JP2958427B1 - Separation membrane type gas generator - Google Patents

Separation membrane type gas generator

Info

Publication number
JP2958427B1
JP2958427B1 JP10146805A JP14680598A JP2958427B1 JP 2958427 B1 JP2958427 B1 JP 2958427B1 JP 10146805 A JP10146805 A JP 10146805A JP 14680598 A JP14680598 A JP 14680598A JP 2958427 B1 JP2958427 B1 JP 2958427B1
Authority
JP
Japan
Prior art keywords
separation membrane
compressed air
gas generator
air compressor
type gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10146805A
Other languages
Japanese (ja)
Other versions
JPH11333237A (en
Inventor
敏和 紙上
Original Assignee
西芝電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西芝電機株式会社 filed Critical 西芝電機株式会社
Priority to JP10146805A priority Critical patent/JP2958427B1/en
Application granted granted Critical
Publication of JP2958427B1 publication Critical patent/JP2958427B1/en
Publication of JPH11333237A publication Critical patent/JPH11333237A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

【要約】 【課題】気体分離膜内壁における結露を防止し、かつ安
価で容積・重量が共に軽量化可能な結露防止装置を設け
た分離膜式気体発生装置を提供すること。 【解決手段】空気圧縮機駆動用モータによって駆動され
る空気圧縮機より排出される高温高圧の圧縮空気を、空
気圧縮機直後配管を経て圧縮空気用タンク、圧縮空気冷
却用コンデンサ、ミスト・ダスト用フィルタ、分離膜直
前配管、気体分離膜を通すことにより大気より特定気体
を濃縮分離する分離膜式気体発生装置において、分離膜
直前配管と空気圧縮機直後配管との間に熱交換装置を、
圧縮空気用タンクと圧縮空気冷却用コンデンサとの間に
三方電磁弁をそれぞれ設けると共に、空気圧縮機直後配
管に温度検出装置を設けているので、安価で容積・重量
とも軽量化可能な結露防止装置を設けた分離膜式気体発
生装置を提供できる。
An object of the present invention is to provide a separation membrane type gas generator provided with a dew condensation prevention device which prevents dew condensation on the inner wall of a gas separation membrane and is inexpensive and capable of reducing both volume and weight. A high-temperature and high-pressure compressed air discharged from an air compressor driven by an air compressor driving motor is supplied to a compressed air tank, a compressed air cooling condenser, and a mist dust via a pipe immediately after the air compressor. In a separation membrane gas generator that concentrates and separates a specific gas from the atmosphere by passing through a filter, a pipe immediately before the separation membrane, and a gas separation membrane, a heat exchange device is provided between the pipe immediately before the separation membrane and the pipe immediately after the air compressor,
A three-way solenoid valve is provided between the compressed air tank and the compressed air cooling condenser, and a temperature detection device is provided in the piping immediately after the air compressor. Can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体分離膜によっ
て大気より特定気体を濃縮分離する分離膜式気体発生装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation membrane type gas generator for concentrating and separating a specific gas from the atmosphere by a gas separation membrane.

【0002】[0002]

【従来の技術】従来の分離膜式気体発生装置を図を参照
して説明する。図8は従来の分離膜式気体発生装置の構
成図であり、図9は図8の各構成部品内部における圧縮
空気温度・湿度変化図である。横軸は空気圧縮機より排
出された圧縮空気の通過する順に序列した構成部品を表
し、縦軸はその各構成部品内部における圧縮空気の温度
変化・湿度変化を表している。
2. Description of the Related Art A conventional separation membrane type gas generator will be described with reference to the drawings. FIG. 8 is a configuration diagram of a conventional separation-membrane-type gas generator, and FIG. 9 is a diagram showing changes in the temperature and humidity of compressed air inside each component of FIG. The horizontal axis represents the components arranged in the order in which the compressed air discharged from the air compressor passes, and the vertical axis represents the temperature change and humidity change of the compressed air inside each component.

【0003】図8及び図9において、空気圧縮機駆動用
モータ1によって駆動される空気圧縮機2より排出され
る圧縮空気は、空気圧縮機2が断熱圧縮に近いポリトロ
ープ圧縮を行うため、高温でしかも高圧のため湿度も高
い状態となっている。この高温高圧の圧縮空気は空気圧
縮機直後配管3を通って圧縮空気用タンク4に入るが、
この時、膨張するため温度が下がり、湿度は100%と
なって結露する。圧縮空気は湿度100%のまま圧縮空
気用タンク4と圧縮空気冷却用コンデンサ6を通り、さ
らに温度が下がって結露し、その水分はミスト・ダスト
フィルタ7に溜まる。この時、圧縮空気温度は若干高め
であるがほぼ周囲温度に等しくなっており、湿度は10
0%である。
In FIGS. 8 and 9, compressed air discharged from an air compressor 2 driven by an air compressor driving motor 1 is heated at a high temperature because the air compressor 2 performs polytropic compression close to adiabatic compression. Moreover, the humidity is high due to the high pressure. This high-temperature and high-pressure compressed air enters the compressed air tank 4 through the pipe 3 immediately after the air compressor.
At this time, the temperature is lowered due to the expansion, the humidity becomes 100%, and dew condensation occurs. The compressed air passes through the compressed air tank 4 and the compressed air cooling condenser 6 with the humidity kept at 100%, and further drops in temperature to form dew condensation, and the water is accumulated in the mist / dust filter 7. At this time, the compressed air temperature was slightly higher but almost equal to the ambient temperature, and the humidity was 10
0%.

【0004】一方、気体分離膜9は、圧縮空気を供給す
ることにより、膜の透過速度の速い気体は分離膜を透過
し、膜の透過速度の遅い気体のみ出口まで到達する。こ
れによって膜の透過速度の遅い気体のみを分離すること
が可能となる。しかしながら、気体分離膜9に供給され
る圧縮空気には水分が含まれているので、気体分離膜9
の内壁に結露する。この結露により気体分離膜9の透過
性能が著しく阻害され、寿命を短くする。このため、通
常、気体分離膜9の直前に冷凍式ドライヤ18を配置
し、これによって湿度を著しく下げた圧縮空気を気体分
離膜9に供給することで、気体分離膜9の内壁での結露
を防止している。
On the other hand, by supplying compressed air to the gas separation membrane 9, gas having a high permeation rate permeates through the separation membrane, and only gas having a low permeation rate reaches the outlet. This makes it possible to separate only gas having a low permeation rate through the membrane. However, since the compressed air supplied to the gas separation membrane 9 contains moisture, the gas separation membrane 9
Condensation on the inner wall. This condensation significantly impairs the permeation performance of the gas separation membrane 9 and shortens its life. For this reason, usually, a refrigeration dryer 18 is disposed immediately before the gas separation membrane 9, and compressed air whose humidity is significantly reduced is supplied to the gas separation membrane 9, so that dew condensation on the inner wall of the gas separation membrane 9 is prevented. Preventing.

【0005】また、気体発生装置の起動時には冷凍式ド
ライヤ18がまだ正常に稼動していないため、空気圧縮
機2を作動せず、冷凍式ドライヤ18の冷媒温度が圧縮
空気を除湿するに十分な温度まで下がったことを温度検
出装置19にて検出し、空気圧縮機起動スイッチ20に
よって空気圧縮機駆動用モータ1を起動し、空気圧縮機
2を作動させて湿度を下げた圧縮空気を気体分離膜9に
供給することで、気体発生装置起動時の気体分離膜9の
内壁での結露を防止している。
When the gas generator is started, the refrigeration dryer 18 is not operating normally yet, so that the air compressor 2 is not operated, and the refrigerant temperature of the refrigeration dryer 18 is sufficient to dehumidify the compressed air. The temperature detector 19 detects that the temperature has dropped, and the motor 1 for driving the air compressor is started by the air compressor start switch 20, and the air compressor 2 is operated to separate the compressed air whose humidity has been reduced to gas separation. The supply to the membrane 9 prevents dew condensation on the inner wall of the gas separation membrane 9 when the gas generator is started.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述の冷凍式
ドライヤ18は、冷凍コンプレッサ・コンデンサ・冷媒
配管・熱交換器・凝縮水分離器などから構成されている
ので、高価で容積・重量共に大きく、特に容量の小さい
圧縮機機種に対しては冷凍式ドライヤ18が価格・総重
量に占める比率が大きく、販売・在庫管理や運搬・設置
など多方面に亘って問題があった。
However, since the above-mentioned refrigeration dryer 18 is composed of a refrigeration compressor, a condenser, a refrigerant pipe, a heat exchanger, a condensed water separator, etc., it is expensive and has a large volume and weight. In particular, for a compressor having a small capacity, the refrigeration dryer 18 has a large ratio to the price and the total weight, and there are problems in various fields such as sales and inventory management, transportation and installation.

【0007】本発明(請求項1乃至請求項6対応)は、
上記事情に鑑みてなされたもので、その目的は気体分離
膜内壁における結露を防止することができ、かつ安価で
容積・重量が共に軽量化可能な結露防止装置を設けた分
離膜式気体発生装置を提供することにある。
The present invention (corresponding to claims 1 to 6) provides:
In view of the above circumstances, it is an object of the present invention to provide a separation membrane type gas generator provided with a dew condensation prevention device which can prevent dew condensation on the inner wall of a gas separation membrane, and which is inexpensive and can be reduced in both volume and weight. Is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、空気圧縮機駆動用モータによ
って駆動される空気圧縮機より排出される高温高圧の圧
縮空気を、空気圧縮機直後配管を経て圧縮空気用タン
ク、圧縮空気冷却用コンデンサ、ミスト・ダスト用フィ
ルタ、分離膜直前配管、気体分離膜を通すことにより大
気より特定気体を濃縮分離する分離膜式気体発生装置に
おいて、前記分離膜直前配管と前記空気圧縮機直後配管
との間に熱交換装置を、前記圧縮空気用タンクと前記圧
縮空気冷却用コンデンサとの間に三方電磁弁をそれぞれ
設けると共に、前記空気圧縮機直後配管に温度検出装置
を設けたことを特徴とする。
In order to achieve the above-mentioned object, a first aspect of the present invention is to provide a high-temperature high-pressure compressed air discharged from an air compressor driven by an air compressor driving motor. A separation membrane gas generator that concentrates and separates a specific gas from the atmosphere by passing through a tank immediately after the compressor, a tank for compressed air, a condenser for cooling compressed air, a filter for mist and dust, a pipe just before the separation membrane, and a gas separation membrane. A heat exchange device between the pipe immediately before the separation membrane and the pipe immediately after the air compressor, and a three-way solenoid valve between the compressed air tank and the compressed air cooling condenser, respectively, and the air compressor It is characterized in that a temperature detecting device is provided in the pipe immediately after.

【0009】本発明の請求項2は、請求項1記載の分離
膜式気体発生装置において、前記熱交換装置は前記分離
膜直前配管と前記圧縮空気用タンクとの間に設けると共
に、前記温度検出装置は前記圧縮空気用タンクに設けた
ことを特徴とする。
According to a second aspect of the present invention, in the separation membrane type gas generator according to the first aspect, the heat exchange device is provided between the pipe immediately before the separation membrane and the compressed air tank and the temperature detection is performed. The apparatus is provided in the compressed air tank.

【0010】本発明の請求項3は、請求項1記載の分離
膜式気体発生装置において、前記熱交換装置は前記分離
膜直前配管と前記空気圧縮機駆動用モータとの間に設け
ると共に、前記温度検出装置は前記空気圧縮機駆動用モ
ータ外殻に設けたことを特徴とする。
According to a third aspect of the present invention, in the separation membrane type gas generator according to the first aspect, the heat exchange device is provided between the pipe immediately before the separation membrane and the motor for driving the air compressor. The temperature detecting device is provided on an outer shell of the air compressor driving motor.

【0011】本発明の請求項4は、請求項1乃至請求項
3記載の分離膜式気体発生装置において、三方電磁弁切
換スイッチとして働くバイメタルが、前記空気圧縮機直
後配管、前記圧縮空気用タンク、または前記空気圧縮機
駆動用モータ外殻のいずれかに設けられたことを特徴と
する。
According to a fourth aspect of the present invention, there is provided the separation membrane type gas generator according to the first to third aspects, wherein a three-way solenoid valve is opened.
A bimetal functioning as a changeover switch is provided on one of the pipe immediately after the air compressor, the tank for compressed air, and the outer shell of the motor for driving the air compressor.

【0012】本発明の請求項5は、請求項1乃至請求項
3に記載の分離膜式気体発生装置において、前記三方電
磁弁切換スイッチの入力部にタイマーを設けたことを特
徴とする。
According to a fifth aspect of the present invention, in the separation membrane type gas generator according to any one of the first to third aspects, a timer is provided at an input portion of the three-way solenoid valve changeover switch.

【0013】本発明の請求項6は、請求項1乃至請求項
3に記載の分離膜式気体発生装置において、前記圧縮空
気用タンクに圧力スイッチを、前記三方電磁弁に三方電
磁弁切換スイッチを設け、前記圧力スイッチと前記三方
電磁弁切換スイッチとの間に圧力スイッチ切換回数検出
装置を設けたことを特徴とする。
According to a sixth aspect of the present invention, in the separation membrane type gas generator according to any one of the first to third aspects, a pressure switch is provided for the compressed air tank, and a three-way solenoid valve changeover switch is provided for the three-way solenoid valve. A pressure switch switching frequency detecting device is provided between the pressure switch and the three-way solenoid valve changeover switch.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図に
ついて説明する。図1は本発明の第1実施例(請求項1
対応)である分離膜式気体発生装置の構成図、図2は図
1の各構成部品内部における圧縮空気温度・湿度変化図
であり、横軸は空気圧縮機より排出された圧縮空気の通
過する順に序列した構成部品を表し、縦軸はその各構成
部品内部における圧縮空気の温度変化・湿度変化を表し
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention.
FIG. 2 is a diagram showing the change in the temperature and humidity of compressed air inside each component part in FIG. 1, and the horizontal axis indicates the passage of the compressed air discharged from the air compressor. The vertical axis represents the temperature change and the humidity change of the compressed air inside each of the components.

【0015】図1において、空気圧縮機駆動用モータ1
によって駆動される空気圧縮機2により排出される圧縮
空気は、空気圧縮機直後配管3、圧縮空気用タンク4、
三方電磁弁5、圧縮空気冷却用コンデンサ6、ミスト・
ダスト用フィルタ7、分離膜直前配管8を通り気体分離
膜9に供給される。空気圧縮機直後配管3と分離膜直前
配管8の間には熱交換装置10aが設置されている。三
方電磁弁切換スイッチ11は空気圧縮機直後配管3の温
度を検出する温度検出装置12に連動する構成となって
いる。また、熱交換装置10aは、従来の冷凍式ドライ
ヤの構成部品の一つである熱交換器と同程度のもので、
冷凍式ドライヤと比べて安価で容積・重量共軽量であ
る。
In FIG. 1, a motor 1 for driving an air compressor is shown.
The compressed air discharged by the air compressor 2 driven by the compressor is connected to a pipe 3 immediately after the air compressor, a tank 4 for compressed air,
Three-way solenoid valve 5, Compressed air cooling condenser 6, Mist
The gas is supplied to the gas separation membrane 9 through the dust filter 7 and the pipe 8 immediately before the separation membrane. A heat exchange device 10a is provided between the pipe 3 immediately after the air compressor and the pipe 8 just before the separation membrane. The three-way solenoid valve changeover switch 11 is configured to interlock with a temperature detection device 12 that detects the temperature of the pipe 3 immediately after the air compressor. The heat exchange device 10a is of the same order as a heat exchanger, which is one of the components of a conventional refrigeration dryer.
Compared to refrigeration dryers, it is cheaper and lighter in both volume and weight.

【0016】次に、本実施例の作用について説明する。
図1及び図2において、空気圧縮機駆動用モータ1によ
って駆動される空気圧縮機2より排出される圧縮空気
は、空気圧縮機2が断熱圧縮に近いポリトロープ圧縮を
行うため高温・高圧であり、湿度も高い状態となってい
る。この高温高圧の圧縮空気は空気圧縮機直後配管3を
通って圧縮空気用タンク4に入るが、この時膨張するた
め温度が下がり、湿度は100%となって結露する。圧
縮空気は湿度100%のまま圧縮空気用タンク4と三方
電磁弁5と圧縮空気冷却用コンデンサ6を通ると、さら
に温度が下がって結露し、その水分はミスト・ダスト用
フィルタ7に溜まる。この時、圧縮空気温度は若干高め
であるがほぼ周囲温度に等しくなっており、湿度は10
0%である。その後、分離膜直前配管8に入った圧縮空
気は、空気圧縮機直後配管3と分離膜直前配管8との間
に設置された熱交換装置10aで行われる熱交換による
熱を受け、温度が上昇する。この圧縮空気の露点は上昇
する直前の温度であり、湿度は100%を下回る。この
高温・低湿度の圧縮空気が気体分離膜9の内部を通過す
る際、若干の温度低下と湿度上昇はあるが、熱交換によ
って圧縮空気を必要温度まで上昇することにより気体分
離膜9内壁での結露を防止する。また、空気圧縮機直後
配管3が熱交換装置10aを介して分離膜直前配管8内
の圧縮空気を必要温度に昇温するのに必要な温度を温度
検出装置12に設定しているので、装置起動時には温度
検出装置12が働くまでは三方電磁弁5の出口を排気ポ
ート5bにすることにより、設定温度までは圧縮空気が
気体分離膜9内に供給されないようにすることができ
る。温度検出装置12が働き、三方電磁弁切換スイッチ
11を電気的に切り換え、三方電磁弁5の出口を分離膜
供給ポート5aに切り換えて必要温度に上昇した圧縮空
気を気体分離膜9に供給することによって装置起動時の
分離膜9内壁における結露を防ぐことができる。従っ
て、起動時・通常運転時とも分離膜9内壁における結露
を防止することができ、安価で容積・重量共軽量化可能
な結露防止装置を設けた分離膜式気体発生装置を提供で
きる。
Next, the operation of this embodiment will be described.
1 and 2, the compressed air discharged from the air compressor 2 driven by the air compressor driving motor 1 has a high temperature and a high pressure because the air compressor 2 performs polytropic compression close to adiabatic compression. The humidity is also high. The high-temperature and high-pressure compressed air enters the compressed air tank 4 through the pipe 3 immediately after the air compressor, but expands at this time, so that the temperature decreases and the humidity becomes 100% and dew condensation occurs. When the compressed air passes through the compressed air tank 4, the three-way solenoid valve 5 and the compressed air cooling condenser 6 with the humidity kept at 100%, the temperature further decreases and dew condensation occurs, and the moisture is accumulated in the mist / dust filter 7. At this time, the compressed air temperature was slightly higher but almost equal to the ambient temperature, and the humidity was 10
0%. After that, the compressed air that has entered the pipe 8 immediately before the separation membrane receives heat due to heat exchange performed by the heat exchange device 10a installed between the pipe 3 immediately after the air compressor and the pipe 8 immediately before the separation membrane, and the temperature rises. I do. The dew point of the compressed air is the temperature immediately before rising, and the humidity is below 100%. When the high-temperature, low-humidity compressed air passes through the inside of the gas separation membrane 9, there is a slight temperature decrease and a rise in humidity. To prevent dew condensation. Also, since the pipe 3 immediately after the air compressor sets the temperature required for raising the compressed air in the pipe 8 immediately before the separation membrane to the required temperature via the heat exchange device 10a in the temperature detection device 12, the temperature detection device 12 is used. At the time of startup, the outlet of the three-way solenoid valve 5 is set to the exhaust port 5b until the temperature detection device 12 operates, so that the compressed air can be prevented from being supplied into the gas separation membrane 9 up to the set temperature. The temperature detecting device 12 operates to electrically switch the three-way solenoid valve changeover switch 11 and switch the outlet of the three-way solenoid valve 5 to the separation membrane supply port 5a to supply the compressed air having the required temperature to the gas separation membrane 9. This can prevent dew condensation on the inner wall of the separation membrane 9 when the apparatus is started. Therefore, it is possible to prevent dew condensation on the inner wall of the separation membrane 9 both at the time of start-up and during normal operation, and to provide a separation membrane type gas generator provided with a dew condensation prevention device which is inexpensive and can be reduced in both volume and weight.

【0017】図3は本発明の第2実施例(請求項2対
応)である分離膜式気体発生装置の構成図である。図に
示すように、本実施例は、圧縮空気用タンク4と分離膜
直前配管8の間には熱交換装置10bが設置されてお
り、三方電磁弁切換スイッチ11は圧縮空気用タンク4
の温度を検出している温度検出装置12に連動する。ま
た熱交換装置10bは、冷凍式ドライヤ18の構成部品
の一つである熱交換器と同程度のものである。その他の
構成は第1実施例と同様の構成とし、同一構成部分には
同一符号を付して説明する。
FIG. 3 is a configuration diagram of a separation membrane type gas generator according to a second embodiment (corresponding to claim 2) of the present invention. As shown in the figure, in this embodiment, a heat exchange device 10b is installed between the compressed air tank 4 and the pipe 8 immediately before the separation membrane, and the three-way solenoid valve changeover switch 11 is connected to the compressed air tank 4
In conjunction with the temperature detection device 12 which detects the temperature of Further, the heat exchange device 10b is substantially the same as a heat exchanger which is one of the components of the refrigeration dryer 18. The other configuration is the same as that of the first embodiment, and the same components will be described with the same reference numerals.

【0018】次に、本実施例の作用について説明する。
分離膜直前配管8に入った圧縮空気は、圧縮空気用タン
ク4と分離膜直前配管8との間に設置される熱交換装置
10bで行われる熱交換による熱を受け、温度が上昇す
る。また、圧縮空気用タンク4が熱交換装置10bを介
して分離膜直前配管8内の圧縮空気を必要温度に昇温す
るのに必要な温度を温度検出装置12に設定している。
したがって、本実施例も上記第1実施例と同様な作用が
得られるので、分離膜内壁における結露を防止すること
ができ、安価で容積・重量共軽量化可能な結露防止装置
を設けた分離膜式気体発生装置を提供できる。
Next, the operation of the present embodiment will be described.
The compressed air that has entered the pipe 8 immediately before the separation membrane receives heat from heat exchange performed by the heat exchange device 10b installed between the compressed air tank 4 and the pipe 8 immediately before the separation membrane, and the temperature rises. The temperature required for the compressed air tank 4 to raise the temperature of the compressed air in the pipe 8 immediately before the separation membrane to the required temperature via the heat exchange device 10b is set in the temperature detection device 12.
Therefore, the present embodiment also provides the same operation as the first embodiment, so that the dew condensation on the inner wall of the separation membrane can be prevented, and the separation membrane provided with the dew condensation prevention device which is inexpensive and can reduce both the volume and the weight. A type gas generator can be provided.

【0019】図4は本発明の第3実施例(請求項3対
応)である分離膜式気体発生装置の構成図である。図に
示すように、本実施例は、空気圧縮機駆動用モータ1の
外殻と分離膜直前配管8の間には熱交換器装置10cが
設置されており、三方電磁弁切換スイッチ11は空気圧
縮機駆動用モータ1の外殻温度を検出している温度検出
装置12に連動する。また熱交換装置10cは、冷凍式
ドライヤ18の構成部品の一つである熱交換器と同程度
のものである。その他の構成は第1実施例と同様の構成
とし、同一構成部分には同一符号を付して説明する。
FIG. 4 is a configuration diagram of a separation membrane type gas generator according to a third embodiment (corresponding to claim 3) of the present invention. As shown in the figure, in this embodiment, a heat exchanger device 10c is provided between the outer shell of the motor 1 for driving the air compressor and the pipe 8 immediately before the separation membrane, and the three-way solenoid valve changeover switch 11 is It is linked to a temperature detecting device 12 which detects the outer shell temperature of the compressor driving motor 1. Further, the heat exchange device 10c is substantially the same as a heat exchanger which is one of the components of the refrigeration dryer 18. The other configuration is the same as that of the first embodiment, and the same components will be described with the same reference numerals.

【0020】本実施例においては、分離膜直前配管8に
入った圧縮空気は、空気圧縮機駆動負荷によって高温と
なった空気圧縮機駆動用モータ1の外殻と、分離膜直前
配管8との間に設置される熱交換装置10cで行われる
熱交換による熱を受け、温度が上昇する。また、空気圧
縮機駆動用モータ1の外殻が熱交換装置10cを介して
分離膜直前配管8内の圧縮空気を必要温度に昇温するの
に必要な温度を温度検出装置12に設定している。した
がって、本実施例も上記第1実施例と同様な作用が得ら
れるので、分離膜内壁における結露を防止することがで
き、安価で容積・重量共軽量化可能な結露防止装置を設
けた分離膜方式気体発生装置を提供できる。
In this embodiment, the compressed air that has entered the pipe 8 immediately before the separation membrane is connected to the outer shell of the motor 1 for driving the air compressor, which has become hot due to the air compressor drive load, and the pipe 8 just before the separation membrane. The temperature rises due to the heat from the heat exchange performed by the heat exchange device 10c installed therebetween. The temperature required for the outer shell of the motor 1 for driving the air compressor to raise the temperature of the compressed air in the pipe 8 immediately before the separation membrane to the required temperature via the heat exchange device 10c is set in the temperature detection device 12. I have. Therefore, the present embodiment also provides the same operation as the first embodiment, so that the dew condensation on the inner wall of the separation membrane can be prevented, and the separation membrane provided with the dew condensation prevention device which is inexpensive and can reduce both the volume and the weight. A method gas generator can be provided.

【0021】図5は本発明の第4実施例(請求項4対
応)である分離膜式気体発生装置の構成図である。図に
示すように、本実施例は、空気圧縮機直後配管3または
圧縮空気用タンク4あるいは空気圧縮機駆動用モータ1
の外殻を表わすものを熱交換装置熱源13とする。バイ
メタルスイッチ14は熱交換装置熱源13と近接してお
り、またバイメタルスイッチ14そのものが三方電磁弁
切換スイッチとなっている。その他の構成は第1実施例
乃至第3実施例と同様の構成とし、同一構成部分には同
一符号を付して説明する。
FIG. 5 is a block diagram of a separation membrane type gas generator according to a fourth embodiment (corresponding to claim 4) of the present invention. As shown in the figure, the present embodiment employs a pipe 3 immediately after an air compressor, a tank 4 for compressed air, or a motor 1 for driving an air compressor.
The outer shell of the heat exchanger 13 is referred to as a heat source 13 . The bimetal switch 14 is close to the heat source 13 and the bimetal switch 14 itself is a three-way solenoid valve switch. Other configurations are the same as those of the first to third embodiments, and the same components will be described with the same reference numerals.

【0022】本実施例においては、熱交換装置熱源13
熱交換装置10aまたは10bあるいは10cを介し
圧縮空気を必要温度に昇温するのに必要な温度におい
てバイメタルスイッチ14が働くよう設定するため、本
実施例も、上記第1実施例と同様な作用が得られる。し
たがって、分離膜内壁における結露を防止することがで
き、安価で容積・重量共軽量化可能な結露防止装置を設
けた分離膜方式気体発生装置を提供できる。
In the present embodiment, the heat source 13
Through the heat exchanger 10a or 10b or 10c
The bimetal switch 14 is set to operate at a temperature required to raise the temperature of the compressed air to the required temperature, so that the present embodiment also provides the same operation as the first embodiment. Therefore, it is possible to prevent dew condensation on the inner wall of the separation membrane, and to provide a separation membrane type gas generator provided with a dew condensation prevention device which is inexpensive and can be reduced in both volume and weight.

【0023】図6は本発明の第5実施例(請求項5対
応)である分離膜式気体発生装置の構成図である。図に
示すように、本実施例は、三方電磁弁5は、タイマー1
5が入力部に設けられた三方電磁弁切換スイッチ11に
よって分離膜供給ポート5aと排気ポート5bとを切り
換えられるようになっており、その他の構成は第4実施
例と同様の構成とし、同一構成部分には同一符号を付し
て説明する。
FIG. 6 is a block diagram of a separation membrane type gas generator according to a fifth embodiment (corresponding to claim 5) of the present invention. As shown in the figure, in the present embodiment, the three-way solenoid valve 5
Reference numeral 5 denotes a three-way solenoid valve changeover switch 11 provided at the input section, which allows switching between the separation membrane supply port 5a and the exhaust port 5b. Other configurations are the same as those of the fourth embodiment, and are the same. Parts will be described with the same reference numerals.

【0024】本実施例においては、装置起動時に熱交換
装置熱源13が熱交換装置10aまたは10bあるいは
10cを介して圧縮空気を必要温度にまで昇温するには
一定時間必要であり、この時の必要時間をタイマー15
に設定しているので、タイマー15が働くまでは三方電
磁弁5の出口を排気ポート5bにすることにより、設定
時間までは圧縮空気が気体分離膜9内に供給されないよ
うにすることができる。タイマー15が働き、三方電磁
弁切換スイッチ11を電気的に切り換え、三方電磁弁5
の出口を分離膜供給ポート5aに切り換えて圧縮空気を
気体分離膜9に供給することにより、本実施例も第4実
施例と同様な効果が得られるので、安価で容積・重量共
軽量化可能な結露防止装置を設けた分離膜方式気体発生
装置を提供できる。
In this embodiment, when the apparatus is started, the heat source 13 of the heat exchange apparatus is turned on by the heat exchange apparatus 10a or 10b or
It takes a certain period of time to raise the temperature of the compressed air to the required temperature via 10c.
Therefore, by setting the outlet of the three-way solenoid valve 5 to the exhaust port 5b until the timer 15 operates, compressed air can be prevented from being supplied into the gas separation membrane 9 until the set time. The timer 15 operates to electrically switch the three-way solenoid valve changeover switch 11, and the three-way solenoid valve 5
In this embodiment, the same effect as that of the fourth embodiment can be obtained by switching the outlet to the separation membrane supply port 5a and supplying compressed air to the gas separation membrane 9, so that the volume and weight can be reduced at low cost. It is possible to provide a separation membrane type gas generator provided with a dew condensation preventing device.

【0025】図7は本発明の第6実施例(請求項6対
応)である分離膜式気体発生装置の構成図である。図に
示すように、本実施例は、圧縮空気用タンク4には圧力
スイッチ16が設置されており、圧力スイッチ16には
圧力スイッチ切換回数検出装置17が設置されている。
また、三方電磁弁切換スイッチ11は圧力スイッチ切換
回数検出装置17に連動するようになっており、その他
の構成は第5実施例と同様の構成とし、同一構成部分に
は同一符号を付して説明する。
FIG. 7 is a configuration diagram of a separation membrane type gas generator according to a sixth embodiment (corresponding to claim 6) of the present invention. As shown in the figure, in this embodiment, a pressure switch 16 is provided in the compressed air tank 4, and a pressure switch switching frequency detecting device 17 is provided in the pressure switch 16.
Further, the three-way solenoid valve changeover switch 11 is interlocked with the pressure switch changeover number detecting device 17, and the other structure is the same as that of the fifth embodiment, and the same components are denoted by the same reference numerals. explain.

【0026】図において、圧力スイッチ16は圧縮空気
用タンク4内の圧力を一定範囲内の圧力に保つためのO
N−OFFスイッチであり、圧力が下がって設定最低圧
力に達するとスイッチがONされて空気圧縮機2が運転
を開始し、圧力が上がって設定最高圧力に達するとスイ
ッチがOFFされて空気圧縮機2が運転を停止する。ま
た、起動時に熱交換装置熱源13が熱交換装置10aま
たは10bあるいは10cを介して圧縮空気を必要温度
にまで昇温するには一定時間必要であり、この時の必要
時間を圧力スイッチの切換回数に換算して圧力スイッチ
切換回数検出装置17に設定することにより、本実施例
も上記第5実施例と同様な作用が得られる。従って、本
実施例によると、分離膜内壁における結露を防止するこ
とができ、安価で容積・重量共軽量化可能な結露防止装
置を設けた分離膜式気体発生装置を提供できる。
In the figure, a pressure switch 16 is used to maintain the pressure in the compressed air tank 4 within a certain range.
This switch is an N-OFF switch. When the pressure drops and reaches a set minimum pressure, the switch is turned on and the air compressor 2 starts operating. When the pressure rises and reaches a set maximum pressure, the switch is turned off and the air compressor 2 is turned off. 2 stops operation. Further, at the time of startup, the heat source 13 of the heat exchange device
A certain period of time is required to raise the temperature of the compressed air to the required temperature via 10b or 10c. The required time at this time is converted into the number of pressure switch switching times and set in the pressure switch switching frequency detecting device 17. By doing so, the present embodiment can provide the same operation as the fifth embodiment. Therefore, according to the present embodiment, it is possible to provide a separation membrane type gas generator provided with a dew condensation prevention device that can prevent dew condensation on the inner wall of the separation membrane and that can be reduced in cost and volume and weight.

【0027】[0027]

【発明の効果】以上説明したように、本発明(請求項1
乃至請求項6対応)によれば、気体分離膜内壁における
結露を防止することができ、安価で容積・重量とも軽量
化可能な結露防止装置を設けた分離膜式気体発生装置を
提供することができる。
As described above, the present invention (Claim 1)
According to the sixth aspect of the present invention, it is possible to provide a separation membrane type gas generator provided with a dew condensation prevention device which can prevent dew condensation on the inner wall of the gas separation membrane and can be reduced in cost and volume and weight. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の分離膜式気体発生装置の
構成図。
FIG. 1 is a configuration diagram of a separation membrane type gas generator according to a first embodiment of the present invention.

【図2】図1の配管内圧縮空気通過構成部品と温度・湿
度測定結果を示す測定図。
FIG. 2 is a measurement diagram showing the compressed air passage components in the pipe of FIG. 1 and the measurement results of temperature and humidity.

【図3】本発明の第2実施例の分離膜式気体発生装置の
構成図。
FIG. 3 is a configuration diagram of a separation membrane type gas generator according to a second embodiment of the present invention.

【図4】本発明の第3実施例の分離膜式気体発生装置の
構成図。
FIG. 4 is a configuration diagram of a separation membrane type gas generator according to a third embodiment of the present invention.

【図5】本発明の第4実施例の分離膜式気体発生装置の
構成図。
FIG. 5 is a configuration diagram of a separation membrane type gas generator according to a fourth embodiment of the present invention.

【図6】本発明の第5実施例の分離膜式気体発生装置の
構成図。
FIG. 6 is a configuration diagram of a separation membrane type gas generator according to a fifth embodiment of the present invention.

【図7】本発明の第6実施例の分離膜式気体発生装置の
構成図。
FIG. 7 is a configuration diagram of a separation membrane type gas generator according to a sixth embodiment of the present invention.

【図8】従来の分離膜方式気体発生装置の構成図。FIG. 8 is a configuration diagram of a conventional separation membrane type gas generator.

【図9】図8の配管内圧縮空気温度・湿度測定結果を示
す測定図。
FIG. 9 is a measurement diagram showing a measurement result of temperature and humidity of compressed air in the pipe of FIG. 8;

【符号の説明】[Explanation of symbols]

1…空気圧縮機駆動用モータ、2…空気圧縮機、3…空
気圧縮機直後配管、4…圧縮機用タンク、5…三方電磁
弁、5a…三方電磁弁分離膜供給ポート、5b…三方電
磁弁排気ポート、6…圧縮空気冷却用コンデンサ、7…
ミスト・ダスト用フィルタ、8…分離膜直前配管、9…
気体分離膜、10a,10b,10c…熱交換装置、1
1…三方電磁弁切換スイッチ、12…温度検出装置、1
3…熱交換装置熱源、14…バイメタルスイッチ、15
…タイマー、16…圧力スイッチ、17…圧力スイッチ
切換回数検出装置、18…冷凍式ドライヤ、19…温度
検出装置、20…空気圧縮機起動スイッチ。
DESCRIPTION OF SYMBOLS 1 ... Motor for driving an air compressor, 2 ... Air compressor, 3 ... Piping immediately after the air compressor, 4 ... Compressor tank, 5 ... 3-way solenoid valve, 5a ... 3-way solenoid valve separation membrane supply port, 5b ... 3-way solenoid Valve exhaust port, 6… Compressed air cooling condenser, 7…
Mist / dust filter, 8… Pipe just before separation membrane, 9…
Gas separation membrane, 10a, 10b, 10c ... heat exchange device, 1
DESCRIPTION OF SYMBOLS 1 ... Three-way solenoid valve changeover switch, 12 ... Temperature detection device, 1
3 heat exchanger heat source, 14 bimetal switch, 15
... Timer, 16 ... Pressure switch, 17 ... Pressure switch switching frequency detector, 18 ... Refrigeration dryer, 19 ... Temperature detector, 20 ... Air compressor start switch.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空気圧縮機駆動用モータによって駆動さ
れる空気圧縮機より排出される高温高圧の圧縮空気を、
空気圧縮機直後配管を経て圧縮空気用タンク、圧縮空気
冷却用コンデンサ、ミスト・ダスト用フィルタ、分離膜
直前配管、気体分離膜を通すことにより大気より特定気
体を濃縮分離する分離膜式気体発生装置において、前記
分離膜直前配管と前記空気圧縮機直後配管との間に熱交
換装置を、前記圧縮空気用タンクと前記圧縮空気冷却用
コンデンサとの間に三方電磁弁をそれぞれ設けると共
に、前記空気圧縮機直後配管に温度検出装置を設けたこ
とを特徴とする分離膜式気体発生装置。
1. A high-temperature, high-pressure compressed air discharged from an air compressor driven by an air compressor drive motor,
Separation membrane gas generator that concentrates and separates a specific gas from the atmosphere by passing through a tank immediately after the air compressor, a tank for compressed air, a condenser for cooling compressed air, a filter for mist and dust, a pipe just before the separation membrane, and a gas separation membrane. In the above, a heat exchange device is provided between the pipe immediately before the separation membrane and the pipe immediately after the air compressor, and a three-way solenoid valve is provided between the compressed air tank and the compressed air cooling condenser. A separation membrane type gas generator characterized in that a temperature detection device is provided in piping immediately after the machine.
【請求項2】 請求項1記載の分離膜式気体発生装置に
おいて、前記熱交換装置は前記分離膜直前配管と前記圧
縮空気用タンクとの間に設けると共に、前記温度検出装
置は前記圧縮空気用タンクに設けたことを特徴とする分
離膜式気体発生装置。
2. The separation membrane type gas generator according to claim 1, wherein the heat exchange device is provided between the pipe immediately before the separation membrane and the compressed air tank, and the temperature detection device is used for the compressed air. A separation membrane type gas generator provided in a tank.
【請求項3】 請求項1記載の分離膜式気体発生装置に
おいて、前記熱交換装置は前記分離膜直前配管と前記空
気圧縮機駆動用モータとの間に設けると共に、前記温度
検出装置は前記空気圧縮機駆動用モータ外殻に設けたこ
とを特徴とする分離膜式気体発生装置。
3. The separation membrane type gas generator according to claim 1, wherein the heat exchange device is provided between the pipe immediately before the separation membrane and the motor for driving the air compressor, and the temperature detection device is provided with the air. A separation membrane type gas generator provided on an outer shell of a motor for driving a compressor.
【請求項4】 請求項1乃至請求項3記載の分離膜式気
体発生装置において、三方電磁弁切換スイッチとして働
バイメタルが、前記空気圧縮機直後配管、前記圧縮空
気用タンク、または前記空気圧縮機駆動用モータ外殻の
いずれかに設けられたことを特徴とする分離膜式気体発
生装置。
4. A separation membrane type gas generator according to claim 1, wherein said gas generator operates as a three-way solenoid valve changeover switch.
Ku bimetal, the air compressor after the pipe, the compressed air tank or separation membrane-type gas generator, characterized in that provided on one of said air compressor driving motor shell.
【請求項5】 請求項1乃至請求項3に記載の分離膜式
気体発生装置において、前記三方電磁弁切換スイッチの
入力部にタイマーを設けたことを特徴とする分離膜式気
体発生装置。
5. The separation membrane gas generator according to claim 1, wherein a timer is provided at an input portion of the three-way solenoid valve changeover switch.
【請求項6】 請求項1乃至請求項3に記載の分離膜式
気体発生装置において、前記圧縮空気用タンクに圧力ス
イッチを、前記三方電磁弁に三方電磁弁切換スイッチを
設け、前記圧力スイッチと前記三方電磁弁切換スイッチ
との間に圧力スイッチ切換回数検出装置を設けたことを
特徴とする分離膜式気体発生装置。
6. The separation membrane gas generator according to claim 1, wherein a pressure switch is provided in the compressed air tank, a three-way solenoid valve changeover switch is provided in the three-way solenoid valve, and the pressure switch and the three-way solenoid valve are connected to each other. A separation membrane type gas generator, wherein a pressure switch switching frequency detecting device is provided between the pressure sensor and the three-way solenoid valve switching switch.
JP10146805A 1998-05-28 1998-05-28 Separation membrane type gas generator Expired - Fee Related JP2958427B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10146805A JP2958427B1 (en) 1998-05-28 1998-05-28 Separation membrane type gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10146805A JP2958427B1 (en) 1998-05-28 1998-05-28 Separation membrane type gas generator

Publications (2)

Publication Number Publication Date
JP2958427B1 true JP2958427B1 (en) 1999-10-06
JPH11333237A JPH11333237A (en) 1999-12-07

Family

ID=15415937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10146805A Expired - Fee Related JP2958427B1 (en) 1998-05-28 1998-05-28 Separation membrane type gas generator

Country Status (1)

Country Link
JP (1) JP2958427B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122067A1 (en) * 2015-01-27 2016-08-04 한국산업기술시험원 Apparatus for evaluating performance of separation membrane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582817B1 (en) * 1999-11-29 2006-05-24 주식회사 삼양사 A recovery method of condensable vapors using a membrane separator
JP6415972B2 (en) * 2014-12-25 2018-10-31 東京ガスエンジニアリングソリューションズ株式会社 Mixed gas purifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122067A1 (en) * 2015-01-27 2016-08-04 한국산업기술시험원 Apparatus for evaluating performance of separation membrane

Also Published As

Publication number Publication date
JPH11333237A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
KR100772217B1 (en) Control method of air conditioner
US6260378B1 (en) Refrigerant purge system
KR20190035060A (en) Air conditional and control method thereof
JP2958427B1 (en) Separation membrane type gas generator
JP2500517B2 (en) Refrigeration system operation controller
JPS602505Y2 (en) air conditioner
JP3026212B1 (en) Separation membrane type gas generator
JP2914020B2 (en) Heating and cooling machine
JPH102640A (en) Refrigerator
JP2002364937A (en) Refrigerator
WO1997040326A1 (en) Multi-type air-conditioner
KR20000073050A (en) Low pressure side obstruction deciding method for air conditioner
JPH01114668A (en) Two-stage compression refrigeration cycle device
JPH08285384A (en) Freezing cycle
JPH0214622B2 (en)
JPH0221165A (en) Operation controller for air conditioner
JPH0725574Y2 (en) Refrigerant recovery device
JPH07305903A (en) Controller for freezer
JP2882172B2 (en) Air conditioner
JPH08313076A (en) Refrigerating apparatus
JP2000274840A (en) Refrigerator
JP2525976B2 (en) Turbo refrigerator equipment
JPH05766Y2 (en)
JP2867794B2 (en) Heating and cooling machine
JP2003294346A (en) Refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees