2963931B2
JP2963931B2 JP1263537A JP26353789A JP2963931B2 JP 2963931 B2 JP2963931 B2 JP 2963931B2 JP 1263537 A JP1263537 A JP 1263537A JP 26353789 A JP26353789 A JP 26353789A JP 2963931 B2 JP2963931 B2 JP 2963931B2
Authority
JP
Japan
Prior art keywords
polishing
abrasive
specific gravity
vibration
media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1263537A
Other languages
Japanese (ja)
Other versions
JPH03131469A (en
Inventor
由喜男 森
正之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MYAGIKEN
Original Assignee
MYAGIKEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MYAGIKEN filed Critical MYAGIKEN
Priority to JP1263537A priority Critical patent/JP2963931B2/en
Publication of JPH03131469A publication Critical patent/JPH03131469A/en
Application granted granted Critical
Publication of JP2963931B2 publication Critical patent/JP2963931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高比重メディアと、それより比重が低い特
定の粒径を有する遊離砥材とを混合した研磨材によって
構造用セラミックスを振動バレル研磨機により研磨する
振動バレル研磨法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vibration barrel for a structural ceramic using an abrasive obtained by mixing a medium having a high specific gravity and a free abrasive having a specific particle diameter lower than the specific gravity. This is a vibration barrel polishing method for polishing with a polishing machine.

「従来技術」 従来よりバレル研磨法は、金属のバリとりや表面研磨
を目的として開発されてきたが、その後、プラスチック
や貴石、ガラス、セラミックス等といった幅広い分野の
研磨に利用されている。当該バレル研磨法は被研磨材の
表面平滑仕上げを目的としながら、同時に研磨材の目砂
取り、被研磨材のバリ取り、R付け等が行なえるうえ、
量産、均質化が図れるという特性をもっている。このよ
うなバレル研磨法には、回転バレル研磨法、浸漬式バレ
ル法、遠心流動バレル研磨法、振動バレル研磨法などの
種類がある。そのうちで構造用セラミックスの研磨に
は、普通、遠心流動バレル研磨法(特開昭58−192745
号)か回転バレル研磨法(特開昭60−99555号)が用い
られており、振動バレル研磨法では無理であるとされて
いた。
[Prior Art] Conventionally, the barrel polishing method has been developed for the purpose of deburring metal and surface polishing, but has been subsequently used for polishing a wide range of fields such as plastics, precious stones, glass, and ceramics. The barrel polishing method aims to smooth the surface of the material to be polished, while simultaneously removing sand from the abrasive, deburring the material to be polished, and adding R,
It has the characteristics of mass production and homogenization. Such barrel polishing methods include a rotary barrel polishing method, a dipping barrel polishing method, a centrifugal flow barrel polishing method, and a vibration barrel polishing method. Among them, the polishing of structural ceramics is usually performed by a centrifugal flow barrel polishing method (Japanese Patent Laid-Open No. 58-192745).
No. 1) or a rotary barrel polishing method (Japanese Patent Application Laid-Open No. 60-99555), and it has been considered impossible with the vibration barrel polishing method.

なぜなら、遠心流動バレル研磨法や回転バレル研磨法
は、遠心力や回転力により加工物と研磨材を流動させ、
それらの流動による相対運動差によって研磨する方法で
ある。この研磨法は、研磨槽は密閉式となり、研磨材の
まんべんない流動と強い研磨力を確保することができる
ので、硬質な構造用セラミックスでも研磨ができること
になる。
Because the centrifugal flow barrel polishing method and the rotary barrel polishing method flow the workpiece and the abrasive by centrifugal force and rotational force,
This is a method of polishing by relative motion difference due to the flow. In this polishing method, the polishing tank is a closed type, and an even flow of the polishing material and a strong polishing force can be ensured, so that hard structural ceramics can be polished.

これに対し振動バレル研磨法は、振動力を与えること
により生じた加工物と研磨材との振動による相対運動差
によって研磨する方法である。この研磨法は、その研磨
槽の上部がオープンとなり、選別などの自動化が行える
という反面、研磨力が弱くなり、研磨材は振動によって
沈みこみ、まんべんない流動を確保することができない
ので、硬質な構造用セラミックスは研磨ができないとさ
れていた。
On the other hand, the vibration barrel polishing method is a method of polishing by a relative motion difference caused by vibration between a workpiece and an abrasive produced by applying a vibration force. In this polishing method, the upper part of the polishing tank is open, and automation such as sorting can be performed, but the polishing power is weakened, the abrasive sinks down due to vibration, and it is not possible to ensure an even flow, It was said that hard structural ceramics could not be polished.

また、構造用セラミックスを従来のメディアで研磨す
ることは、極めて困難であるとされている。なぜなら第
1に、刃物、シリンダー、ベアリングなどに用いられる
構造用セラミックスは、圧電素子や基板やフィルターな
どに用いられている軟らかい機能用セラミックスに比較
して、耐衝撃性、耐摩耗性、耐熱性において強く、研磨
が困難だからである。第2に従来より用いられているア
ルミナなどのメディアは、衝撃に弱いため、遊離砥材に
よりメディア自体が激しく摩耗するだけである。第3に
従来のメディアは遊離砥材と同比重のため、細粒の遊離
砥材は振動により底に沈み、砥材が流動しなくなってし
まううえ、慣性エネルギーが小さく研磨力が出ない。以
上のように従来のメディアには数多くの欠点があるた
め、構造用セラミックスをそれで研磨することは、極め
て困難であるとされていた。
Further, it is said that it is extremely difficult to grind the structural ceramic with a conventional medium. First, structural ceramics used for cutting tools, cylinders, bearings, etc. are more resistant to impact, abrasion and heat than soft ceramics used for piezoelectric elements, substrates and filters. This is because polishing is difficult. Secondly, since conventionally used media such as alumina are vulnerable to impact, the media itself is only severely worn by loose abrasives. Third, since the conventional media has the same specific gravity as the loose abrasive, the fine abrasive looses to the bottom due to vibration, so that the abrasive does not flow, and the inertia energy is small and no abrasive power is produced. As described above, conventional media have a number of disadvantages, and it has been considered extremely difficult to grind structural ceramics therewith.

「発明が解決すべき問題点」 このため、構造用セラミックスの研磨は遠心流動バレ
ル研磨機や回転バレル研磨機を用いて行なうのが普通で
ある。その場合にはメディアの流動性が良く衝撃力も大
きいので研磨能力は充分であるが、バレル槽が密閉式で
あるため研磨状態の確認がとれず作業性が悪い等、自動
化が困難なうえ、薄物のセラミックス研磨では割れや欠
けなどを生じる欠点がある。そこで、自動化を容易に行
なうため、上部開口式で研磨状態が確認でき、しかも1
台のモーターで研磨と選別のできる振動バレル研磨機に
より構造用セラミックスの研磨を行なうことが望まれて
いる。当該振動バレル研磨の場合には、構造用セラミッ
クスのつや山しやバリ取りにはなんとか適用できるが、
研磨能力が不足しているため構造用セラミックスの研磨
は不可能であった(第4図)。観察の結果、研磨能力が
不足する最も大きな原因は、従来のメディアと遊離砥材
とが同じ比重であるため、細粒の遊離砥材は振動により
底に沈んで流動しなくなり、研磨能力が生じない点にあ
ること、および遊離砥材の粒径がある程度以上に大きく
ないと研磨量が小さくなって、研磨を目的とした使用に
は適さないことが解った(第3図)。
"Problems to be Solved by the Invention" For this reason, polishing of structural ceramics is usually performed using a centrifugal flow barrel polishing machine or a rotary barrel polishing machine. In that case, the polishing ability is sufficient because the fluidity of the media is good and the impact force is large, but since the barrel tank is a closed type, the polishing state cannot be checked and the workability is poor, and automation is difficult. However, there is a disadvantage that cracking or chipping is caused by the ceramic polishing. Therefore, in order to easily perform the automation, the polishing state can be confirmed by the upper opening type.
It is desired that the structural ceramics be polished by a vibrating barrel polisher that can be separated from polishing by a single motor. In the case of the vibration barrel polishing, it can be applied to the polishing and deburring of structural ceramics.
Polishing of structural ceramics was not possible due to insufficient polishing capability (FIG. 4). As a result of the observation, the biggest cause of the lack of polishing ability was that the conventional media and the free abrasive material had the same specific gravity, so the fine-grained free abrasive material settled to the bottom due to vibration and did not flow, resulting in the polishing ability It was found that if the size of the free abrasive material was not larger than a certain level, the polishing amount was small, and it was not suitable for use for polishing (FIG. 3).

本発明者は、このような欠点を解消するため、メディ
アを高比重のもので作製し、比重が低く特定粒径より大
きい遊離砥材と混合したところ、振動により遊離砥材は
上部に押し上げられ、まんべんなく流動させることがで
きるようになり(第2図)、しかも振動バレル研磨機の
振動によっても構造用セラミックスの研磨が可能になっ
たものである(第4図)。
The present inventor, in order to eliminate such a drawback, when the medium is manufactured with a high specific gravity and mixed with a free abrasive having a low specific gravity and a specific particle size, the free abrasive is pushed upward by vibration. Thus, the ceramics can be made to flow evenly (FIG. 2), and the structural ceramics can be polished by the vibration of the vibrating barrel polishing machine (FIG. 4).

「問題を解決する手段」 前述したように、本発明者は、「振動バレル研磨機に
よる構造用セラミックスの研磨では、メディアと遊離砥
材とが同じ比重(比重3〜4)である場合、細粒の遊離
砥材は振動により底に沈んで流動しなくなり、研磨能力
が生じない。」ことを実験と経験から知り、これを解消
するため研究した結果、比重と粒径に着目し、ジルコニ
ア(ZrO2)や鋼(Fe)などその比重が6以上の高比重材
でメディアを作製し、比重が低く粒度#240より粒径が
大きい遊離砥材と混合して研磨材となし、これらを振動
バレル研磨機に装入して振動させたところ、遊離砥材は
上部に押し上げられ、メディアと共にまんべんなく流動
させることができることが解り、本発明を完成した。
[Means for Solving the Problem] As described above, the present inventor has stated that, in the polishing of structural ceramics by the vibration barrel polishing machine, when the media and the free abrasive have the same specific gravity (specific gravity 3 to 4), Experiments and experience found that loose abrasives settled at the bottom due to vibration and did not flow, resulting in no polishing ability. "As a result of researching to eliminate this, we focused on specific gravity and particle size, and focused on zirconia ( The media is made of high specific gravity material such as ZrO 2 ) or steel (Fe) whose specific gravity is 6 or more, mixed with free abrasive material with low specific gravity and larger particle size than # 240 to form abrasive material, and these are vibrated. When loaded into the barrel polishing machine and vibrated, it was found that the loose abrasive was pushed upward and could flow evenly with the media, thus completing the present invention.

すなわち、特許を受けようとする第1発明は、研磨槽
に工作物、研磨材、水を装入し、振動を与えることによ
り、生じる研磨材と工作物の相対運動差により研磨を行
なう振動バレル研磨法において、研磨材として比重が6
以上の高比重メディアと、それより比重が低く、粒度24
0より粒径が大きいアルミナ(Al2O3)系および/または
炭化珪素(SiC)の砥粒とからなる遊離砥材と混合する
ようにしたことを特徴とした構造用セラミックスの振動
バレル研磨法である。
That is, the first invention to be patented is a vibration barrel in which a workpiece, an abrasive, and water are charged into a polishing tank and vibration is applied to perform polishing by a relative motion difference between the generated abrasive and the workpiece. In the polishing method, the specific gravity of the abrasive is 6
High specific gravity media with lower specific gravity
A vibration barrel polishing method for structural ceramics characterized by being mixed with a free abrasive material comprising alumina (Al 2 O 3 ) and / or silicon carbide (SiC) abrasive particles having a particle size larger than 0. It is.

特許を受けようとする第二発明は、高比重メディアと
して、ジルコニア球または鋼球を用いるようにしたこと
を特徴とする第1発明に記載の構造用セラミックスの振
動バレル研磨法である。
The second invention for which a patent is sought is the method of polishing a structural ceramic for a vibration barrel according to the first invention, wherein a zirconia ball or a steel ball is used as the high specific gravity medium.

「作用」 ジルコニア(比重6.1)と鋼(比重7.8)とを用いて製
作したジルコニア球(ZrO2)、または鋼球(Fe)などの
高比重メディアを、それより比重が低く(比重3〜
4)、粒度240より粒径の大きい遊離砥材{アルミナ(A
l2O3)系および/または炭素珪素(SiC)系の砥粒}と
混合して使用した場合、 高比重メディアは質量が大きいため慣性エネルギーが
大きく高い衝撃力と研磨力を得ることができる(第4
図)。
[Action] High specific gravity media such as zirconia spheres (ZrO 2 ) or steel balls (Fe) manufactured using zirconia (specific gravity 6.1) and steel (specific gravity 7.8) have a lower specific gravity (specific gravity 3 to 3).
4) Free abrasive with larger particle size than 240 particle size240Alumina (A
l 2 O 3 ) and / or carbon-silicon (SiC) -based abrasive grains when used in combination with high specific gravity media have high inertia energy and high impact and polishing power due to their large mass. (4th
Figure).

高比重メディアは内部が緻密で靭性があるため、遊離
砥材による衝撃を緩衝してメディアの摩耗や破壊を抑止
する。
The high-density media has a dense and tough inside, so it absorbs the impact of loose abrasives and suppresses wear and breakage of the media.

高比重メディアは、比重の低い遊離砥材を上部に押し
上げるため、バレル槽内でメディアと共にまんべんなく
流動させることができる(第2図)。
Since the high specific gravity media pushes the loose abrasive having a low specific gravity upward, it can be made to flow evenly with the media in the barrel tank (FIG. 2).

等といった作用を生じる。その結果、振動による衝撃力
を利用して遊離砥材をセラミックスに連続的に衝突さ
せ、発生した極微小クラック面よりセラミックスを破壊
させながら研磨するものである(第1図)。
And so on. As a result, the free abrasive material is caused to continuously collide with the ceramics by using the impact force due to the vibration, and is polished while destroying the ceramics from the generated micro crack surface (FIG. 1).

なお、遊離砥材として使用可能なアルミナ系とは、た
とえばJIS表示のA(アランダム)砥粒、WA(ホワイト
アランダム)砥粒、HA(単結晶A)砥粒、RA砥粒、多結
晶A砥粒(TA砥粒、44砥粒)、STA(焼結)砥粒等が含
まれ、炭化珪素系とは、C、GC(4C)、C/GC、A/C等が
含まれる。
In addition, the alumina type which can be used as a loose abrasive includes, for example, A (alundum) abrasive grains, WA (white alundum) abrasive grains, HA (single crystal A) abrasive grains, RA abrasive grains, polycrystalline A abrasive grains (TA abrasive grains, 44 abrasive grains), STA (sintered) abrasive grains, and the like are included, and the silicon carbide type includes C, GC (4C), C / GC, A / C, and the like.

「実施例」 以下、構造用セラミックスを高比重メディアと低比重
遊離砥材を混合したもので、振動バレル研磨を行なった
実施例について述べる。
"Example" Hereinafter, an example in which a structural ceramic obtained by mixing a high specific gravity medium and a low specific gravity free abrasive material and subjected to vibration barrel polishing will be described.

<実施例1> 研磨槽内に、工作物である被削材としてジルコニアと
アルミナとを用意するとともに、メディアとしてジルコ
ニア球を用意し、遊離砥材として粒度120番のアルミナ
(WA砥材)系および/または炭化珪素(C砥粒、GC砥
粒)系砥粒を砥粒量1、これらの他に、コンパウンド
15cm3と、700cm3の水量とを装入し、3時間にわたって
振動を与えることにより研磨した。その結果、第5図に
示すように、両方の被削材とも研磨されていることが解
った。とくに、アルミナは大きな研磨量を示している。
同時に鋼球(Fe)の研磨も行なってみたが、セラミック
スに比較して、軟らかい鋼球の研磨量は、小さく表われ
ている。このことから、振動バレル研磨では、メディア
と遊離砥材により加工物を振動で微小破砕させながら研
磨するメカニズムが考えられる。したがって、アルミナ
のように破壊しやすいものは、研磨量が多くなり、ジル
コニアのように比較的靭性の高いものは研磨量が小さく
なる。とくに鋼球は粘いため、研磨量はジルコニアより
小さくなる。
<Example 1> In a polishing tank, zirconia and alumina were prepared as a work material as a workpiece, zirconia spheres were prepared as a medium, and an alumina (WA abrasive) having a grain size of 120 was used as a free abrasive. And / or silicon carbide (C abrasive grains, GC abrasive grains) -based abrasive grains with an abrasive quantity of 1, in addition to these compounds
And 15cm 3, was charged with water of 700 cm 3, was polished by applying vibration for 3 hours. As a result, as shown in FIG. 5, it was found that both the work materials were polished. In particular, alumina shows a large polishing amount.
At the same time, polishing of the steel ball (Fe) was also performed, but the polishing amount of the softer steel ball is smaller than that of the ceramic. From this, in the vibration barrel polishing, a mechanism of polishing while finely crushing a workpiece by vibration with a medium and a free abrasive material is considered. Therefore, a material that is easily broken, such as alumina, requires a large amount of polishing, and a material having relatively high toughness, such as zirconia, requires a small amount of polishing. Since the steel balls are particularly sticky, the polishing amount is smaller than that of zirconia.

また、遊離砥材の種類についてはC砥粒やGC砥粒の研
磨量が大きく、アルミナ砥粒の研磨量は小さい。表面粗
さは、靭性の高いC砥粒が大きくなる傾向にある。第6
図は、遊離砥材の種類と表面粗さ曲線の関係を示すグラ
フである。
As for the type of loose abrasive, the polishing amount of C abrasive grains and GC abrasive grains is large, and the polishing amount of alumina abrasive grains is small. As for the surface roughness, C abrasive grains having high toughness tend to be large. Sixth
The figure is a graph showing the relationship between the type of loose abrasive and the surface roughness curve.

<実施例2> 研磨槽内に、工作物である被削材としてジルコニアと
アルミナとを用意し、これにメディアとしてジルコニア
球、遊離砥材として炭化珪素(GC砥粒)系砥粒を粒度#
60番、粒度#120番、粒度#240番、及びアルミナ(WA砥
粒)系砥粒の粒度#2500番を用意し、砥粒量1、コン
パウンドを15cm3と、700cm3の水量とを装入し、3時間
にわたって振動を与えることにより研磨した。その結
果、第7図、第8図に示すように、両方の被削材とも研
磨量、表面粗とも満足できる研磨されていることが解っ
た。とくに、この実験でのねらいは、粒度と研磨量およ
び表面粗さの関係を中心に調べるものである。3時間研
磨した場合、粒度#60〜#240までは研磨量と表面粗さ
の関係はあまり変わらない。しかし、初期の段階(1時
間研磨)では、粒度の大きいものは研磨量も表面粗さも
大きくなる。なお、参考実験例として第7図、第8図に
粒度#2500についても示しているが、粒度#2500の場合
は表面粗さが小さくなるが、研磨量も小さくなるため、
使用には適さないことが解る。
<Example 2> In a polishing tank, zirconia and alumina were prepared as workpieces, and zirconia spheres were used as a medium, and silicon carbide (GC abrasive) -based abrasive grains were used as a free abrasive.
No. 60, a particle size # 120 No., size # 240 No., and prepared granularity # 2500 No. alumina (WA abrasive grains) abrasive particles, the abrasive grain weight 1, 15cm 3 A compound, instrumentation and water of 700 cm 3 And polished by applying vibration for 3 hours. As a result, as shown in FIGS. 7 and 8, it was found that both the workpieces were polished to a satisfactory degree of polishing and surface roughness. In particular, the purpose of this experiment is to examine mainly the relationship between the particle size, the polishing amount, and the surface roughness. When polished for 3 hours, the relationship between the polished amount and the surface roughness does not change much for particle sizes # 60 to # 240. However, in the initial stage (1 hour polishing), the larger the particle size, the larger the polishing amount and the surface roughness. 7 and 8 also show the particle size # 2500 as a reference experiment example. In the case of the particle size # 2500, the surface roughness is small, but the polishing amount is also small.
It turns out that it is not suitable for use.

<実施例3> 研磨槽内に、工作物である被削材としてジルコニアと
アルミナとを用意し、これにメディアとしてジルコニア
球、遊離砥材として炭化珪素(C砥粒)系の砥粒を0.5
l、1、2l用意し、これらの他に、コンパウンドとし
て15cm3と、700cm3の水量とを装入し、3時間にわたっ
て振動を与えることにより研磨した。その結果、第9
図、第10図に示すように、ジルコニアとアルミナとも遊
離砥材量が増加すると、研磨量、表面粗さが大きくなる
ことが解った。
<Example 3> In a polishing tank, zirconia and alumina were prepared as workpieces, and zirconia spheres were used as a medium, and silicon carbide (C abrasive) -based abrasives were used as free abrasives.
1, 1 and 2 l were prepared. In addition to these, 15 cm 3 and 700 cm 3 of water were charged as a compound, and polished by applying vibration for 3 hours. As a result, the ninth
As shown in FIG. 10 and FIG. 10, it was found that both the zirconia and the alumina increased the polishing amount and the surface roughness as the amount of free abrasive increased.

<実施例4> 研磨槽内に、工作物である被削材としてジルコニアと
アルミナと窒化珪素を用意し、これにメディアとしてジ
ルコニア球を、また遊離砥材として粒度#120番の炭化
珪素(GC/C砥粒)系の砥粒を1用意し、これらの他に
コンパウンドとして150cm3と、700cm3の水量とを装入
し、3時間にわたって振動を与えることにより研磨し
た。その結果、第11図、第12図に示すように、研磨時間
経過とともに研磨量が増加し、表面粗さが小さくなる。
しかし、3時間をすぎると、遊離砥材が破砕により微粒
化するため、Feを除き、研磨量は減少してくる。
<Example 4> In a polishing tank, zirconia, alumina, and silicon nitride were prepared as workpieces as workpieces, zirconia spheres were used as a medium, and silicon carbide (GC) having a grain size of # 120 was used as a free abrasive. A / C abrasive grain) was prepared, and in addition to these, 150 cm 3 and a water amount of 700 cm 3 were charged as a compound and polished by applying vibration for 3 hours. As a result, as shown in FIGS. 11 and 12, the polishing amount increases as the polishing time elapses, and the surface roughness decreases.
However, after 3 hours, the free abrasive material is atomized by crushing, so that the polishing amount decreases except for Fe.

<実施例5> 研磨槽内に、工作物である被削材としてジルコニアと
アルミナを用意し、これにメディアとしてジルコニア球
と鋼球を、また遊離砥材として粒度#120番の炭化珪素
(GC砥粒)系の砥粒を1用意し、これらの他に、コン
パウンドとして15cm3と、700cm3の水量とを装入し、3
時間にわたって振動を与えることにより研磨した。その
結果、第13図に示すように、ジルコニア球メディアより
軟らかい鋼球メディアの方が、研磨量が大きくなってい
ることが解った。鋼球メディアによる方法では、遊離砥
材を軟らかい母材で保持しながら加工物に衝撃を与える
ため、ジルコニア球メディアより研磨量が増えるものと
思われる。第14図はメディアの違いによる表面粗さ曲線
であり、鋼球メディアが2倍以上の大きい表面粗さを示
し、切れ味のよいことを示している。
<Example 5> In a polishing tank, zirconia and alumina were prepared as workpieces as workpieces, zirconia balls and steel balls were used as media, and silicon carbide (GC) having a grain size of # 120 was used as a free abrasive. 1) Abrasive grains are prepared, and in addition to these, 15 cm 3 and 700 cm 3 of water are charged as a compound.
Polishing was performed by applying vibration over time. As a result, as shown in FIG. 13, it was found that the steel ball media softer than the zirconia ball media had a larger polishing amount. In the method using the steel ball media, since the impact is given to the workpiece while the loose abrasive is held by the soft base material, the polishing amount is considered to be larger than the zirconia ball media. FIG. 14 is a surface roughness curve due to the difference in media, and shows that the steel ball media has a surface roughness more than twice as large and is sharp.

なお、鋼球を使用するような場合、必要に応じてコン
パウンドを入れてもよいこと勿論である。このコンパウ
ンドは、潤滑、洗浄、防錆、冷却作用を起こすものであ
り、その種類によっても、研磨量と表面粗さが変わって
くることも解った。
When a steel ball is used, a compound may be added if necessary. This compound causes lubrication, cleaning, rust prevention, and cooling, and it has been found that the amount of polishing and the surface roughness vary depending on the type of the compound.

「効果」 本願発明は、叙上のように、従来、遠心流動バレル研
磨機でのみ研磨可能であった、構造用セラミックスの焼
結体の研磨を高比重メディアを開発し、より低比重で適
度の粒径をもった遊離砥材と混合して、振動バレル研磨
機に装入し、振動を与えることにより、生じる研磨材と
工作物の相対運動差により研磨を行なうもので、これに
よって、遠心流動バレル研磨機や回転バレル研磨機の研
磨能力と同程度またはそれ以上の効率で研磨することが
できるようになった。つまり、本発明により従来困難と
されてきた構造用セラミックスの振動バレル研磨法によ
る高能率な研磨が可能になった。
"Effects" As described above, the invention of the present application has developed a high-density medium for polishing a sintered body of structural ceramics, which was conventionally only polished with a centrifugal flow barrel polishing machine, and has a lower specific gravity and a moderate density. Is mixed with a free abrasive having a particle size of, and charged into a vibrating barrel polishing machine, and by applying vibration, polishing is performed by a relative motion difference between the generated abrasive and the workpiece, whereby centrifugation is performed. Polishing can be performed with an efficiency equal to or higher than the polishing ability of a fluid barrel polishing machine or a rotary barrel polishing machine. In other words, the present invention has enabled highly efficient polishing of structural ceramics by the vibration barrel polishing method, which has been conventionally difficult.

また、遠心流動バレル研磨や回転バレル研磨は研磨力
が優れているため構造用セラミックスでも研磨可能であ
るが、遠心流動や回転の研磨槽が上部オープ式のもので
は収納物が飛散してしまうため、どうしても密閉式(バ
ッチ式)にせざるを得ない。このため、メディアと加工
物の選別が不可能となり自動化や連続作動化は困難であ
った。これに対し、振動バレル機は、振動によってメデ
ィアや加工物が流動するだけで外部に飛び出すことがな
いので上部オープ式にすることが可能である。その結
果、振動バレル機は、メディアと加工物の選別が選別綱
により簡単に出来るため、自動化、連続作動化が可能と
なった。つまり本発明に係る構造用セラミックスの振動
バレル研磨法の開発によって、従来困難とされていた構
造用セラミックスの連続的かつ自動的な研磨を容易に行
うことが可能となった。
In addition, centrifugal flow barrel polishing and rotary barrel polishing are excellent in polishing power and can be polished even for structural ceramics, but if the polishing tank for centrifugal flow or rotation is an open top type, the stored items will be scattered. Inevitably, it must be closed (batch type). For this reason, it is impossible to sort media and workpieces, and automation and continuous operation are difficult. On the other hand, the vibrating barrel machine can be of an open top type because the medium and the workpiece only flow due to vibration and do not jump out. As a result, in the vibrating barrel machine, since the sorting of the media and the workpiece can be easily performed by the sorting line, automation and continuous operation are possible. In other words, the development of the vibration barrel polishing method for structural ceramics according to the present invention has made it possible to easily perform continuous and automatic polishing of structural ceramics, which was conventionally difficult.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、高比重メディアと遊離砥材によるセラミック
スの振動バレル研磨機構であり、第2図、第3図はメデ
ィアと遊離砥材の振動バレル研磨における流動機構図で
あり、第2図は、高比重メディアが比重の低い遊離砥材
を上部に押し上げ、まんべんなく流動させることがで
き、セラミックスの研磨が可能になる状態を示すもの、
第3図は従来のメディアと遊離砥材は同比重のために細
粒の遊離砥材は振動により底に沈み流動しなくなる状態
を示すものであり、第4図は高比重メディアによる構造
用セラミックス(アルミナ)の研磨量を示すグラフで、
第5図は遊離砥材の種類と研磨量および表面粗さの関係
を示すグラフで、第6図は遊離砥材の種類と表面粗さを
示す曲線、第7図は粒度の種類と研磨量および表面粗さ
の関係を示すグラフで、第8図は粒度の種類と表面粗さ
を示す曲線、第9図は遊離砥材の量と研磨量および表面
粗さの関係を示すグラフで、第10図は遊離砥材の量と表
面粗さを示す曲線、第11図は研摩時間と研磨量および表
面粗さの関係を示すグラフで、第12図は研摩時間と表面
粗さを示す曲線、第13図はメディアの違いによる研磨量
および表面粗さの関係を示すグラフであり、第14図はメ
ディアの違いによる表面粗さ曲線である。
FIG. 1 is a diagram showing a vibration barrel polishing mechanism for ceramics using a high specific gravity medium and a loose abrasive, FIGS. 2 and 3 are flow mechanism diagrams in the vibration barrel polishing of a medium and a loose abrasive, and FIG. , Indicating that the high specific gravity media can push up the loose abrasive with low specific gravity to the upper part and make it flow evenly, enabling the polishing of ceramics.
FIG. 3 shows a state in which the fine abrasive particles sink to the bottom due to vibration and no longer flow because the conventional media and the loose abrasive have the same specific gravity. A graph showing the polishing amount of (alumina),
FIG. 5 is a graph showing the relationship between the type of loose abrasive and the amount of polishing and surface roughness, FIG. 6 is a curve showing the type of loose abrasive and surface roughness, and FIG. FIG. 8 is a graph showing the relationship between the type of particle size and the surface roughness, and FIG. 9 is a graph showing the relationship between the amount of the free abrasive and the polishing amount and the surface roughness. 10 is a curve showing the amount of free abrasive and surface roughness, FIG. 11 is a graph showing the relationship between the polishing time and the amount of polishing and surface roughness, FIG. 12 is a curve showing the polishing time and surface roughness, FIG. 13 is a graph showing the relationship between the polishing amount and the surface roughness depending on the media, and FIG. 14 is a surface roughness curve depending on the media.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】研磨槽に少なくとも工作物、研磨材、水を
装入し、振動を与えることにより、生じる研磨材と工作
物の相対運動差により研磨を行なう振動バレル研磨法に
おいて、研磨材として比重が6以上の高比重メディア
と、それより比重が低く、粒度#240より粒径が大きい
アルミナ系および/または炭化珪素系の砥粒とからなる
遊離砥材とを混合するようにしたことを特徴とした構造
用セラミックスの振動バレル研磨法。
1. A vibration barrel polishing method in which at least a workpiece, an abrasive, and water are charged into a polishing tank and vibration is applied to perform polishing by a relative motion difference between the generated abrasive and the workpiece. A high specific gravity medium having a specific gravity of 6 or more and a free abrasive material composed of alumina-based and / or silicon carbide-based abrasive particles having a lower specific gravity and a larger particle size than # 240 are used. Vibration barrel polishing method for structural ceramics.
【請求項2】高比重メディアとして、ジルコニア球また
は鋼球を用いるようにしたことを特徴とする第1請求項
記載の構造用セラミックスの振動バレル研磨法。
2. The method according to claim 1, wherein a zirconia ball or a steel ball is used as the high specific gravity medium.
JP1263537A 1989-10-09 1989-10-09 Vibration barrel polishing of structural ceramics Expired - Lifetime JP2963931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263537A JP2963931B2 (en) 1989-10-09 1989-10-09 Vibration barrel polishing of structural ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263537A JP2963931B2 (en) 1989-10-09 1989-10-09 Vibration barrel polishing of structural ceramics

Publications (2)

Publication Number Publication Date
JPH03131469A JPH03131469A (en) 1991-06-05
JP2963931B2 true JP2963931B2 (en) 1999-10-18

Family

ID=17390922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263537A Expired - Lifetime JP2963931B2 (en) 1989-10-09 1989-10-09 Vibration barrel polishing of structural ceramics

Country Status (1)

Country Link
JP (1) JP2963931B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114776B2 (en) * 1991-04-30 1995-12-13 ホーヤ株式会社 Orthodontic bracket and polishing method thereof
CN102513913A (en) * 2011-11-22 2012-06-27 中国航空工业集团公司北京航空材料研究院 Post treatment method for micro-arc oxidation of aluminum alloy
CN114918815B (en) * 2022-06-07 2024-06-11 中国航发航空科技股份有限公司 Method for accelerating superfinishing of blade shot blasting surface medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099555A (en) * 1983-11-01 1985-06-03 Toshiba Corp Barrel finishing

Also Published As

Publication number Publication date
JPH03131469A (en) 1991-06-05

Similar Documents

Publication Publication Date Title
KR101259651B1 (en) Pad dresser with oriented particles and associated methods
Malkin et al. Grinding technology: theory and application of machining with abrasives
US5658194A (en) Super abrasive grinding wheels
CN109321204A (en) A kind of more particle agglomeration type abrasive grain bodies, preparation method and applications
JPH05285833A (en) Dresser for grinding wheel
US20050053511A1 (en) High-energy cascading of abrasive wear components
KR100362797B1 (en) Glass Grinding Tool with Metal-coated Abrasives
RU2505389C2 (en) Element of abrasive material for final vibration machining, and its formation method
JP2017170554A (en) Vitrified grindstone for low pressure lapping for lapping machine and polishing method using the same
JP2963931B2 (en) Vibration barrel polishing of structural ceramics
JP2001121425A (en) Hybrid type resinoid bonded grinding wheel
JPH10296637A (en) Super abrasive grain grinding wheel
JP3705754B2 (en) Chamfering method of rare earth alloy
CN1164396C (en) Chamfering method of rare earth alloy and separating method and device for ball-milling medium
JPS6099555A (en) Barrel finishing
WO2020158631A1 (en) Metal bond grinding wheel for very hard and brittle material
JPH0615572A (en) Grinding wheel
JPH08174428A (en) Fixed abrasive grain type polishing surface plate
JP3929100B2 (en) Dry barrel polishing media
JP4632466B2 (en) Resinoid grinding wheel for heavy grinding
JP3259863B2 (en) Super abrasive tool
JP3998648B2 (en) Cup type rotating grindstone
JPH05138525A (en) Dry barrel polishing method and dry media
RU2680119C2 (en) Abrasive tool with ceramic pore agents (options)
JP2558237B2 (en) Removal Method of Free Abrasive Grains on Electrodeposited Dental Bar