JP2958099B2 - Method for producing ultra-thin silicone film - Google Patents

Method for producing ultra-thin silicone film

Info

Publication number
JP2958099B2
JP2958099B2 JP2300246A JP30024690A JP2958099B2 JP 2958099 B2 JP2958099 B2 JP 2958099B2 JP 2300246 A JP2300246 A JP 2300246A JP 30024690 A JP30024690 A JP 30024690A JP 2958099 B2 JP2958099 B2 JP 2958099B2
Authority
JP
Japan
Prior art keywords
silicone
film
polymer
general formula
dimethylpolysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2300246A
Other languages
Japanese (ja)
Other versions
JPH04173846A (en
Inventor
雅司 國武
直敏 中嶋
修 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2300246A priority Critical patent/JP2958099B2/en
Publication of JPH04173846A publication Critical patent/JPH04173846A/en
Application granted granted Critical
Publication of JP2958099B2 publication Critical patent/JP2958099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,シリコーン超薄膜の製造方法に関するもの
であり,更に詳しくは,重合性官能基を片末端に有する
ジメチルポリシロキサンと,親水性の重合可能モノマー
との共重合によって得られる両親媒性シロキサングラフ
トコポリマーを,LB法を用いて累積するシリコーン超薄
膜の製造方法に関する. [従来の技術] 近年,高分子産業の分野においては,従来の汎用ポリ
マーでは達成できない様々な機能が有機ポリマーに要求
され,多種多様の高機能材料が開発されつつある.中で
も炭化水素を中心とする従来の有機ポリマーにはない特
性を持つシリコーンが注目されてきている.シリコーン
には,撥水性,低摩擦性,滑り性,耐熱性,酸素透過
性,抗血栓性等の特性があり,これらの特性をいかに従
来の有機ポリマーに付与するかが研究されている. 一つの方法として,シリコーンオイルとして一般に知
られているジメチルポリシロキサンを有機ポリマーにブ
レンドする方法があるが,ただ単にブレンドしただけで
は,有機ポリマーとシリコーンの相溶性が悪いため,時
間と共にシリコーンが外部に洩れ出してくるという欠点
がある.この問題点を克服したのが反応性シリコーンで
ある.反応性シリコーンとは,ジメチルポリシロキサン
の片(又は両)末端に官能基を持ち,有機ポリマーと反
応させることができる.化学結合により有機ポリマーと
強く結合したシリコーンは外部に洩れ出すこともなく長
期間にわたって安定したシリコーンの特性を有機ポリマ
ーに付与することができる。
Description: TECHNICAL FIELD The present invention relates to a method for producing an ultrathin silicone film, and more particularly, to a dimethylpolysiloxane having a polymerizable functional group at one end, and a hydrophilic polymer. The present invention relates to a method for producing an ultrathin silicone film by accumulating an amphiphilic siloxane graft copolymer obtained by copolymerization with a polymerizable monomer using the LB method. [Prior Art] In recent years, in the field of polymer industry, various functions that cannot be achieved by conventional general-purpose polymers are required for organic polymers, and a wide variety of high-performance materials are being developed. In particular, silicones, which have characteristics that are not found in conventional organic polymers, mainly hydrocarbons, have been attracting attention. Silicone has properties such as water repellency, low friction, slipperiness, heat resistance, oxygen permeability, and antithrombotic properties, and it has been studied how to apply these properties to conventional organic polymers. One method is to blend dimethylpolysiloxane, which is generally known as silicone oil, with an organic polymer. However, simply blending the silicone polymer results in poor compatibility between the organic polymer and the silicone. Has the disadvantage of leaking out to Reactive silicone has overcome this problem. Reactive silicone has a functional group at one (or both) terminals of dimethylpolysiloxane and can be reacted with an organic polymer. Silicone strongly bonded to an organic polymer by chemical bonding can impart stable silicone properties to the organic polymer for a long period without leaking to the outside.

[発明が解決しようとする課題] シリコーンには種々の優れた特性があるが,最大の欠
点は造膜性がない事である.前述の如く化学結合により
シリコーンを有機ポリマーに結合させる事で,新しい機
能を持った高分子材料が生まれた訳であるが,分子素子
等のある種の特殊な分野に於ては,分子レベルで構造の
制御された薄膜が要求される. これらの要求に対し,シリコーン自体では勿論である
が,シリコーン変性された有機ポリマーでも対応不可能
である. [課題を解決するための手段] 本発明者等は,上記課題を解決するための鋭意研究を
した結果,片末端に重合可能な官能基を有するジメチル
ポリシロキサンと親水性の重合可能モノマーとを共重合
させ,得られた両親媒性シロキサングラフトコポリマー
を水面上に展開して単分子膜を作成し,基板上に累積す
るというLB法を用いる事により,シリコーン超薄膜が得
られる事を見い出した. 本発明はまず第一段階として,一般式[A] (但し,R1=H又はCH3,nは1〜150である) で表される片末端に重合可能な官能基を有するジメチル
ポリシロキサンと,一般式[B] (但し,R2=H又はCH3である) で表される親水性重合可能モノマーとの共重合により一
般式[C] (但し,R1=H又はCH3,R2=H又はCH3,nは1〜150であ
る) で表される両親媒性シロキサングラフトコポリマーを合
成する. 第二段階で,LB法によりシリコーン超薄膜を作成す
る.つまり,該ポリマーを塩化メチレン/ベンゼンの混
合溶媒に溶解し,純水上に展開して単分子膜を形成さ
せ,基板上に累積する. ここで,純水上に展開した単分子膜の気/液界面での
挙動を表面圧−面積曲線を測定することにより検討した
結果,図1−(a)に示すように,両親媒性シリコーン
ポリマーは単分子膜を形成している事が確認できた.こ
れに対しシリコーンモノマーのみでは単分子膜になって
いない(図1−(b)).両親媒性シリコーンポリマー
の単分子膜形成の様子を模式的に図2に示した. 更に,改良ポリイオンコンプレックス法により,単分
子膜のシリコーン鎖のパッキング性を向上させる事がで
きた.一旦純水上に両親媒性シロキサングラフトコポリ
マーを展開して単分子膜とした後,アニオン性のポリマ
ーであるポリビニルスルホン酸カリウムの水溶液を純水
中に注入する事で,水中でポリマー同士が架橋してポリ
イオンコンプレックスを形成し,シリコーン鎖のパッキ
ングが向上したと思われる.この事は,表面圧−面積曲
線が純水上での曲線よりも急激に立ち上がっている事で
裏付けられる(図3).この様子を模式的に表したもの
が図4である. [発明の効果] 本発明により,従来は不可能であったシリコーン超薄
膜(単分子膜あるいは累積膜)の製造が可能になり,安
定なシリコーン超薄膜が得られるようになった. [実施例] 本発明を実施例により具体的に説明するが,本発明は
その趣旨を越えない限り以下の実施例に限定されるもの
ではない. (実施例1) 片末端メタクリロキシ変性ジメチルポリシロキサン
(チッソ(株),サイラプレーンFM−0711)2gと2−
(トリメチルアンモニオ)エチルアクリレートヨーダイ
ド2gをエタノール/メタノール(1/2)混合溶媒70mlに
溶解し,AIBN0.015gを添加して反応温度50℃にて48時間
重合させた.得られた重合物を塩化メチレンに溶解し,
エタノールを添加して再沈澱させ精製することにより白
色固体0.6gを得た.このものの元素分析を行いC;34.88,
H;6.72,N;2.64%という結果を得た.このことより,得
られたポリマーの組成は,x=0.13と推定した. 一方,GPC分析の結果,Mn=21000,Mw=24000,Mw/Mn=1.
14であった.GPC測定条件を以下に示す. 装置:島津製作所 液体クロマトグラフLC−6A カラム:Shodex K−800P+K−80M+K−802.5 溶離液:クロロホルム カラム温度:35℃ 流速:1ml/min 得られた両親媒性シロキサングラフトコポリマーを塩
化メチレン/ベンゼン=3/7の混合溶液に溶解し,20℃の
純水上に展開し,気/液界面単分子膜の表面圧−面積曲
線を測定した.測定には,サンエス計測製フィルムバラ
ンスFSD−20を用いた.その結果を図1−(a)に示し
た. 純水上に展開されて形成された単分子膜を,垂直浸漬
法を用い累積圧25mN/mにて基板(野村マイクロ製ニュー
クリポア)上に累積した. (実施例2) 実施例1と同様にして得られた両親媒性シロキサング
ラフトコポリマーを,塩化メチレン/ベンゼン=2/8の
混合溶媒に溶解し,20℃の純水上に展開し,一旦単分子
膜を形成させた.次に,ポリビニルスルホン酸カリウム
水溶液をマイクロシリンジを用いて純水中に注入し,ポ
リビニルスルホン酸カリウムの濃度を0.05mMとした.気
/液界面に於てカチオン性ポリマーとアニオン性ポリマ
ーのイオン対を形成させる事により,ポリイオンコンプ
レックスを形成させた後,このものの表面圧−面積曲線
を測定した.結果を図3に示した.イオン架橋されたシ
リコーン単分子膜は,実施例1と同様に垂直浸漬法を用
い,累積圧25mN/mにて基板上に累積できた。
[Problems to be Solved by the Invention] Silicone has various excellent properties, but the biggest disadvantage is that it has no film-forming properties. The bonding of silicone to an organic polymer through chemical bonding as described above has resulted in the creation of a polymer material with a new function. However, in certain special fields such as molecular devices, the molecular level is low. A thin film with a controlled structure is required. To meet these requirements, not only silicone itself, but also silicone-modified organic polymers cannot be met. [Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have found that dimethylpolysiloxane having a polymerizable functional group at one end and a hydrophilic polymerizable monomer are used. It was found that an ultra-thin silicone film could be obtained by using the LB method, in which a copolymer was copolymerized, the resulting amphiphilic siloxane graft copolymer was spread on the water surface to form a monomolecular film, and accumulated on the substrate. . In the present invention, as a first step, the general formula [A] (Where R 1 HH or CH 3 , n is 1 to 150) and a dimethylpolysiloxane having a polymerizable functional group at one end and a general formula [B] (Where R 2 = H or CH 3 ) by copolymerization with a hydrophilic polymerizable monomer represented by the general formula [C]: (Where R 1 HH or CH 3 , R 2 HH or CH 3 , n is from 1 to 150). In the second step, an ultra-thin silicone film is prepared by the LB method. That is, the polymer is dissolved in a mixed solvent of methylene chloride / benzene, developed on pure water to form a monomolecular film, and accumulated on the substrate. Here, the behavior of the monomolecular film developed on pure water at the gas / liquid interface was examined by measuring the surface pressure-area curve. As a result, as shown in FIG. It was confirmed that the polymer formed a monomolecular film. On the other hand, a monomolecular film was not formed only with the silicone monomer (FIG. 1- (b)). FIG. 2 schematically shows the formation of a monomolecular film of the amphiphilic silicone polymer. In addition, the improved polyion complex method improved the packing of silicone chains in the monomolecular film. Once the amphiphilic siloxane graft copolymer is developed on pure water to form a monomolecular film, the polymer is cross-linked in water by injecting an aqueous solution of potassium anionic polymer, polyvinyl potassium sulfonate, into pure water. Thus, a polyion complex was formed and the packing of the silicone chain was thought to have improved. This is supported by the fact that the surface pressure-area curve rises more sharply than the curve on pure water (Fig. 3). FIG. 4 schematically shows this state. [Effects of the Invention] According to the present invention, it has become possible to produce a silicone ultrathin film (monomolecular film or cumulative film), which has been impossible in the past, and to obtain a stable silicone ultrathin film. [Examples] The present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. (Example 1) 2 g of methacryloxy-modified dimethylpolysiloxane having one terminal (Chisso Corporation, Silaplane FM-0711) and 2-g
2 g of (trimethylammonio) ethyl acrylate iodide was dissolved in 70 ml of a mixed solvent of ethanol / methanol (1/2), 0.015 g of AIBN was added, and polymerization was carried out at a reaction temperature of 50 ° C. for 48 hours. Dissolve the obtained polymer in methylene chloride,
Ethanol was added for reprecipitation and purification, yielding 0.6 g of a white solid. Perform elemental analysis on this product; C; 34.88,
H; 6.72, N; 2.64% were obtained. From this, the composition of the obtained polymer was estimated to be x = 0.13. On the other hand, as a result of GPC analysis, Mn = 21000, Mw = 24000, Mw / Mn = 1.
The GPC measurement conditions are shown below. Apparatus: Shimadzu Liquid Chromatography LC-6A Column: Shodex K-800P + K-80M + K-802.5 Eluent: chloroform Column temperature: 35 ° C Flow rate: 1 ml / min The obtained amphiphilic siloxane graft copolymer is methylene chloride / benzene = 3 / 7 was dissolved in a mixed solution, developed on pure water at 20 ℃, and the surface pressure-area curve of the gas / liquid interface monolayer was measured. For measurement, a film balance FSD-20 manufactured by San-Esu Keisoku was used. The results are shown in FIG. The monomolecular film formed by spreading on pure water was accumulated on a substrate (Nomura Micro Nuclepore) at a cumulative pressure of 25 mN / m using the vertical immersion method. (Example 2) The amphiphilic siloxane graft copolymer obtained in the same manner as in Example 1 was dissolved in a mixed solvent of methylene chloride / benzene = 2/8, and developed on pure water at 20 ° C. A molecular film was formed. Next, an aqueous solution of potassium polyvinyl sulfonate was injected into pure water using a microsyringe, and the concentration of potassium polyvinyl sulfonate was adjusted to 0.05 mM. After forming a polyion complex by forming an ion pair of a cationic polymer and an anionic polymer at the gas / liquid interface, the surface pressure-area curve of this complex was measured. The results are shown in FIG. The ion-crosslinked silicone monomolecular film could be accumulated on the substrate at a cumulative pressure of 25 mN / m using the vertical immersion method as in Example 1.

【図面の簡単な説明】 図1〜4は、本発明を説明するための説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 4 are explanatory diagrams for explaining the present invention.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C08G 77/442 B05D 1/20 B01J 19/00 C08J 5/18 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) C08G 77/442 B05D 1/20 B01J 19/00 C08J 5/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式[A] (但し,R1=H又はCH3,nは1〜150である) で表される片末端に重合可能な官能基を有するジメチル
ポリシロキサンと,一般式[B] (但し,R2=H又はCH3である) で表される親水性の重合可能モノマーとの共重合によ
り,一般式[C] (但し,R1=H又はCH3,R2=H又はCH3,nは1〜150であ
る) で表される両親媒性シロキサングラフトコポリマーを合
成し,該ポリマーをLB法を用いて累積することを特徴と
するシリコーン超薄膜の製造方法.
1. A compound of the general formula [A] (Where R 1 HH or CH 3 , n is 1 to 150) and a dimethylpolysiloxane having a polymerizable functional group at one end and a general formula [B] (Where R 2 = H or CH 3 ) by copolymerization with a hydrophilic polymerizable monomer represented by the general formula [C]: (However, R 1 = H or CH 3 , R 2 = H or CH 3 , n is 1 to 150) is synthesized, and the polymer is accumulated by the LB method. A method for producing a silicone ultra-thin film.
【請求項2】一般式[A] (但し,R1=H又はCH3,nは1〜150である) で表される片末端に重合可能な官能基を有するジメチル
ポリシロキサンと,一般式[B] (但し,R2=H又はCH3である) で表される親水性の重合可能モノマーとの共重合によ
り,一般式[C] (但し,R1=H又はCH3,R2=H又はCH3,nは1〜150であ
る) で表される両親媒性シロキサングラフトコポリマーを合
成し,該ポリマーを改良型LB法(改良型ポリイオンコン
プレックス形成法を用いて単分子膜とした後累積する方
法)により累積することを特徴とするシリコーン超薄膜
の製造方法.
2. The formula [A] (Where R 1 HH or CH 3 , n is 1 to 150) and a dimethylpolysiloxane having a polymerizable functional group at one end and a general formula [B] (Where R 2 = H or CH 3 ) by copolymerization with a hydrophilic polymerizable monomer represented by the general formula [C]: (However, R 1 = H or CH 3 , R 2 = H or CH 3 , n is 1 to 150) is synthesized, and the polymer is modified by an improved LB method (improved LB method). A method of producing an ultrathin silicone film, which comprises forming a monomolecular film using a polyion complex forming method and then accumulating the monomolecular film.
JP2300246A 1990-11-06 1990-11-06 Method for producing ultra-thin silicone film Expired - Lifetime JP2958099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300246A JP2958099B2 (en) 1990-11-06 1990-11-06 Method for producing ultra-thin silicone film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300246A JP2958099B2 (en) 1990-11-06 1990-11-06 Method for producing ultra-thin silicone film

Publications (2)

Publication Number Publication Date
JPH04173846A JPH04173846A (en) 1992-06-22
JP2958099B2 true JP2958099B2 (en) 1999-10-06

Family

ID=17882471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300246A Expired - Lifetime JP2958099B2 (en) 1990-11-06 1990-11-06 Method for producing ultra-thin silicone film

Country Status (1)

Country Link
JP (1) JP2958099B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023199A (en) * 2003-07-02 2005-01-27 Chisso Corp Functional ultrathin membrane and method of forming the same
JP2014009306A (en) * 2012-06-29 2014-01-20 Neos Co Ltd Antibacterial composition
CN111592629B (en) * 2020-06-05 2021-03-09 中国科学院兰州化学物理研究所 Hydrophilic polysiloxane copolymer, preparation method and application thereof, wear-resistant self-lubricating antifogging coating and preparation method thereof

Also Published As

Publication number Publication date
JPH04173846A (en) 1992-06-22

Similar Documents

Publication Publication Date Title
Götz et al. Synthesis of lipo‐glycopolymer amphiphiles by nitroxide‐mediated living free‐radical polymerization
CN101218271B (en) Process for preparing (meth) acrylate-based aba triblock copolymers
Hadjichristidis et al. 6.03-Polymers with star-related structures: Synthesis, properties, and applications
Diaz et al. Controlled polymerization of functional monomers and synthesis of block copolymers using a β-phosphonylated nitroxide
Angot et al. Amphiphilic stars and dendrimer-like architectures based on poly (ethylene oxide) and polystyrene
Smulders et al. Seeded Emulsion Polymerization of Block Copolymer Core− Shell Nanoparticles with Controlled Particle Size and Molecular Weight Distribution Using Xanthate-Based RAFT Polymerization
CN101605827B (en) Polymers
Wang et al. Hepta (3, 3, 3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly (N-isopropylacrylamide) telechelics: synthesis and behavior of physical hydrogels
JPS58167606A (en) Preparation of graft copolymer by radical copolymerization
Verbrugghe et al. Thermo‐Responsive and Emulsifying Properties of Poly (N‐vinylcaprolactam) Based Graft Copolymers
Ozturk et al. ATRP of methyl methacrylate initiated with a bifunctional initiator bearing bromomethyl functional groups: Synthesis of the block and graft copolymers
Pispas et al. End-functionalized block copolymers of styrene and isoprene: synthesis and association behavior in dilute solution
Pabon et al. Synthesis in inverse emulsion and associating behavior of hydrophobically modified polyacrylamides
Rikkou‐Kalourkoti et al. Synthesis and characterization of hyperbranched amphiphilic block copolymers prepared via self‐condensing RAFT polymerization
Kim et al. Preparation and characterization of thermosensitive poly (N‐isopropylacrylamide)/poly (ethylene oxide) semi‐interpenetrating polymer networks
Holder et al. The synthesis and self‐assembly of ABA amphiphilic block copolymers containing styrene and oligo (ethylene glycol) methyl ether methacrylate in dilute aqueous solutions: Elevated cloud point temperatures for thermoresponsive micelles
Demirci et al. Stimuli‐responsive diblock copolymer brushes via combination of “click chemistry” and living radical polymerization
JP2958099B2 (en) Method for producing ultra-thin silicone film
Kunitake et al. Preparation and characterization of two-dimensional cross-linked monolayers and Langmuir-Blodgett films of oligo (dimethylsiloxane) copolymer
Mishra et al. Uptake of hazardous heavy metal ions by aqueous solution of poly (acrylamide) prepared through atom transfer radical polymerization process
Stavrouli et al. pH/thermosensitive hydrogels formed at low pH by a PMMA‐PAA‐P2VP‐PAA‐PMMA pentablock terpolymer
Maçon et al. RAFT Polymerization of N‐[3‐(Trimethoxysilyl)‐propyl] acrylamide and Its Versatile Use in Silica Hybrid Materials
Akemi et al. Synthesis of a new antithrombogenic block copolymer containing fluorinated segments: poly (nonafluorohexyl acrylate‐b‐styrene)
Zhang et al. Synthesis and properties of the semi‐interpenetrating polymer network–like, thermosensitive poly (N‐isopropylacrylamide) hydrogel
Gosselet et al. Aqueous two phase systems from cyclodextrin polymers and hydrophobically modified acrylic polymers