JP2961871B2 - Carbon dioxide absorbent - Google Patents

Carbon dioxide absorbent

Info

Publication number
JP2961871B2
JP2961871B2 JP2299569A JP29956990A JP2961871B2 JP 2961871 B2 JP2961871 B2 JP 2961871B2 JP 2299569 A JP2299569 A JP 2299569A JP 29956990 A JP29956990 A JP 29956990A JP 2961871 B2 JP2961871 B2 JP 2961871B2
Authority
JP
Japan
Prior art keywords
mgo
absorbent
absorption
weight
absorption capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2299569A
Other languages
Japanese (ja)
Other versions
JPH04171042A (en
Inventor
勝裕 納谷
守久 横田
正己 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOJU TANSANENGATA NENRYO DENCHI HATSUDEN SHISUTEMU GIJUTSU KENKYU KUMIAI
Original Assignee
YOJU TANSANENGATA NENRYO DENCHI HATSUDEN SHISUTEMU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOJU TANSANENGATA NENRYO DENCHI HATSUDEN SHISUTEMU GIJUTSU KENKYU KUMIAI filed Critical YOJU TANSANENGATA NENRYO DENCHI HATSUDEN SHISUTEMU GIJUTSU KENKYU KUMIAI
Priority to JP2299569A priority Critical patent/JP2961871B2/en
Publication of JPH04171042A publication Critical patent/JPH04171042A/en
Application granted granted Critical
Publication of JP2961871B2 publication Critical patent/JP2961871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭酸ガス(CO2)吸収剤に係り、特に、CO2
吸収量が著しく高いCO2吸収剤に関する。
Description: TECHNICAL FIELD The present invention relates to a carbon dioxide (CO 2 ) absorbent, and more particularly, to a CO 2 absorbent having an extremely high CO 2 absorption amount.

[従来の技術] 再生可能な固体CO2吸収剤としては、酸化マグネシウ
ム(MgO)が最適であるが、そのCO2吸収容量は少なく、
このため、従来MgOのCO2吸収容量を向上させるための研
究がなされている。
[Conventional technology] As a renewable solid CO 2 absorbent, magnesium oxide (MgO) is optimal, but its CO 2 absorption capacity is small,
For this reason, studies have been made to improve the CO 2 absorption capacity of MgO.

従来、MgOの吸収容量を向上させる目的で、MgOにアル
カリ金属の水酸化物を配合してなるCO2吸収剤が提案さ
れている(USP3,557,011)。
Conventionally, for the purpose of improving the absorption capacity of MgO, a CO 2 absorbent comprising MgO mixed with an alkali metal hydroxide has been proposed (US Pat. No. 3,557,011).

[発明が解決しようとする課題] しかしながら、USP3,557,011で提案されるCO2吸収剤
であっても、十分なCO2吸収容量は得られず、その改善
が望まれている。
[Problems to be Solved by the Invention] However, even with the CO 2 absorbent proposed in US Pat. No. 3,557,011, a sufficient CO 2 absorption capacity cannot be obtained, and improvement thereof is desired.

本発明は上記従来の実情に鑑み、CO2吸収容量がより
一層向上されたCO2吸収剤を提供することを目的とす
る。
The present invention has been made in view of the above conventional circumstances, CO 2 absorption capacity and to provide a more enhanced CO 2 absorbent.

[課題を解決するための手段] 本発明のCO2吸収剤は、 MgO及び/又は水酸化マグネシウム(Mg(OH))50
〜90重量%と、 カリウム化合物5〜30重量%と、 ケイ酸ソーダ及び/又はジルコニア5〜20重量%と を含むことを特徴とする。
[Means for Solving the Problems] The CO 2 absorbent of the present invention comprises MgO and / or magnesium hydroxide (Mg (OH) 2 ) 50.
-30% by weight, 5-30% by weight of a potassium compound, and 5-20% by weight of sodium silicate and / or zirconia.

以下に本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明のCO2吸収剤において、MgO及び/又はMg(OH)
は、CO2吸収剤の主成分として作用するものである。
In the CO 2 absorbent of the present invention, MgO and / or Mg (OH)
2 is intended to act as the main component of the CO 2 absorbent.

また、カリウム化合物としては、水酸化カリウム(KO
H)、炭酸カリウム(K2CO3)、リン酸カリウム(K3P
O4)等が挙げられ、これらは1種を単独で、或いは2種
以上を併用して用いることができる。これらのカリウム
化合物の含有量が5重量%未満ではCO2吸収容量が低
く、30重量%を超えると吸収剤の成形性が悪くなる。従
って、カリウム化合物含有量は5〜30重量%とする。
As the potassium compound, potassium hydroxide (KO
H), potassium carbonate (K 2 CO 3 ), potassium phosphate (K 3 P
O 4 ) and the like, and these can be used alone or in combination of two or more. If the content of these potassium compounds is less than 5% by weight, the CO 2 absorption capacity is low, and if it exceeds 30% by weight, the moldability of the absorbent deteriorates. Therefore, the content of the potassium compound is set to 5 to 30% by weight.

ケイ酸ソーダ及び/又はジルコニアはその含有量が5
重量%未満では吸収剤の成形が困難であり、20重量%を
超えるとCO2吸収容量が低下する。従って、ケイ酸ソー
ダ及び/又はジルコニア含有量は5〜20重量%とする。
Sodium silicate and / or zirconia have a content of 5
If the amount is less than 20% by weight, it is difficult to form the absorbent, and if the amount exceeds 20% by weight, the CO 2 absorption capacity is reduced. Therefore, the content of sodium silicate and / or zirconia is set to 5 to 20% by weight.

このような本発明のCO2吸収剤は、例えば、ケイ酸ソ
ーダの水溶液(水ガラス)及び/又はジルコニアゾルに
所定量のカリウム化合物を溶解し、次いでこれに所定量
のMgO及び/又はMg(OH)を加えて混練し、混練物を
加熱乾燥して水を除去した後、粉砕、整粒することによ
り容易に製造することができる。
Such a CO 2 absorbent of the present invention can be obtained, for example, by dissolving a predetermined amount of a potassium compound in an aqueous solution of sodium silicate (water glass) and / or zirconia sol, and then dissolving a predetermined amount of MgO and / or Mg ( OH) 2 is added and kneaded, and the kneaded material is heated and dried to remove water, and then pulverized and sized for easy production.

更に350〜500℃で加熱してMg(OH)をMgOに転化し
ても良い。
Further, Mg (OH) 2 may be converted to MgO by heating at 350 to 500 ° C.

なお、本発明において、水ガラスとしては、ケイ酸ソ
ーダ含有率が10〜50重量%程度のものを用いるのが好ま
しい。また、ジルコニア原料としては上記ジルコニアゾ
ルの他、ジルコニア微粒子の懸濁液あるいは加熱によっ
てジルコニアに転化し得るジルコニウム化合物を用いる
こともできる。
In the present invention, it is preferable to use water glass having a sodium silicate content of about 10 to 50% by weight. In addition, as the zirconia raw material, a zirconia sol, a suspension of zirconia fine particles, or a zirconia compound that can be converted to zirconia by heating can be used.

本発明のCO2吸収剤は、特に水蒸気濃度10%以上の湿
気ガス中のCO2吸収に極めて有効である。
The CO 2 absorbent of the present invention is extremely effective particularly for absorbing CO 2 in moisture gas having a water vapor concentration of 10% or more.

[作用] MgOは下記(I)に従って、CO2と反応してこれを吸収
する。
[Action] According to the following (I), MgO reacts with and absorbs CO 2 .

MgO+CO2→MgCO3 …(I) このMgOの出発原料としては、Mg(OH)の他、塩基
性炭酸マグネシウム(MgCO3・xMg(OH)・yH2O)も考
えられるが、塩基性炭酸マグネシウムを出発原料とする
MgOでは十分なCO2吸収効率は得られず、MgO出発原料と
してはMgO又はMg(OH)が優れていることが実験によ
り判明した。
MgO + CO 2 → MgCO 3 (I) As a starting material of this MgO, in addition to Mg (OH) 2 , basic magnesium carbonate (MgCO 3 × Mg (OH) 2・ yH 2 O) can be considered. Starting with magnesium carbonate
Experiments revealed that MgO or Mg (OH) 2 was excellent as a starting material for MgO because MgO did not provide sufficient CO 2 absorption efficiency.

また、このようなMgO,Mg(OH)を出発原料とするMg
Oにカリウム化合物を添加することにより、CO2吸収容量
が増加する。この理由は明らかではないがカリウム化合
物による次のような作用によるものと考えられる。
Further, Mg starting from such MgO, Mg (OH) 2
The addition of a potassium compound to O increases the CO 2 absorption capacity. Although the reason is not clear, it is considered to be due to the following action of the potassium compound.

カリウム化合物による炭酸マグネシウムの生成を促
進する作用による効果 湿気ガス中でのMgOとCO2との反応は、前記(I)式で
示すように、直接MgOとCO2が化合する反応と、下記(I
I)式で示すように、H2Oが介在してMg(OH)を生成
し、CO2と化合する反応とが考えられる。
Effect of Action of Promoting Production of Magnesium Carbonate by Potassium Compound The reaction between MgO and CO 2 in a humid gas is, as shown by the above formula (I), a reaction in which MgO and CO 2 are directly combined with the following ( I
As shown by the formula (I), a reaction in which Mg (OH) 2 is generated through H 2 O and combined with CO 2 is considered.

MgO+H2O→Mg(OH) Mg(OH)+CO2→MgCO3+H2O …(II) 上記(II)式の反応においてカリウム化合物が存在す
ることにより、MgCO3生成反応が促進され、MgOのCO2
収効率が向上する。
MgO + H 2 O → Mg (OH) 2 Mg (OH) 2 + CO 2 → MgCO 3 + H 2 O (II) The presence of the potassium compound in the reaction of the above formula (II) promotes the MgCO 3 generation reaction, It improves CO 2 absorption efficiency of MgO.

また、湿気ガス中でのMgOとCO2との反応は、前記
(I),(II)式の他、下記(III)式で示すものも考
えられる。この場合においても、カリウム化合物による
作用により、MgOとCO2との反応は促進される。
The reaction between MgO and CO 2 in a humid gas may be represented by the following formula (III) in addition to the above formulas (I) and (II). Also in this case, the reaction between MgO and CO 2 is promoted by the action of the potassium compound.

4MgO+3CO2+4H2O→3MgOCO3・Mg(OH)・3H2O …(III) カリウム化合物の塩基強度、塩基量増大による効果 MgOにアルカリ成分を添加すると、塩基強度及び塩基
量が増大することが報告されている。一方、CO2は強い
塩基点に吸着するといわれており、アルカリ成分である
カリウム化合物を添加することにより塩基点の増加がCO
2吸収容量の増加につながる。
Base strength of 4MgO + 3CO 2 + 4H 2 O → 3MgOCO 3 · Mg (OH) 2 · 3H 2 O ... (III) potassium compounds, the addition of alkali components to effect MgO with a base weight increases, the base strength and base amount increases Have been reported. On the other hand, it is said that CO 2 is adsorbed to strong base points, and the addition of a potassium compound, which is an alkali component, increases the base points of CO 2.
2 Leads to an increase in absorption capacity.

更に、水ガラスやジルコニアを用いることにより、CO
2吸収容量が向上すると共に、CO2吸収剤の耐久性が向上
する。この理由の詳細は明らかではないが、これらを添
加することによりMgOとカリウム化合物の分散性が良く
なるためと考えられる。
Furthermore, by using water glass and zirconia, CO
2 Improves the absorption capacity and the durability of the CO 2 absorbent. Although the details of this reason are not clear, it is considered that the addition of these improves the dispersibility of MgO and the potassium compound.

[実施例] 以下に本発明を挙げて本発明をより具体的に説明す
る。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to the present invention.

なお、以下において、CO2吸収条件は、特記しない限
り、以下の条件で行ない、CO2吸収容量はMgOの理論CO2
吸収量に対する吸収したCO2の割合で示した。また、CO2
濃度(%)はガス中の水分を除いた値100・[CO2]/
[CO2+N2]で示した。
In the following, unless otherwise specified, the CO 2 absorption conditions are performed under the following conditions, and the CO 2 absorption capacity is the theoretical CO 2 of MgO.
It was shown as the ratio of absorbed CO 2 to the amount absorbed. Also, CO 2
The concentration (%) is the value excluding the moisture in the gas 100 · [CO 2 ] /
[CO 2 + N 2 ].

CO2吸収条件 吸 収 圧 力:8.0ata (CO2分圧=2.7ata) 吸 収 温 度:300℃ 吸収剤充填量 :450cc ガス流量:CO2=N2=H2O=250Ncc/min 合計750Ncc/min ガス組成:CO2=N2=H2O=33.3% また、CO2吸収剤は原則として以下に示す方法により
製造した。
CO 2 absorption conditions Absorption pressure: 8.0 ata (CO 2 partial pressure = 2.7 ata) Absorption temperature: 300 ° C Absorber charge: 450 cc Gas flow rate: CO 2 = N 2 = H 2 O = 250 Ncc / min Total 750 Ncc / min Gas composition: CO 2 = N 2 = H 2 O = 33.3% The CO 2 absorbent was produced by the following method in principle.

CO2吸収剤の製造方法 水ガラス又はジルコニアゾルに水酸化カリウム等のカ
リウム化合物を溶解し、次いでこれにMgO又はMg(OH)
(MgO原料)粉末を加えて混練する。混練物を100℃で
乾燥した後に揉みほぐし、続いて140〜150℃に加熱して
水を実質的に除去する。乾燥物を粉砕し、篩分けによっ
て0.50〜1mmの大きさの粒子を得る。この粒子を吸収管
に充填し、450℃に加熱してMg(OH)をMgOに転化す
る。
Production method of CO 2 absorbent Dissolve potassium compound such as potassium hydroxide in water glass or zirconia sol, then add MgO or Mg (OH)
2 Add (MgO raw material) powder and knead. The kneaded material is dried at 100 ° C., crushed and subsequently heated to 140 to 150 ° C. to substantially remove water. The dried product is pulverized and sieved to obtain particles having a size of 0.50 to 1 mm. The particles are filled in an absorption tube and heated to 450 ° C. to convert Mg (OH) 2 to MgO.

実施例1 出発原料として、塩基性炭酸マグネシウム[MgCO3・x
Mg(OH)・yH2O]、水酸化マグネシウム[Mg(O
H)]又は酸化マグネシウム[MgO]を用い、カリウム
化合物としてKOHを8重量%、さらにケイ酸ソーダを13
重量%添加して、各々CO2吸収剤を製造し、そのCO2吸収
容量を調べた。
Example 1 Basic magnesium carbonate [MgCO 3 ×
Mg (OH) 2・ yH 2 O], magnesium hydroxide [Mg (O
H) 2 ] or magnesium oxide [MgO], and 8% by weight of KOH and 13% of sodium silicate as potassium compounds.
By weight percent, CO 2 absorbents were produced, and their CO 2 absorption capacities were examined.

結果を第1図に示す。 The results are shown in FIG.

第1図より、出発原料としてはMg(OH)又はMgOが
好適であることが明らかである。
From FIG. 1, it is clear that Mg (OH) 2 or MgO is suitable as a starting material.

実施例2 カリウム化合物としてKOH,K2CO3又はK3PO48重量%を
添加してCO2吸収剤を製造し、そのCO2吸収容量を無添加
のものと比較した。なお、ケイ酸ソーダ添加量は13重量
%とした。
Example 2 A CO 2 absorbent was produced by adding 8% by weight of KOH, K 2 CO 3 or K 3 PO 4 as a potassium compound, and its CO 2 absorption capacity was compared with that of the case without addition. The amount of sodium silicate added was 13% by weight.

結果を第2図に示す。 The results are shown in FIG.

第2図よりカリウム化合物の添加により、CO2吸収容
量が向上することが明らかである。
FIG. 2 clearly shows that the addition of a potassium compound improves the CO 2 absorption capacity.

実施例3 実施例2において、カリウム化合物の種類及び添加量
を第1表に示す通りとしてCO2吸収剤を製造し、各々のC
O2吸収容量を無添加(ブランク)のものと比較した。
Example 3 In Example 2, a CO 2 absorbent was produced by changing the type and amount of the potassium compound as shown in Table 1, and the amount of each C compound was changed.
The O 2 absorption capacity was compared with that without addition (blank).

結果を第3(a),(b)に示す。また、破過開始時
間から推定したMgO炭酸化率を第4図に示す。
The results are shown in FIGS. 3 (a) and 3 (b). FIG. 4 shows the MgO carbonation rate estimated from the breakthrough start time.

第3図(a),(b)及び第4図よりカリウム化合物
の添加量が増加するほどCO2吸収容量が増加するが、カ
リウム化合物の添加量30重量%程度でCO2吸収容量の向
上効果が頭打ちになることが明らかである。
3 (a), (b) and FIG. 4, the CO 2 absorption capacity increases as the addition amount of the potassium compound increases. However, when the addition amount of the potassium compound is about 30% by weight, the improvement effect of the CO 2 absorption capacity is obtained. It is clear that will peak off.

実施例4 実施例2においてカリウム化合物及びケイ酸ソーダ又
はジルコニアの添加量を第2表に示す通りとしたこと以
外は同様にしてCO2吸収剤を製造し、同様にCO2吸収を行
なった後、下記条件で再生を行ない、吸収・再生サイク
ルテストを行ない、サイクル数と破過時間との関係を調
べ、結果を第5図及び第6図に示した。
To produce a CO 2 absorbent except that the addition amount of potassium compound and sodium silicate or zirconia in Example 4 Example 2 were as shown in Table 2 in the same manner, after performing CO 2 absorption as well The regeneration was performed under the following conditions, an absorption / regeneration cycle test was performed, and the relationship between the number of cycles and the breakthrough time was examined. The results are shown in FIGS. 5 and 6.

第5図及び第6図より、ケイ酸ソーダ及びジルコニア
を用いた場合には、破過時間が延長され、CO2吸収容量
が増大することが明らかである。また、効果の面では、
ジルコニアよりケイ酸ソーダの方が優れていることが明
らかである。
5 and 6 that when sodium silicate and zirconia are used, the breakthrough time is extended and the CO 2 absorption capacity is increased. In terms of effects,
It is clear that sodium silicate is superior to zirconia.

再生条件 温度:550℃〜750℃ 圧力:1.5ata ガス:N2(500Ncc/min). 実施例5 下記方法により製造したCO2吸収剤を用い、下記CO2
収条件にてCO2吸収容量を破過開始時間より調べ、結果
を第3表に示した。
Regeneration conditions Temperature: 550 to 750 ° C Pressure: 1.5ata Gas: N 2 (500 Ncc / min). Example 5 Using a CO 2 absorbent produced by the following method, the CO 2 absorption capacity was examined from the breakthrough start time under the following CO 2 absorption conditions, and the results are shown in Table 3.

CO2吸収剤の製造方法 水ガラスに水酸化カリウムを溶解し、次いでこれにMg
(OH)粉末を加えて混練した。混練物を100℃で乾燥
した後に揉みほぐし、続いて140〜150℃に加熱して水を
実質的に除去した。乾燥物を粉砕し、篩分けによって粒
径0.50〜1mmの大きさの粒子を得る。この粒子を吸収管
に充填し、下記吸収条件におけるCO2吸収容量を調べ
た、なお、吸収剤成分割合はMg(OH)279重量%、KOH8
重量%、ケイ酸ソーダ13重量%とした。
Production method of CO 2 absorbentDissolve potassium hydroxide in water glass, then add Mg
(OH) 2 powder was added and kneaded. The kneaded material was dried at 100 ° C., crushed, and subsequently heated to 140 to 150 ° C. to substantially remove water. The dried product is pulverized and sieved to obtain particles having a particle size of 0.50 to 1 mm. The particles were filled in an absorption tube, and the CO 2 absorption capacity under the following absorption conditions was examined. The ratio of the absorbent component was Mg (OH) 2 79% by weight, KOH 8
% By weight, and 13% by weight of sodium silicate.

CO2吸収条件 吸収温度を、130,160,200又は300℃としたこと以外
は、前述のCO2吸収条件と同様とした。
CO 2 absorption conditions The same as the above CO 2 absorption conditions, except that the absorption temperature was 130, 160, 200 or 300 ° C.

なお、NO.13〜16においては吸収剤を吸収管に充填後4
50℃に加熱してMg(OH)をMgOに転化した。No.17〜20
はMg(OH)のまま使用した。
In addition, in the case of NO.
Heating to 50 ° C. converted Mg (OH) 2 to MgO. No.17-20
Was used as Mg (OH) 2 .

第3表より、低温の方がCO2吸収容量は増大し、ま
た、Mg(OH)は低温においてMgOよりもCO2吸収容量が
大きいことが明らかである。
From Table 3, it is clear that the CO 2 absorption capacity increases at lower temperatures, and that Mg (OH) 2 has a larger CO 2 absorption capacity than MgO at low temperatures.

[発明の効果] 以上詳述した通り、本発明のCO2吸収剤は、CO2吸収容
量が大きく、CO2吸収効率に優れ、しかも破過時間が長
く、吸収・再生の繰り返し使用の耐久性にも優れる。
[Effects of the Invention] As described in detail above, the CO 2 absorbent of the present invention has a large CO 2 absorption capacity, is excellent in CO 2 absorption efficiency, has a long breakthrough time, and has durability against repeated use of absorption and regeneration. Also excellent.

【図面の簡単な説明】 第1図は実施例1の結果を示すグラフ、第2図は実施例
2の結果を示すグラフ、第3図及び第4図は実施例3の
結果を示すグラフ、第5図及び第6図は実施例4の結果
を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the results of Example 1, FIG. 2 is a graph showing the results of Example 2, FIGS. 3 and 4 are graphs showing the results of Example 3, FIG. 5 and FIG. 6 are graphs showing the results of Example 4.

フロントページの続き (56)参考文献 特開 平4−171046(JP,A) 特開 昭62−110744(JP,A) 特開 昭58−177137(JP,A) 特開 昭49−22391(JP,A) 特公 昭42−2250(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B01J 20/00 - 20/34 B01D 53/34 135 Continuation of the front page (56) References JP-A-4-171046 (JP, A) JP-A-62-110744 (JP, A) JP-A-58-177137 (JP, A) JP-A-49-22391 (JP, A) , A) JP-B-42-2250 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) B01J 20/00-20/34 B01D 53/34 135

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化マグネシウム及び/又は水酸化マグネ
シウム50〜90重量%と、 カリウム化合物5〜30重量%と、 ケイ酸ソーダ及び/又はジルコニア5〜20重量%とを含
むことを特徴とする炭酸ガス吸収剤。
1. Carbonate comprising 50 to 90% by weight of magnesium oxide and / or magnesium hydroxide, 5 to 30% by weight of a potassium compound and 5 to 20% by weight of sodium silicate and / or zirconia. Gas absorbent.
JP2299569A 1990-11-05 1990-11-05 Carbon dioxide absorbent Expired - Lifetime JP2961871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2299569A JP2961871B2 (en) 1990-11-05 1990-11-05 Carbon dioxide absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2299569A JP2961871B2 (en) 1990-11-05 1990-11-05 Carbon dioxide absorbent

Publications (2)

Publication Number Publication Date
JPH04171042A JPH04171042A (en) 1992-06-18
JP2961871B2 true JP2961871B2 (en) 1999-10-12

Family

ID=17874327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2299569A Expired - Lifetime JP2961871B2 (en) 1990-11-05 1990-11-05 Carbon dioxide absorbent

Country Status (1)

Country Link
JP (1) JP2961871B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271172B2 (en) 1997-07-31 2001-08-07 Kabushiki Kaisha Toshiba Method for manufacturing a carbon dioxide gas absorbent
CN102580468B (en) * 2012-01-20 2014-07-02 河南科技大学 Method for implementing trapping and separation of CO2 in flue gas by adopting magnesium-based absorbent
ITMI20121207A1 (en) * 2012-07-11 2014-01-12 Getters Spa GETTER COMPOSITE FOR CARBON DIOXIDE
ITMI20132216A1 (en) * 2013-12-30 2015-07-01 Getters Spa GETTER COMPOSITE FOR CARBON DIOXIDE
CN104772020A (en) * 2014-01-14 2015-07-15 中国科学院工程热物理研究所 Calcium magnesium compound salt CO2 absorbent and preparation method thereof
JP7172799B2 (en) * 2019-03-28 2022-11-16 株式会社豊田中央研究所 Carbon dioxide storage reduction catalyst and method for producing methane

Also Published As

Publication number Publication date
JPH04171042A (en) 1992-06-18

Similar Documents

Publication Publication Date Title
EP2659973A1 (en) Zeolite having copper and alkali earth metal supported thereon
US7538068B2 (en) Carbon dioxide gas absorbent and method of manufacturing the same
CA2485849A1 (en) Colloidal silica binder system
CN107697952A (en) For removing preparation method of manganese bioxide material of low concentration formaldehyde and products thereof and application in air
CN102099115A (en) Deodorizing catalyst, deodorizing method using same and method for regenerating the catalyst
JPH11104439A (en) Removing agent for acidic ingredient in gas and removal of acidic ingredient
JP2961871B2 (en) Carbon dioxide absorbent
JP5751199B2 (en) Acid gas treating agent, production method thereof, and additive for acid gas treating agent
CN109200760A (en) A kind of eutectic solvent of the regenerated carbon dioxide removal of stable low energy consumption
US3557011A (en) Co2 sorption material
CN110255594B (en) Preparation method of active alumina
Jiao et al. Novel MgO/hollow carbon sphere composites for CO 2 adsorption
CN106475108B (en) A kind of multiple-effect denitrating catalyst and preparation method thereof
CN106824064B (en) The method of bivalve layer ZSM-5 molecular sieve adsorbing and removing sulfur dioxide in flue gas
KR101502238B1 (en) Carbon dioxide absorbent and carbon dioxide capture process thereof
KR101735174B1 (en) Method of manufacturing dry sorbents for high-temperature carbon dioxide capture based lithium silicate and dry sorbents for high-temperature carbon dioxide capture
JP2778031B2 (en) Nitrogen oxide / sulfur oxide absorbent
CN105817198A (en) Method for preparing high-stability calcium oxide-based adsorbent
JP2005013952A (en) Carbon dioxide absorber
CN109516912A (en) A kind of method of sequestration of carbon dioxide
CN104998600B (en) Medium-temperature carbon dioxide absorbent, and preparation method and application thereof
CN103304777A (en) Titanium dioxide nanotube-epoxy resin composite flame retardant material and preparation method thereof
JPH08206443A (en) Acidic gas absorbent and production thereof
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
KR102046794B1 (en) Adsorbent for Capturing Carbon Dioxide Comprising Eutectic Mixture Promoter and Magnesium Oxide/Titanium Dioxide Composite and Method for Manufacturing Same