JP2955192B2 - Electrodes for organic electrolyte batteries - Google Patents

Electrodes for organic electrolyte batteries

Info

Publication number
JP2955192B2
JP2955192B2 JP6225534A JP22553494A JP2955192B2 JP 2955192 B2 JP2955192 B2 JP 2955192B2 JP 6225534 A JP6225534 A JP 6225534A JP 22553494 A JP22553494 A JP 22553494A JP 2955192 B2 JP2955192 B2 JP 2955192B2
Authority
JP
Japan
Prior art keywords
electrode
battery
pas
insoluble
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6225534A
Other languages
Japanese (ja)
Other versions
JPH0864202A (en
Inventor
哲 名倉
武 橋本
香代子 大塚
之規 羽藤
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6225534A priority Critical patent/JP2955192B2/en
Publication of JPH0864202A publication Critical patent/JPH0864202A/en
Application granted granted Critical
Publication of JP2955192B2 publication Critical patent/JP2955192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は有機電解質電池用電極に
係り、さらに詳しくは電極活物質に上記特定の不溶不融
性基体を用いた有機電解質電池用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an organic electrolyte battery, and more particularly to an electrode for an organic electrolyte battery using the above-mentioned specific insoluble and infusible substrate as an electrode active material.

【0002】[0002]

【従来の技術】近年、導電性高分子、遷移金属酸化物等
を正極とし、負極にリチウム金属あるいはリチウム合金
を用いた二次電池がエネルギー密度が高いことから、N
i−Cd電池、鉛電池に代る電池として提案されてい
る。しかし、これら二次電池は繰り返し充放電を行うと
正極、あるいは負極の劣化による容量低下が大きく、実
用上問題が残されている。特に負極の劣化はデントライ
トと呼ばれるこけ状のリチウム結晶の生成を伴い、充放
電の繰り返しにより終局的にはデントライトがセパレー
ターを貫通し、電池内部でショートを引き起こし、場合
によっては電池が破裂する等、安全面においても問題が
あった。近年、グラファイト等の炭素材、ポリアセチレ
ン、ポリパラフェニレン等の導電性高分子にリチウムを
担持させたリチウム電池の研究が進められている。しか
しながら、例えば、炭素材にリチウムを担持させた場
合、デントライトの発生は著しく少ないものの、その利
用率はC6 Li、すなわち炭素原子に対してモル百分率
で16.7%程度である。更に、炭素材を負極に用いた
場合リチウムの出し入れに対して、構造の変化があるこ
とから、サイクル特性が低下するという問題があった。
2. Description of the Related Art In recent years, a secondary battery using a conductive polymer, a transition metal oxide or the like as a positive electrode and a lithium metal or a lithium alloy as a negative electrode has a high energy density.
It has been proposed as a battery replacing i-Cd batteries and lead batteries. However, when these secondary batteries are repeatedly charged and discharged, the capacity is greatly reduced due to deterioration of the positive electrode or the negative electrode, and there remains a practical problem. In particular, the deterioration of the negative electrode involves the formation of moss-like lithium crystals called dentite, and the repetition of charging and discharging eventually causes the dentite to penetrate the separator, causing a short circuit inside the battery, and in some cases, the battery exploding There was also a problem in terms of safety. In recent years, research on lithium batteries in which lithium is supported on a carbon material such as graphite, or a conductive polymer such as polyacetylene or polyparaphenylene has been advanced. However, when lithium is supported on a carbon material, for example, although the generation of dendrites is remarkably small, its utilization is about 16.7% in terms of mole percentage with respect to C 6 Li, that is, carbon atoms. Further, when a carbon material is used for the negative electrode, there is a problem that the cycle characteristics are deteriorated due to a change in the structure when lithium is introduced or taken out.

【0003】一方、特公平1−44212号公報、特公
平3−24024号公報等にはポリアセン系骨格構造を
有する不溶不融性基体(ポリアセン系有機半導体)が記
載されている。ポリアセン系有機半導体は、多環芳香族
系炭化水素が適度に発達したアモルファス有機半導体で
あり、リチウムをドーピング、すなわち担持できること
から、上記電池の負極活物質になる事が知られている。
一般に、電池用電極は生産性、寸法安定性等の観点か
ら、電極活物質粉末にバインダーを加え、成形したもの
が好ましく用いられる。しかしながら、上記不溶不融性
基体を成形し電極とした場合、その容量には不満足な点
が残されていた。更に、本出願人の出願に係る特開平3
−233860号公報には該不溶不融性基体と熱硬化性
樹脂より成る電極を負極に用いる有機電解質電池が記載
されている。該電池は、リチウムをドープした時の電極
の緩みを抑止することによりサイクル特性、急速充放電
特性に優れた電池が得られるが、やはりその容量は充分
ではなかった。
On the other hand, Japanese Unexamined Patent Publication Nos. Hei 1-44422 and Hei 3-24024 disclose an insoluble infusible substrate (polyacene organic semiconductor) having a polyacene skeleton structure. The polyacene-based organic semiconductor is an amorphous organic semiconductor in which polycyclic aromatic hydrocarbons are appropriately developed, and is known to be a negative electrode active material of the above-described battery because it can dope, that is, carry lithium.
Generally, from the viewpoints of productivity, dimensional stability, and the like, a battery electrode obtained by adding a binder to an electrode active material powder and molding the same is preferably used. However, when the insoluble and infusible substrate is formed into an electrode, an unsatisfactory capacity remains. Further, Japanese Unexamined Patent Application Publication No.
JP-A-233860 describes an organic electrolyte battery in which an electrode comprising the insoluble and infusible substrate and a thermosetting resin is used as a negative electrode. In the battery, a battery excellent in cycle characteristics and rapid charge / discharge characteristics can be obtained by suppressing the loosening of the electrode when lithium is doped, but the capacity was still insufficient.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは上記問題
点に鑑み、鋭意研究を続けた結果本発明を完成したもの
である。本発明の目的は高容量かつ高電圧を有し、長期
に亘って充電、放電が可能であり、容量の低下の少ない
有機電解質二次電池用電極を提供するにある。本発明の
さらに他の目的は安全性に優れた二次電池用電極を提供
するにある。本発明のさらに他の目的は製造が容易な二
次電池用電極を提供するにある。本発明のさらに他の目
的並びに効果は以下の説明から明らかにされよう。
In view of the above problems, the present inventors have made intensive studies and completed the present invention. An object of the present invention is to provide an electrode for an organic electrolyte secondary battery which has a high capacity and a high voltage, can be charged and discharged for a long time, and has a small decrease in capacity. Still another object of the present invention is to provide an electrode for a secondary battery having excellent safety. Still another object of the present invention is to provide an electrode for a secondary battery which is easy to manufacture. Still other objects and advantages of the present invention will become apparent from the following description.

【0005】[0005]

【問題点を解決するための手段】本発明者らは、電極活
物質に、特定の細孔構造を持つポリアセン系骨格構造を
有する不溶不融性基体を用いる事により本発明を完成し
た。すなわち、本発明は芳香族系縮合ポリマーの熱処理
物であって水素原子/炭素原子の原子比(H/C)が
0.5〜0.05であるポリアセン系骨格構造を有する
不溶不融性基体であり、かつ該不溶不融性基体の窒素吸
着等温線から得られる窒素吸着厚み10Åにおける吸着
ガス量が100cc/g以下であるものを電極活物質と
して用いることを特徴とする有機電解質電池用電極であ
る。
Means for Solving the Problems The present inventors have completed the present invention by using an insoluble and infusible substrate having a polyacene skeleton structure having a specific pore structure as an electrode active material. That is, the present invention relates to a heat-treated aromatic condensed polymer, and an insoluble and infusible substrate having a polyacene skeleton structure having a hydrogen atom / carbon atom ratio (H / C) of 0.5 to 0.05. An electrode for an organic electrolyte battery, characterized in that a material having an adsorbed gas amount of 100 cc / g or less at a nitrogen adsorption thickness of 10 ° obtained from a nitrogen adsorption isotherm of the insoluble infusible substrate is used as an electrode active material. It is.

【0006】本発明における芳香族系縮合ポリマーと
は、フェノール性水酸基を有する芳香族炭化水素化合物
とアルデヒド類との縮合物である。芳香族炭化水素化合
物としては、例えばフェノール,クレゾール,キシレノ
ールの如きいわゆるフェノール類が好適であるが、これ
らに限られない。例えば下記式
The aromatic condensation polymer in the present invention is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group with an aldehyde. As the aromatic hydrocarbon compound, for example, so-called phenols such as phenol, cresol, and xylenol are suitable, but not limited thereto. For example,

【化1】 (ここで、xおよびyはそれぞれ独立に、0、1又は2
である)で表されるメチレン・ビスフェノール類である
ことができ、或いはヒドロキシ・ビフェニル類、ヒドロ
キシナフタレン類であることもできる。これらの内、実
用的にはフェノール類、特にフェノールが好適である。
特に、本発明における芳香族系縮合ポリマーとしては、
上記のフェノール性水酸基を有する芳香族炭化水素化合
物の1部を、フェノール性水酸基を有さない芳香族炭化
水素化合物、例えばキシレン、トルエン、アニリン等で
置換した変成芳香族系縮合ポリマー、例えばフェノール
とキシレンとホルムアルデヒドとの縮合物が好ましく用
いられる。また、メラミン、尿素で置換した変成芳香族
系ポリマーやフラン樹脂を用いることもできる。またア
ルデヒドとしてはホルムアルデヒド、アセトアルデヒ
ド、フルフラール等のアルデヒドを使用することができ
るが、ホルムアルデヒドが好適である。フェノールホル
ムアルデヒド縮合物としては、ノボラック型又はレゾー
ル型或はそれらの混合物のいずれであってもよい。
Embedded image (Where x and y are each independently 0, 1 or 2
Methylene bisphenols represented by the formula: or hydroxy biphenyls or hydroxynaphthalenes. Of these, phenols, particularly phenol, are practically preferred.
In particular, as the aromatic condensation polymer in the present invention,
A modified aromatic condensation polymer in which a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, or aniline, such as phenol A condensate of xylene and formaldehyde is preferably used. Modified aromatic polymers substituted with melamine or urea or furan resins can also be used. Aldehydes such as formaldehyde, acetaldehyde and furfural can be used, but formaldehyde is preferred. The phenol formaldehyde condensate may be any of a novolak type, a resol type, or a mixture thereof.

【0007】本発明における不溶不融性基体は、上記芳
香族系ポリマーを熱処理する事により得られ、特公平1
−44212号公報等に記載されているポリアセン系骨
格構造を有する不溶不融性基体は全て用いることがで
き、例えば、次のようにして製造することもできる。該
芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含
む)で、400°C〜800°Cの適当な温度まで徐々
に加熱する事により、水素原子/炭素原子の原子比(以
下H/Cと記す)が0.50〜0.05、好ましくは
0.35〜0.10の不溶不融性基体を得ることができ
る。
The insoluble and infusible substrate of the present invention can be obtained by heat-treating the above aromatic polymer.
Any insoluble and infusible substrate having a polyacene-based skeleton structure described in JP-A-44212 can be used, and for example, it can also be produced as follows. The aromatic condensation polymer is gradually heated to a suitable temperature of 400 ° C. to 800 ° C. in a non-oxidizing atmosphere (including a vacuum) to obtain an atomic ratio of hydrogen atoms / carbon atoms (hereinafter H). / C) of 0.50 to 0.05, preferably 0.35 to 0.10.

【0008】本発明に用いる不溶不融性基体は、X線回
折(CuKα)によれば、メイン・ピークの位置は2θ
で表して24°以下に存在し、また該メイン・ピークの
他に41〜46°の間にブロードな他のピークが存在す
る。すなわち、上記不溶不融性基体は芳香族系多環構造
が適度に発達したポリアセン系骨格構造を有し、かつア
モルファス構造をとると示唆され、リチウムを安定にド
ーピングできることから電池用活物質として有用であ
る。H/Cが0.50を越える場合、芳香族系多環構造
が充分に発達していないため、リチウムのドーピング、
脱ドーピングがスムーズに行うことができず、電池を組
んだ時、充放電効率が低下する。また、H/Cが0.0
5以下の場合、本発明の電極を用いた電池の容量が低下
し好ましくない。本発明で用いる不溶不融性基体の形状
は、粉末状、短繊維状等、成形可能であれば特に限定さ
れないが、成形性を考慮すると、平均粒径が100μm
以下の粉末であることが好ましい。
The insoluble infusible substrate used in the present invention has a main peak at 2θ according to X-ray diffraction (CuKα).
And there are other broad peaks between 41 and 46 ° in addition to the main peak. That is, it is suggested that the insoluble infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed and has an amorphous structure, and is useful as an active material for a battery because lithium can be stably doped. It is. When H / C exceeds 0.50, doping of lithium,
Dedoping cannot be performed smoothly, and when a battery is assembled, the charge / discharge efficiency decreases. In addition, H / C is 0.0
If it is 5 or less, the capacity of the battery using the electrode of the present invention is undesirably reduced. The shape of the insoluble and infusible substrate used in the present invention is not particularly limited as long as it can be molded, such as powder, short fiber, or the like.
The following powders are preferred.

【0009】本発明における電極は、上記不溶不融性基
体、及び必要に応じて導電材、バインダーを加え成形し
たものであり、導電材、バインダーの種類、組成等はと
くに限定されるものではない。導電材の種類は特に限定
されず、金属ニッケル等の金属粉末でもよいが、例えば
活性炭、カーボンブラック、アセチレンブラック、黒鉛
等の炭素系のものが特に好ましい。混合比は上記不溶不
融性基体の電導度、電極形状により異なるが、不溶不融
性基体に対して2〜40%加えるのが適当である。バイ
ンダーの種類は、特に限定されないが、例えば、SBR
等のゴム系バインダー、ポリ四フッ化エチレン、ポリフ
ッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、
ポリエチレン等の熱可塑性樹脂が好ましく、その混合比
は20%以下とするのが好ましい。本発明の電極の形状
は、目的とする電池により、板状、フィルム状、円柱
状、あるいは、金属箔上に成形するなど、種々の形状を
とることができる。とくに、金属箔上に成形したもの
は、集電体一体電極として、種々の電池に応用できるこ
とから好ましい。本発明の電極は、特定の細孔構造を有
するPASを電極活物質とすることにより、該電極を用
いた電池の容量を、従来の電池に比べ、大幅に向上する
ことができる。本発明におけるPASへの窒素ガス吸着
量は以下のようにして測定した。即ち、ディスクミルで
粉砕した平均粒径15μmのPAS粉体0.035gを
定容装置(湯浅アイオニクス製、オートソーブ−1)の
サンプルセルに入れ、液体窒素温度77°Kにおいて窒
素ガスを吸着させた。得られた吸着等温線から、吸着ガ
ス層厚みt(Å)に対して吸着ガス量(cc/g)をプ
ロットした。t(Å)としては以下の式を用いた。
The electrode of the present invention is formed by adding the above-mentioned insoluble and infusible substrate and, if necessary, a conductive material and a binder, and the type and composition of the conductive material and the binder are not particularly limited. . The type of the conductive material is not particularly limited, and a metal powder such as metallic nickel may be used, but a carbon-based material such as activated carbon, carbon black, acetylene black, and graphite is particularly preferable. The mixing ratio varies depending on the conductivity of the insoluble infusible substrate and the shape of the electrode, but it is appropriate to add 2 to 40% to the insoluble infusible substrate. Although the kind of the binder is not particularly limited, for example, SBR
Such as rubber-based binder, polytetrafluoroethylene, fluorine-containing resin such as polyvinylidene fluoride, polypropylene,
A thermoplastic resin such as polyethylene is preferable, and the mixing ratio is preferably 20% or less. The shape of the electrode of the present invention can take various shapes, such as a plate shape, a film shape, a column shape, or a shape formed on a metal foil, depending on a target battery. In particular, those formed on a metal foil are preferable because they can be applied to various batteries as a current collector integrated electrode. In the electrode of the present invention, by using PAS having a specific pore structure as an electrode active material, the capacity of a battery using the electrode can be significantly improved as compared with a conventional battery. The amount of nitrogen gas adsorbed on the PAS in the present invention was measured as follows. That is, 0.035 g of PAS powder having an average particle size of 15 μm pulverized by a disk mill was put into a sample cell of a constant volume apparatus (Autosorb-1 manufactured by Yuasa Ionics), and nitrogen gas was adsorbed at a liquid nitrogen temperature of 77 ° K. Was. From the obtained adsorption isotherm, the adsorption gas amount (cc / g) was plotted against the adsorption gas layer thickness t (Å). The following equation was used as t (Å).

【数1】 (ここでP/P0 は窒素ガスの相対圧力)本発明におい
てPASへの窒素吸着厚み10Åにおける吸着ガス量は
100cc/g以下、好ましくは80cc/g以下であ
り、100cc/gを越えた場合容量が十分に得られな
い。
(Equation 1) (Where P / P 0 is the relative pressure of nitrogen gas) In the present invention, the amount of gas adsorbed on the PAS at a nitrogen adsorption thickness of 10 ° is 100 cc / g or less, preferably 80 cc / g or less, and more than 100 cc / g. Not enough capacity is obtained.

【発明の効果】上記特定の細孔構造を有するPASを電
極活物質とする、本発明に係る有機電解質電池用電極
は、高容量かつ高電圧の有機電解質2次電池用電極であ
る。
The electrode for an organic electrolyte battery according to the present invention, in which the PAS having the above specific pore structure is used as an electrode active material, is a high capacity and high voltage electrode for an organic electrolyte secondary battery.

【0010】以下実施例を挙げて本発明を具体的に説明
する。
Hereinafter, the present invention will be described specifically with reference to examples.

【実施例1】キシレン樹脂(リグナイト社製)50重量
部と、ノボラック(昭和高分子社製)50重量部、キシ
レンスルホン酸0.1重量部を100℃で加熱してキシ
レン変成ノボラック樹脂を得た。該樹脂100重量部に
ヘキサメチレンテトラミン10重量部を混合、粉砕した
ものを熱プレスにより成形板に成形した。該キシレン変
成ノボラック樹脂成形板をシリコニット電気炉中に入れ
窒素雰囲気下で10℃/時間の速度で昇温し、650℃
まで熱処理し、不溶不融性基体(PASと記す)を合成
した。かくして得られたPAS板をディスクミルで粉砕
することにより平均粒径15μmのPAS粉体を得た。
H/C比は0.22であった。該PAS粉体の窒素吸着
厚み10Åにおける吸着ガス量は29cc/gであっ
た。次に上記PAS粉末100重量部と、ポリフッ化ビ
ニリデン粉末10重量部をN,N−ジメチルホルムアミ
ド90重量部に溶解した溶液100重量部とを充分に混
合する事によりスラリーを得た。該スラリーをアプリケ
ーターを用い厚さ10μmの銅箔(負極集電体)上に塗
布し、乾燥、プレスし厚さ110μmのPAS負極を得
た。市販のLiCoO2 (ストレム社製)100重量部
に対し、ポリ4フッ化エチレン5重量部、アセチレンブ
ラック10重量部を良く混合し、ローラーを用いて厚さ
700μmの正極シートを得た。
Example 1 A xylene-modified novolak resin was obtained by heating 50 parts by weight of a xylene resin (manufactured by Lignite), 50 parts by weight of novolak (manufactured by Showa Polymer Co., Ltd.), and 0.1 part by weight of xylene sulfonic acid at 100 ° C. Was. 10 parts by weight of hexamethylenetetramine was mixed with 100 parts by weight of the resin, and the mixture was pulverized and formed into a molded plate by hot pressing. The xylene-modified novolak resin molded plate was placed in a siliconite electric furnace and heated at a rate of 10 ° C./hour under a nitrogen atmosphere at 650 ° C.
To form an insoluble infusible substrate (referred to as PAS). The PAS plate thus obtained was pulverized with a disk mill to obtain a PAS powder having an average particle size of 15 μm.
The H / C ratio was 0.22. The amount of gas adsorbed on the PAS powder at a nitrogen adsorption thickness of 10 ° was 29 cc / g. Next, 100 parts by weight of the PAS powder and 100 parts by weight of a solution obtained by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied on a 10 μm thick copper foil (negative electrode current collector) using an applicator, dried and pressed to obtain a 110 μm thick PAS negative electrode. To 100 parts by weight of commercially available LiCoO 2 (manufactured by Strem), 5 parts by weight of polytetrafluoroethylene and 10 parts by weight of acetylene black were mixed well, and a positive electrode sheet having a thickness of 700 μm was obtained using a roller.

【0011】上記正,負極(1×1cm2 )を用い図1
のような電池を組み立てた。正極負極集電体としてはス
テンレス金網、セパレーターとしてはガラス繊維からな
るフェルトを用いた。また電解液としてはプロピレンカ
ーボネートとジエチルカーボネートの1:1(重量比)
混合液に、1モル/lの濃度にLiPF6 を溶解した溶
液を用いた。上記電池にリチウムのドーピングが、負極
のPASに対しモル百分率で1%/時間となる速度で、
即ち、下記式より算出される電流にて、定電流充電を行
い、通電時の電圧が3.9Vになるまで充電を行ない、
負極PASにリチウムを担持した。
Using the above positive and negative electrodes (1 × 1 cm 2 ), FIG.
A battery like that was assembled. A stainless steel mesh was used as the positive and negative electrode current collectors, and a felt made of glass fiber was used as the separator. As the electrolyte, propylene carbonate and diethyl carbonate in a ratio of 1: 1 (weight ratio)
A solution in which LiPF 6 was dissolved at a concentration of 1 mol / l was used for the mixed solution. At a rate at which lithium doping of the battery is 1% / hour in mole percentage with respect to the PAS of the negative electrode,
That is, constant current charging is performed with the current calculated by the following equation, and charging is performed until the voltage at the time of energization becomes 3.9 V.
Lithium was supported on the negative electrode PAS.

【数2】 続いて、充電と同じ電流で定電流放電を行い、開路電圧
(充電回路開放後、1時間放置した時の電池電圧にて測
定)が3.0Vになるまで放電を行った。電池容量の評
価は上記充放電を繰り返し3回目の放電容量値で行っ
た。3回目の放電容量は5.2mAhであった。ここで
PAS利用率とは、下記式より算出することができ、負
極のPASよりアンドープできたリチウム量を、PAS
の炭素原子に対する百分率で表した数値であり、実施例
1の場合、PAS利用率は23.7%であった。
(Equation 2) Subsequently, constant current discharging was performed with the same current as charging, and discharging was performed until the open-circuit voltage (measured at the battery voltage when left for 1 hour after opening the charging circuit) reached 3.0 V. The battery capacity was evaluated at the third discharge capacity value by repeating the above charging and discharging. The third discharge capacity was 5.2 mAh. Here, the PAS utilization rate can be calculated by the following equation, and the amount of lithium undoped from the PAS of the negative electrode is expressed by PAS
Is a numerical value expressed as a percentage of carbon atoms, and in the case of Example 1, the PAS utilization was 23.7%.

【数3】 (Equation 3)

【実施例2】実施例1のキシレン変成ノボラック樹脂成
形板をシリコニット電気炉に入れ、窒素雰囲気下で10
℃/時間の速度で昇温し、600℃および700℃まで
熱処理して得られた板をディスクミルで粉砕することに
より平均粒径15μm、H/C比がそれぞれ0.30、
0.17、窒素吸着厚み10Åにおける吸着ガス量がそ
れぞれ24cc/g、32cc/gのPAS粉体を得
た。つぎに、実施例1と同じ方法で電極とした。さら
に、実施例1と同じ正極を使い、実施例1と同様の電池
を組み、同様に3回目の容量を評価したところ、それぞ
れ5.1mAhおよび5.0mAhであった。
Example 2 The molded sheet of xylene-modified novolak resin of Example 1 was placed in a siliconite electric furnace under a nitrogen atmosphere.
The temperature was raised at a rate of ° C./hour, and the plate obtained by heat-treating to 600 ° C. and 700 ° C. was pulverized with a disk mill to obtain an average particle size of 15 μm, an H / C ratio of 0.30,
PAS powders having an adsorption gas amount of 24 cc / g and 32 cc / g at a nitrogen adsorption thickness of 10 mm and 0.17, respectively were obtained. Next, an electrode was formed in the same manner as in Example 1. Further, using the same positive electrode as in Example 1, a battery similar to that of Example 1 was assembled, and the third capacity was evaluated in the same manner. As a result, the capacity was 5.1 mAh and 5.0 mAh, respectively.

【実施例3】実施例1においてPAS原料の組成を、キ
シレン樹脂30重量部ノボラック70重量部、及びキシ
レン樹脂10重量部ノボラック90重量部に変え、実施
例1と同じ方法でキシレン変成ノボラック樹脂成形板を
得、さらに実施例1と同じ方法で熱処理、粉砕しPAS
粉体とした。該PAS粉体の平均粒径は15μm、H/
C比はそれぞれ0.22、0.23であった。また、該
PAS粉体の窒素吸着厚み10Åにおける吸着ガス量は
それぞれ60cc/g、83cc/gであった。つぎ
に、実施例1と同じ方法で電極とした。さらに、実施例
1と同じ正極を使い、実施例1と同様の電池を組み、同
様に3回目の容量を評価したところ、それぞれ4.9m
Ahおよび4.6mAhであった。
Example 3 In Example 1, the composition of the PAS raw material was changed to 30 parts by weight of xylene resin, 70 parts by weight of novolak, and 10 parts by weight of xylene resin, 90 parts by weight of novolak, and the xylene-modified novolak resin was molded in the same manner as in Example 1. A plate was obtained and heat-treated and pulverized in the same manner as in Example 1 to obtain PAS.
It was a powder. The average particle size of the PAS powder is 15 μm, H /
The C ratio was 0.22 and 0.23, respectively. The adsorbed gas amounts of the PAS powder at a nitrogen adsorption thickness of 10 ° were 60 cc / g and 83 cc / g, respectively. Next, an electrode was formed in the same manner as in Example 1. Further, using the same positive electrode as in Example 1, a battery similar to that of Example 1 was assembled, and the capacity was evaluated for the third time.
Ah and 4.6 mAh.

【0012】[0012]

【比較例1】PAS原料の組成をノボラック100重量
部とヘキサメチレンテトラミン10重量部、及び粉末レ
ゾール(昭和高分子製)とし、実施例1と同じ方法でフ
ェノール樹脂成形板を得た。さらに実施例1と同じ方法
で熱処理、粉砕し、PAS粉体とした。該PAS粉体の
平均粒径15μm、H/C比はそれぞれ0.21,0.
23,窒素吸着厚み10Åにおける窒素吸着量はそれぞ
れ120cc/g、132cc/gであった。つぎに、
実施例1と同じ方法で電極とした。さらに、実施例1と
同じ電極を使い、実施例1と同様の電池を組み、同様に
3回目の容量を評価したところ、それぞれ3.9mAh
および4.0mAhであった。
Comparative Example 1 A phenolic resin molded plate was obtained in the same manner as in Example 1 except that the composition of the PAS raw material was 100 parts by weight of novolak, 10 parts by weight of hexamethylenetetramine, and powdered resole (manufactured by Showa Polymer). Further, heat treatment and pulverization were performed in the same manner as in Example 1 to obtain PAS powder. The PAS powder had an average particle size of 15 μm and an H / C ratio of 0.21, 0.
23, the nitrogen adsorption amounts at a nitrogen adsorption thickness of 10 ° were 120 cc / g and 132 cc / g, respectively. Next,
An electrode was formed in the same manner as in Example 1. Further, the same battery as in Example 1 was assembled using the same electrodes as in Example 1, and the third capacity was evaluated in the same manner.
And 4.0 mAh.

【比較例2】実施例1において、PAS粉末の代わりに
市販のグラファイト粉(ロンザ社製、平均粒径15μ
m)を用い、実施例1と同じ方法で電極とした。さら
に、実施例1と同じ正極を使い、実施例1と同様の電池
を組み、同様に3回目の容量を評価したところ、3.8
mAhであった。以上の結果をまとめて表に示す。
Comparative Example 2 In Example 1, a commercially available graphite powder (manufactured by Lonza, having an average particle size of 15 μm) was used in place of the PAS powder.
m) was used as an electrode in the same manner as in Example 1. Further, the same positive electrode as in Example 1 was used, a battery similar to that in Example 1 was assembled, and the third capacity was evaluated in the same manner.
mAh. The above results are summarized in the table.

【表1】 実施例、比較例より明らかな様に、本発明の有機電解質
電池用電極は、特定の細孔構造をもつポリアセン系骨格
構造を有する不溶不融性基体を活物質に用いる事によ
り、それを用いて作成した電池の容量が飛躍的に向上す
る。
[Table 1] As is clear from the examples and comparative examples, the electrode for an organic electrolyte battery of the present invention uses an insoluble and infusible substrate having a polyacene-based skeleton structure having a specific pore structure as an active material. The capacity of the battery created by the above is dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電池の基本構成説明図である。FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention.

【符号の説明】 1 正極 2 負極 3 3’集電体 4 電解液 5 セパレーター 6 電池ケース 7 7’ 外部端子[Description of Signs] 1 Positive electrode 2 Negative electrode 3 3 'current collector 4 Electrolyte 5 Separator 6 Battery case 7 7' External terminal

───────────────────────────────────────────────────── フロントページの続き 審査官 石井 淑久 (58)調査した分野(Int.Cl.6,DB名) H01M 4/02 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page Examiner Yoshihisa Ishii (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/02 H01M 4/58 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 芳香族系縮合ポリマーの熱処理物であっ
て水素原子/炭素原子の原子比(H/C)が0.5〜
0.05であるポリアセン系骨格構造を有する不溶不融
性基体であり、かつ該不溶不融性基体の窒素吸着等温線
から得られる窒素吸着厚み10Åにおける吸着ガス量が
100cc/g以下であるものを電極活物質として用い
ることを特徴とする有機電解質電池用電極。
1. A heat-treated aromatic condensation polymer having a hydrogen atom / carbon atom ratio (H / C) of from 0.5 to 0.5.
An insoluble infusible substrate having a polyacene-based skeletal structure of 0.05 and having an adsorbed gas amount of 100 cc / g or less at a nitrogen adsorption thickness of 10 ° obtained from a nitrogen adsorption isotherm of the insoluble infusible substrate. An electrode for an organic electrolyte battery, characterized by using as an electrode active material.
JP6225534A 1994-08-26 1994-08-26 Electrodes for organic electrolyte batteries Expired - Fee Related JP2955192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6225534A JP2955192B2 (en) 1994-08-26 1994-08-26 Electrodes for organic electrolyte batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6225534A JP2955192B2 (en) 1994-08-26 1994-08-26 Electrodes for organic electrolyte batteries

Publications (2)

Publication Number Publication Date
JPH0864202A JPH0864202A (en) 1996-03-08
JP2955192B2 true JP2955192B2 (en) 1999-10-04

Family

ID=16830808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6225534A Expired - Fee Related JP2955192B2 (en) 1994-08-26 1994-08-26 Electrodes for organic electrolyte batteries

Country Status (1)

Country Link
JP (1) JP2955192B2 (en)

Also Published As

Publication number Publication date
JPH0864202A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JP3218285B2 (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JP2574730B2 (en) Organic electrolyte battery
JP2955192B2 (en) Electrodes for organic electrolyte batteries
JP2968097B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JPH09102328A (en) Organic electrolyte battery
JP3280520B2 (en) Battery electrode
JP2912517B2 (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JP2920070B2 (en) Organic electrolyte battery
JPH0864251A (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JP2869355B2 (en) Organic electrolyte battery
JP3261243B2 (en) Electrodes for organic electrolyte batteries
JP3078229B2 (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JP2781725B2 (en) Organic electrolyte battery
JP3002112B2 (en) Organic electrolyte battery
JP2920069B2 (en) Organic electrolyte battery
JPH09102301A (en) Organic electrolyte battery
JP2619842B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JP2923424B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 15

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees