JP2963701B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2963701B2
JP2963701B2 JP24197189A JP24197189A JP2963701B2 JP 2963701 B2 JP2963701 B2 JP 2963701B2 JP 24197189 A JP24197189 A JP 24197189A JP 24197189 A JP24197189 A JP 24197189A JP 2963701 B2 JP2963701 B2 JP 2963701B2
Authority
JP
Japan
Prior art keywords
region
semiconductor
resonator
electrode
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24197189A
Other languages
Japanese (ja)
Other versions
JPH03105991A (en
Inventor
敏弘 河野
伸二 辻
誠 羽田
佑一 小野
国男 相木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24197189A priority Critical patent/JP2963701B2/en
Publication of JPH03105991A publication Critical patent/JPH03105991A/en
Application granted granted Critical
Publication of JP2963701B2 publication Critical patent/JP2963701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体多層反射膜を用いた面発光型半導体
レーザに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-emitting type semiconductor laser using a semiconductor multilayer reflective film.

〔従来の技術〕[Conventional technology]

従来の面発光型半導体レーザは、第49回応用物理学会
講演予稿集(昭和63年秋季、7p−ZC−13,P914)や第36
回応用物理学会講演予稿集(平成元年春季、2P−ZC−8
および10,P915)記載のように、n側電極(又はp側電
極)が半導体基板側に、p側電極(又はn側電極)がエ
ピタキシヤル成長層側に設置され、各半導体層をpおよ
びn電極により挾んだ構造となつていた。
Conventional surface-emitting type semiconductor lasers have been published in the 49th Annual Meeting of the Japan Society of Applied Physics (Autumn 1988, 7p-ZC-13, P914) and 36th.
Proceedings of the Japan Society of Applied Physics (Spring 1989, 2P-ZC-8
And 10, P915), the n-side electrode (or p-side electrode) is provided on the semiconductor substrate side, and the p-side electrode (or n-side electrode) is provided on the epitaxial growth layer side. The structure was sandwiched between n electrodes.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は、pおよびn電極が表裏両面に設けら
れており、素子の集積化、例えば受光素子など他の光機
能素子との特に3次元的な集積化において問題があつ
た。また、素子の放熱特性を良くするためにはジヤンク
シヨン・ダウン(エピタキシヤル成長層側をヒートシン
ク側にする)で組み立てる必要があり、光出射面が基板
側になること(特にGaAs基板を用いる場合に問題とな
る)、更に単一縦モード動作や共振器内での吸収損失を
小さくするためには短共振器構造とする必要があること
などから光出射面となる基板の一部に窓構造を形成する
必要がある。そのためエピタキシヤル成長層に達する非
常に深い(50〜100μm程度)選択エツチングを行なわ
なければならず素子作製上問題があつた。
In the above prior art, the p and n electrodes are provided on both front and back surfaces, and there is a problem in integration of the device, for example, particularly in three-dimensional integration with another optical functional device such as a light receiving device. In addition, in order to improve the heat radiation characteristics of the device, it is necessary to assemble the device by junction down (the epitaxial growth layer side is set to the heat sink side), and the light emission surface must be the substrate side (especially when using a GaAs substrate). It is necessary to use a short cavity structure in order to further reduce the single longitudinal mode operation and the absorption loss in the cavity. Need to be formed. Therefore, a very deep (about 50 to 100 .mu.m) selective etching which reaches the epitaxial growth layer has to be performed, which poses a problem in device fabrication.

本発明の目的は、半導体レーザの2次元的な集積化は
もちろんのこと、他の素子との2次元的あるいは3次元
的な集積化が容易であり、かつ素子作製が容易な面発光
型半導体レーザを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface-emitting type semiconductor device that can easily integrate two-dimensionally or three-dimensionally with other elements, as well as two-dimensionally integrate a semiconductor laser, and can easily manufacture the element. It is to provide a laser.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、レーザ光に対して透明な半
導体基板上に少なくともクラツド層、活性層、半導体多
層膜反射層を有する面発光型半導体レーザにおいて、p
およびn側電極を同一平面(エピタキシヤル成長層側)
に設け、レーザ光は半導体基板側から出射する構造とし
た。この時、pおよびn側電極間はアイソレーシヨン溝
により分離した。また、短共振器構造の形成において
は、p側およびn側の両方に半導体多層反射膜を有する
構造とすることにより達成した。
In order to achieve the above object, in a surface emitting semiconductor laser having at least a cladding layer, an active layer, and a semiconductor multilayer reflection layer on a semiconductor substrate transparent to laser light,
And n-side electrode on the same plane (epitaxial growth layer side)
And the laser light is emitted from the semiconductor substrate side. At this time, the p and n side electrodes were separated by an isolation groove. Further, the formation of the short resonator structure was achieved by adopting a structure having a semiconductor multilayer reflective film on both the p-side and the n-side.

〔作用〕[Action]

p側およびn側電極をエピタキシヤル成長層側の同一
平面内に設け、且つ共振器領域を囲んで分離溝を設ける
ことにより、発光の面内の均一化と言う面発光型の難点
を問題なきものとしつつ、且つ他の素子を積層集積化す
る際に電極が障害とならず、集積化が容易となる。ま
た、pおよびn側に2つの半導体多層膜反射層を設ける
ことにより短共振器構造が容易に得られ、レーザ光に対
して透明な基板を用いることによつて光出射部の選択エ
ツジングを必要としない。したがつて素子作製が容易で
ある。
By providing the p-side and n-side electrodes in the same plane on the epitaxial growth layer side and providing a separation groove surrounding the resonator region, the problem of the surface emission type, that is, uniformization of the light emission surface, is not a problem. In addition, electrodes are not obstructed when other elements are stacked and integrated, and the integration becomes easy. Further, by providing two semiconductor multilayer film reflection layers on the p and n sides, a short resonator structure can be easily obtained, and by using a substrate transparent to laser light, selective etching of the light emitting portion is required. And not. Therefore, element fabrication is easy.

〔実施例〕〔Example〕

以下、本発明の実施例を第1〜2図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

(実施例1) 第1図に示すようにレーザ光に対して透明なAlxGa1_x
As基板(本実施例2ではレーザ光波長が830nmであるこ
とからx=0.10〜0.40とした)1上に有機金属気相成長
(MOCDV)法により、p側領域とn側領域間の電流通路
となるp−AlxGa1_xAs(x=0.1〜0.40、キヤリア濃度
1×1018cm-3、厚み20μm)2を成長し、更にp−AlGa
As多層膜反射層3、p−AlxGa1_xAs(x=0.37,0.5〜1
×1018cm-3、〜5μm)クラツド層4,多重量子井戸(MQ
W)活性層5,n−AlxGa1_xAs(x=0.37、1×1018cm-3
〜5μm)6,n−AlGaAs多層反射層7,n−GaAs(〜5×10
18cm-3、1μm)コンタクト層8を順次積層する。AlGa
As多層膜反射層3および7は、低屈折率層と高屈折率層
の2層から成り、そのくり返しによつて構成されてい
る。これら2層の屈折率差が大きい程反射層の反射率は
高くなるので、低屈折率層としてはAlAs層が最適である
が、本実施例ではMOCVD成立の容易さ等を考慮しAl0.6Ga
0.4As層(64.4nm)を低屈折率層として用いた。高屈折
率層はAl0.2Ga0.8As層(59.4nm)である。p側の反射層
はこれら2層の20ペアから成り、キヤリア濃度は0.5〜
1×1018cm-3、この時の反射率は約90%である。また、
n側反射層は上記2層の30ペアで構成され、キヤリア濃
度は1×1018cm-3である。30ペアの時の反射率は98%に
なる。MQW活性層5は、GaAs井戸層(8nm)とAl0.2Ga0.8
As障壁層(3nm)から成り、活性層厚2〜5μm、導電
型はp型(キヤリア濃度0.5〜1×1018cm-3)である。
また、発光領域は10〜20μmφとした。
Example 1 As shown in FIG. 1, Al x Ga 1_x which is transparent to laser light
A current path between a p-side region and an n-side region is formed on an As substrate (metal oxide vapor phase epitaxy (MOCDV) method) on an As substrate (x = 0.10 to 0.40 because the laser beam wavelength is 830 nm in the second embodiment). become p-Al x Ga 1_x as ( x = 0.1~0.40, carrier concentration 1 × 10 18 cm -3, thickness 20 [mu] m) were grown 2, further p-AlGa
As the multilayer reflective layer 3, p-Al x Ga 1_x As (x = 0.37,0.5~1
× 10 18 cm -3 , ~ 5 µm) cladding layer 4, multiple quantum well (MQ
W) active layer 5, n-Al x Ga 1_x As (x = 0.37,1 × 10 18 cm -3,
6, n-AlGaAs multilayer reflective layer 7, n-GaAs (up to 5 × 10
(18 cm −3 , 1 μm) The contact layers 8 are sequentially laminated. AlGa
The As multilayer reflection layers 3 and 7 are composed of two layers, a low refractive index layer and a high refractive index layer, and are formed by repeating the layers. These higher refractive index difference between the two layers is greater reflectivity of the reflective layer is increased, although the low refractive index layer is optimal AlAs layer, in the present embodiment considering easiness of MOCVD established Al 0.6 Ga
A 0.4 As layer (64.4 nm) was used as a low refractive index layer. The high refractive index layer is an Al 0.2 Ga 0.8 As layer (59.4 nm). The p-side reflection layer is composed of 20 pairs of these two layers, and the carrier concentration is 0.5 to
1 × 10 18 cm −3 , the reflectance at this time is about 90%. Also,
The n-side reflection layer is composed of 30 pairs of the above two layers, and the carrier density is 1 × 10 18 cm −3 . The reflectivity for 98 pairs is 98%. The MQW active layer 5 includes a GaAs well layer (8 nm) and Al 0.2 Ga 0.8
It is composed of an As barrier layer (3 nm), has an active layer thickness of 2 to 5 μm, and has a p-type conductivity (carrier concentration of 0.5 to 1 × 10 18 cm −3 ).
The light emitting area was 10 to 20 μmφ.

以上のウエハに、図のようなZn拡散9を施こし、p型
領域とn型領域をPAlGaAs多層膜反射層3あるいはp−A
lGaAs層2に達するアイソレーシヨン溝10の形成により
分離する。更に、素子化の際便利なようにAlGaAs基板1
側を研磨・化学エツチングしてウエハ層100μm程度に
する。その後p電極11とn電極12を形成し素子化する。
The above-mentioned wafer is subjected to Zn diffusion 9 as shown in the figure, so that the p-type region and the n-type region are
The isolation is achieved by forming an isolation groove 10 reaching the lGaAs layer 2. Furthermore, the AlGaAs substrate 1
The side is polished and chemically etched to make the wafer layer about 100 μm. Thereafter, a p-electrode 11 and an n-electrode 12 are formed to form an element.

本実施例による面発光型半導体レーザ素子において、
発振波長830nm、しきい値電流30mAのCW動作が得られ
た。
In the surface emitting semiconductor laser device according to the present embodiment,
CW operation with an oscillation wavelength of 830 nm and a threshold current of 30 mA was obtained.

(実施例2) 本発明の別の実施例を第2図により説明する。MOCVD
法により実施例1と同様にAlGaAs基板上1上に半導体層
2〜6を順次エピタキシヤル成長する。その後連続して
n−GaAsコンタクト層8を積層する。次に実施例1と同
様にZn拡散を施こした後n−GaAsコンタクト層の一部に
絶縁膜(〜2000Å程度)を形成する。この絶縁膜は発光
領域の中央に5〜15μmφで形成した。その後更に実施
例1と同様に研磨・化学エツチングを施こし、pおよび
n電極を形成して素子化する。本実施例による素子の共
振器は半導体多層膜反射層(p側)と電極12(n側)に
よつて構成されている。このような素子においても実施
例1と有意差の無い素子特性が得られた。
Embodiment 2 Another embodiment of the present invention will be described with reference to FIG. MOCVD
Semiconductor layers 2 to 6 are sequentially grown epitaxially on an AlGaAs substrate 1 by the method in the same manner as in the first embodiment. Thereafter, the n-GaAs contact layer 8 is successively laminated. Next, after performing Zn diffusion as in the first embodiment, an insulating film (about 2000 °) is formed on a part of the n-GaAs contact layer. This insulating film was formed in the center of the light emitting region at 5 to 15 μmφ. Thereafter, polishing and chemical etching are further performed in the same manner as in Example 1, and p and n electrodes are formed to form an element. The resonator of the device according to the present embodiment is constituted by a semiconductor multilayer reflective layer (p-side) and an electrode 12 (n-side). Even in such a device, device characteristics not significantly different from Example 1 were obtained.

本実施例ではAlGaAs系についてのみ示したが本発明は
InP系に対しても適用可能であり、InP基板の場合基板そ
のものがレーザ光に対して透明であることもエピタキシ
ヤル成長上好都合である。また、本実施例では光出射面
が平坦な場合について記したが、光出射面の少なくとも
一部をドーム状にして良い。この場合光フアイバや他の
デバイスの結合効率が増す。
In this embodiment, only the AlGaAs type is shown, but the present invention
The present invention is also applicable to InP-based substrates. In the case of an InP substrate, it is also convenient for epitaxial growth that the substrate itself is transparent to laser light. In this embodiment, the case where the light emitting surface is flat is described, but at least a part of the light emitting surface may be formed in a dome shape. In this case, the coupling efficiency of the optical fiber and other devices is increased.

更に本実施例では面版発光型半導体レーザ単体につい
てのみ示したが、本発明の本来の目的であるレーザ素子
の2次元アレイあるいは他のデバイスとの積層集積化を
行なつてもよい。
Further, in this embodiment, only the surface-emitting type semiconductor laser is shown alone, but a two-dimensional array of laser elements or a stacked integration with other devices, which is an original object of the present invention, may be performed.

〔発明の効果〕〔The invention's effect〕

本発明による面発光型半導体レーザでは、p側電極お
よびn側電極が同一平面内に設け且つ共振器領域を囲ん
で分離溝を設けられているため、発光の面内の均一化と
言う面発光型の難点を問題なきものとしつつ、且つ他の
デバイスとの積層集積化の際電極が障害とならず、集積
化が容易である。更に、レーザ光に対して透明な基板と
2つの半導体多層膜反射層を併用することにより光出射
面の一部を選択除去する必要がなく素子作製が容易であ
る。
In the surface-emitting type semiconductor laser according to the present invention, the p-side electrode and the n-side electrode are provided on the same plane and the separation groove is provided so as to surround the resonator region. While making the difficulties of the mold irrelevant, the electrodes are not obstructed during the stack integration with other devices, and the integration is easy. Further, by using a substrate transparent to laser light and two semiconductor multilayer film reflective layers together, it is not necessary to selectively remove a part of the light emitting surface, and the device can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の面発光型半導体レーザの断
面図、第2図は本発明の別の実施例の面発光型半導体レ
ーザの断面図である。 1……AlGaAs基板、3……p−AlGaAs多層膜反射層、5
……MQW活性層、7……n−AlGaAs多層膜反射層、9…
…Zn拡散、10……アイソレーシヨン溝、11……p電極、
12……n電極、13……絶縁膜。
FIG. 1 is a sectional view of a surface emitting semiconductor laser according to one embodiment of the present invention, and FIG. 2 is a sectional view of a surface emitting semiconductor laser according to another embodiment of the present invention. 1 ... AlGaAs substrate, 3 ... p-AlGaAs multilayer reflective layer, 5
... MQW active layer, 7 ... n-AlGaAs multilayer reflective layer, 9 ...
... Zn diffusion, 10 ... isolation groove, 11 ... p electrode,
12 ... n electrode, 13 ... insulating film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 佑一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 相木 国男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平1−103896(JP,A) 特開 昭62−14465(JP,A) 特開 昭60−42890(JP,A) 特開 昭61−43491(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01S 3/18 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Ono 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Kunio Aiki 1-280 Higashi-Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. (56) References JP-A-1-103896 (JP, A) JP-A-62-1465 (JP, A) JP-A-60-42890 (JP, A) JP-A-61-43491 (JP) , A) (58) Fields surveyed (Int. Cl. 6 , DB name) H01S 3/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透光性の半導体基板上部に第1導電型の第
1の半導体領域、発光領域を含む第2の半導体領域、及
び第2導電型の第3の半導体領域を有する半導体積層体
を有し、前記第1の半導体領域は屈折率の異なる半導体
層を交互に積層してなる第1の半導体多層膜を有し、前
記第1の半導体多層膜より前記第3の半導体領域を少な
くとも有する半導体積層体を含んで面発光型の共振器領
域が構成され、且つ前記半導体積層体が溝で共振器領域
を構成する領域と当該共振器領域を囲む共振器領域を構
成する以外の領域に分離され、当該溝は前記第3の半導
体領域から前記第1の半導体領域に至る溝であり、前記
溝で分離された前記共振器領域を構成する以外の半導体
積層体の領域にある前記第3の半導体領域及び第2の半
導体領域は第1導電型とされ、前記共振器領域を構成す
る側の第3の半導体領域側に第1の電極と、前記半導体
積層体の前記共振器領域を囲む共振器領域を構成する以
外の領域の第3の半導体領域側に第2の電極を有するこ
とを特徴とする半導体レーザ装置。
1. A semiconductor laminate having a first semiconductor region of a first conductivity type, a second semiconductor region including a light emitting region, and a third semiconductor region of a second conductivity type above a light-transmitting semiconductor substrate. Wherein the first semiconductor region has a first semiconductor multilayer film formed by alternately stacking semiconductor layers having different refractive indices, and the third semiconductor region is formed at least by the first semiconductor multilayer film. A surface-emitting type resonator region is configured to include the semiconductor laminated body, and the semiconductor laminated body is formed in a region other than a region forming a resonator region with a groove and a resonator region surrounding the resonator region. The groove is a groove extending from the third semiconductor region to the first semiconductor region, and is separated from the third semiconductor region in a region of the semiconductor laminate other than the region forming the resonator region separated by the groove. Semiconductor region and the second semiconductor region are the first conductive region. A first electrode on the side of the third semiconductor region on the side forming the resonator region, and a third electrode in a region other than forming a resonator region surrounding the resonator region of the semiconductor laminate. A semiconductor laser device having a second electrode on a semiconductor region side.
【請求項2】透光性の半導体基板上部に第1導電型の第
1の半導体領域、発光領域を含む第2の半導体領域、及
び第2導電型の第3の半導体領域を有する半導体積層体
を有し、前記第1の半導体領域は屈折率の異なる半導体
層を交互に積層してなる第1の半導体多層膜を有し、前
記第3の半導体領域は屈折率の異なる半導体層を交互に
積層してなる第2の半導体多層膜を有し、前記第1の半
導体多層膜より前記第3の半導体領域に至る半導体積層
体を含んで面発光型の共振器領域が構成され、且つ前記
半導体積層体が溝で共振器領域を構成する領域と当該共
振器領域を囲む共振器領域を構成する以外の領域に分離
され、当該溝は前記第3の半導体領域から前記第1の半
導体領域に至る溝であり、前記溝で分離された前記共振
器領域を構成する以外の半導体積層体の領域にある前記
第3の半導体領域及び第2の半導体領域は第1導電型と
され、前記共振器領域を構成する側の第3の半導体領域
側に第1の電極と、前記半導体積層体の共振器領域を囲
む共振器領域を構成する以外の領域の第3の半導体領域
側に第2の電極を有することを特徴とする半導体レーザ
装置。
2. A semiconductor laminate having a first semiconductor region of a first conductivity type, a second semiconductor region including a light emitting region, and a third semiconductor region of a second conductivity type above a light-transmitting semiconductor substrate. Wherein the first semiconductor region has a first semiconductor multilayer film in which semiconductor layers having different refractive indexes are alternately stacked, and the third semiconductor region has semiconductor layers having different refractive indexes alternately. A second semiconductor multilayer film formed by laminating the first semiconductor multilayer film to the third semiconductor region to form a surface-emitting resonator region including a semiconductor multilayer body; The laminate is separated into a region that forms a resonator region by a groove and a region other than a region that forms a resonator region surrounding the resonator region, and the groove extends from the third semiconductor region to the first semiconductor region. A groove, constituting the resonator region separated by the groove The third semiconductor region and the second semiconductor region in the region of the outer semiconductor laminate are of the first conductivity type, and the first electrode and the third semiconductor region on the side forming the resonator region are connected to the first electrode. A semiconductor laser device having a second electrode on a third semiconductor region side of a region other than forming a resonator region surrounding the resonator region of the semiconductor laminate.
【請求項3】透光性の半導体基板上部に第1導電型の第
1の半導体領域、発光領域を含む第2の半導体領域、及
び第2導電型の第3の半導体領域を有する半導体積層体
を有し、前記第1の半導体領域は屈折率の異なる半導体
層を交互に積層してなる第1の半導体多層膜を有し、前
記半導体積層体が溝で共振器領域を構成する領域と当該
共振器領域を囲む共振器領域を構成する以外の領域に分
離され、当該溝は前記第3の半導体領域から前記第1の
半導体領域に至る溝であり、前記溝で分離され前記共振
器領域を囲む共振器領域を構成する以外の半導体積層体
の領域の第3の半導体領域及び第2の半導体領域は第1
導電型とされ、前記共振器領域を構成する側の第3の半
導体領域側に第1の電極と、前記共振器領域を囲む共振
器領域を構成する以外の半導体積層体の領域のうち第3
の半導体領域側に第2の電極を有し、且つ前記第1の半
導体多層膜より前記第1の電極に至る領域で面発光型の
共振器領域が構成されることを特徴とする半導体レーザ
装置。
3. A semiconductor laminate having a first semiconductor region of a first conductivity type, a second semiconductor region including a light emitting region, and a third semiconductor region of a second conductivity type above a light-transmitting semiconductor substrate. Wherein the first semiconductor region has a first semiconductor multilayer film formed by alternately stacking semiconductor layers having different refractive indices, and a region in which the semiconductor stacked body forms a resonator region with a groove. The groove is separated into regions other than constituting a resonator region surrounding the resonator region, and the groove is a groove extending from the third semiconductor region to the first semiconductor region. The third semiconductor region and the second semiconductor region of the region of the semiconductor laminated body other than constituting the surrounding resonator region are the first semiconductor region.
A first electrode on the side of the third semiconductor region on the side forming the resonator region and a third electrode of a region of the semiconductor laminate other than forming a resonator region surrounding the resonator region;
A semiconductor laser device having a second electrode on the side of the semiconductor region, and a surface emission type resonator region formed in a region from the first semiconductor multilayer film to the first electrode. .
JP24197189A 1989-09-20 1989-09-20 Semiconductor laser device Expired - Lifetime JP2963701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24197189A JP2963701B2 (en) 1989-09-20 1989-09-20 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24197189A JP2963701B2 (en) 1989-09-20 1989-09-20 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH03105991A JPH03105991A (en) 1991-05-02
JP2963701B2 true JP2963701B2 (en) 1999-10-18

Family

ID=17082310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24197189A Expired - Lifetime JP2963701B2 (en) 1989-09-20 1989-09-20 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2963701B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155560A (en) * 1991-07-22 1992-10-13 Eastman Kodak Company Semiconductor index guided laser diode having both contacts on same surface
US5260960A (en) * 1991-07-26 1993-11-09 Siemens Aktiengesellschaft Tunable semiconductor laser on a semi-insulating substrate
US5293392A (en) * 1992-07-31 1994-03-08 Motorola, Inc. Top emitting VCSEL with etch stop layer
US6069908A (en) * 1998-02-09 2000-05-30 Hewlwtt-Packard Company N-drive or P-drive VCSEL array

Also Published As

Publication number Publication date
JPH03105991A (en) 1991-05-02

Similar Documents

Publication Publication Date Title
US5699375A (en) Multiple wavelength, surface emitting laser with broad bandwidth distributed Bragg reflectors
US6222868B1 (en) Surface-type optical device, fabrication method therefor and display device
US5963568A (en) Multiple wavelength, surface emitting laser with broad bandwidth distributed Bragg reflectors
EP0609836B1 (en) Surface emitting laser and method for fabricating the same
JP7464643B2 (en) Etched planarized VCSEL and method for making same - Patents.com
JPH06314854A (en) Surface light emitting element and its manufacture
JPH0793419B2 (en) Light receiving and emitting integrated device
JP2000196189A (en) Surface-emission semiconductor laser
JPH09107153A (en) Short-wave vcsel having active region with no aluminum
JP5190038B2 (en) Surface emitting laser
JP4748646B2 (en) Photonic crystal laser and optical transmission system
JP2963701B2 (en) Semiconductor laser device
JP3541350B2 (en) Surface emitting laser and manufacturing method thereof
JPS63188983A (en) Semiconductor light emitting device
KR100404043B1 (en) Vertically integrated high-power surface-emitting laser diode and method of manufacturing the same
JP2871288B2 (en) Surface type optical semiconductor device and method of manufacturing the same
JP4205208B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2009246194A (en) Surface-emitting semiconductor laser element
JP2002100799A (en) Semiconductor light-receiving element, semiconductor light-emitting and receiving device, and manufacturing method of them
JP2005191260A (en) Semiconductor laser, method of manufacturing the same, module for optical transmission, and light communication system
JP2921385B2 (en) Surface emitting laser, method for manufacturing the same, and method for manufacturing edge emitting laser
JP2000269586A (en) Manufacture of light transmit-receive module
WO2022097513A1 (en) Vertical resonator type surface-emitting laser element and method for manufacturing vertical resonator type surface-emitting laser element
JP7255332B2 (en) Light-emitting element and method for manufacturing light-emitting element
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080806

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11