JP2948867B2 - Metal plating fiber non-woven fabric - Google Patents

Metal plating fiber non-woven fabric

Info

Publication number
JP2948867B2
JP2948867B2 JP2144848A JP14484890A JP2948867B2 JP 2948867 B2 JP2948867 B2 JP 2948867B2 JP 2144848 A JP2144848 A JP 2144848A JP 14484890 A JP14484890 A JP 14484890A JP 2948867 B2 JP2948867 B2 JP 2948867B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
metal
fibers
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2144848A
Other languages
Japanese (ja)
Other versions
JPH0436958A (en
Inventor
正樹 岡崎
仁 豊浦
友康 曽根高
朝彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK filed Critical KURARE KK
Priority to JP2144848A priority Critical patent/JP2948867B2/en
Publication of JPH0436958A publication Critical patent/JPH0436958A/en
Application granted granted Critical
Publication of JP2948867B2 publication Critical patent/JP2948867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明はニツケル−カドミウム電池又はニツケル水素
電池等の電極用、水素吸蔵担体用、電磁波遮蔽用、装飾
用として使用するのに適した金属メツキ繊維不織布に関
するものである。
TECHNICAL FIELD The present invention relates to a metal plating fiber nonwoven fabric suitable for use as an electrode for a nickel-cadmium battery or a nickel hydrogen battery, for a hydrogen storage carrier, for shielding electromagnetic waves, and for decoration.

【従来の技術】[Prior art]

従来、合成繊維やその編織布あるいは不織布に金属メ
ツキあるいは金属蒸着を施すことは、既に多くの提案が
ある。例えば、ポリエステル、ポリアクリロニトリル、
ポリアミドなどの合成繊維からなる編織布、不織布など
の布帛あるいは布帛構成繊維表面に金属被膜を形成し、
審美性、保温性に優れた金属を含む布帛が特開昭62−25
7487号公報、ポリアミド系合成繊維、ポリエステル系繊
維などの化学繊維よりなる編織布、不織布などの布帛の
表面に金属メツキを施した金属被覆繊維布帛が衣料分
野、電磁波シールド分野での用途として極めて有用であ
ることが特開昭63−28975号公報に、吸水性のある難撚
燃性のアラミド紙にメツキして、電子機器や電波を利用
した機器から放出される電磁エネルギーのシールド紙と
することが特開平1−148900号公報に、ポリエチレン、
ポリプロピレン、フツ素樹脂などからなる多孔質中空糸
に銀メツキをして、銀メツキ多孔質中空糸として殺菌性
を有する水過用に使用することが特開平1−156574号
公報に提案されている。 特開平1−290792号公報には金属多孔体を得るための
基材として、孔が互いに連通した三次元網状発泡体(例
えばポリウレタンスポンジ)、繊維不織布、紙不織布、
ラス状及びパンチ状の金属網、樹脂製網が記載されてい
る。 また、特開平1−102853号公報には、金属多孔体を得
るための基材として有機繊維からなる布帛を用いること
が提案されている。
Conventionally, there have already been many proposals to apply metal plating or metal deposition to synthetic fibers or their woven or nonwoven fabrics. For example, polyester, polyacrylonitrile,
A metal coating is formed on the surface of a woven or nonwoven fabric made of synthetic fiber such as polyamide or nonwoven fabric or a fabric constituent fiber,
Japanese Patent Application Laid-Open No. 62-25 / 1987 discloses a fabric containing a metal excellent in aesthetics and heat retention.
No. 7487, a metal-coated fiber fabric obtained by applying a metal plating to the surface of a woven or nonwoven fabric made of a synthetic fiber such as a polyamide-based synthetic fiber or a polyester-based fiber is extremely useful as an application in the field of clothing and electromagnetic wave shielding. Japanese Patent Application Laid-Open No. 63-28975 discloses that a shield paper for electromagnetic energy emitted from electronic devices or devices using radio waves should be formed by applying a coating on a water-absorbing, non-twisted aramid paper. Is disclosed in JP-A-1-148900, polyethylene,
Japanese Patent Application Laid-Open No. 1-156574 proposes that a porous hollow fiber made of polypropylene, fluorine resin, or the like be silver-plated and used as a silver-plated porous hollow fiber having a sterilizing property for water filtration. . JP-A-1-290792 discloses a three-dimensional mesh foam (for example, polyurethane sponge) having pores communicating with each other, a fibrous nonwoven fabric, a paper nonwoven fabric,
Lath and punch metal nets and resin nets are described. Also, Japanese Patent Application Laid-Open No. 1-102853 proposes using a fabric made of organic fibers as a base material for obtaining a porous metal body.

【発明が解決しようとする課題】[Problems to be solved by the invention]

従来の合成繊維や再生繊維からなる布帛、とりわけ不
織布は、厚みが薄く、繊維の分散状態が均一で嵩高性が
あり表面毛羽のない不織布が得られないため、均一性の
良い金属メツキが出来ないとか、均一性の良い金属メツ
キ繊維製品が得られないため、用途が限定されていた。
特に、不織布製品が電極用を指向する場合、繊維分散状
態の均一性が高く、メツキ工程での工程通過性がよく不
織布形態の安定なものが要求されるが、電極用して満足
のできる不織布の供給はなされていないのが現状であ
る。 本発明は、不織布の厚みが薄く、繊維分散状態の均一
性が高く、金属メツキ処理時の形態安定性が良好な嵩高
性不織布を基材とした、金属メツキ繊維不織布およびそ
れからなる電池の電極用にも使用出来る多孔質金属繊維
不織布を提供するにある。
Conventional synthetic fibers and regenerated fibers, especially non-woven fabrics, have a small thickness, uniform dispersion of fibers, bulkiness and no fuzz-free non-woven fabric. Or, a metal plating fiber product having good uniformity could not be obtained, so that the use was limited.
In particular, when the nonwoven product is intended for an electrode, it is required that the uniformity of the fiber dispersion state is high, the processability in the plating process is good, and the nonwoven fabric is stable. Is not supplied. The present invention is based on a bulky nonwoven fabric having a thin nonwoven fabric, a high uniformity of fiber dispersion state, and a good form stability at the time of metal plating treatment, and a metal plating fiber nonwoven fabric and a battery electrode comprising the same. Another object of the present invention is to provide a porous metal fiber non-woven fabric that can be used for a nonwoven fabric.

【課題を解決するための手段】[Means for Solving the Problems]

本発明は螺旋状ミクロクリンプを有する単繊維繊度6
デニール以下の複合繊維を主体とした繊維が得られる不
織布に対して少なくとも5重量%の熱融着性バインダー
繊維で固定されている、荷重2.5g/cm2時の見かけ密度が
0.06g/cm3以下の不織布に、金属メツキされていること
を特徴とする金属メツキ繊維不織布である また本発明は、この金属メツキ繊維不織布が焙焼され
た金属繊維不織布である。 本発明の金属メツキ不織布は、螺旋状ミクロクリンプ
を有する複合繊維を主体とした不織布を基材としたもの
である。 この螺旋状ミクロクリンプを有する複合繊維は例え
ば、熱収縮挙動の異なる2種類の重合体を組み合わせて
高収縮性重合体成分(A)を芯にし、低収縮性重合体成
分(B)を鞘とした偏芯の芯鞘型複合紡糸あるいは両成
分を接合型複合紡糸して芯鞘型複合繊維あるいは接合型
複合繊維とし、熱処理することにより、ミクロクリンプ
を発現させて得ることが出来る。 螺旋状ミクロクリンプ数は40個/25mm以上であること
が好ましい。螺旋状ミクロクリンプ数が40個/25mm未満
の複合繊維を用いた場合、嵩高性、柔軟性および伸縮性
が低下するために嵩比重の高い紙となり、地合の良い、
形態の安定な不織布が得られない場合がある。 複合繊維に占める高収縮性重合体成分(A)の量は複
合繊維の自発捲縮の発現性、捲縮形態などから決められ
るが一般に30〜60重量%の範囲が好ましい。 また、この複合繊維は170℃での乾熱収縮率が20%以
下であると得られる不織布の形態安定性の点で好まし
い。 高収縮性重合体成分(A)としては、例えば、エチレ
ンテレフタレート単位あるいはブチレンテレフタレート
単位を主たる成分とし、金属スルホイソフタル酸成分を
1〜6モル%とイソフタル酸成分を0〜10モル%を共重
合した変性ポリエステル、あるいはイソフタル酸を5〜
20モル%を共重合した変性ポリエステル、ポリプロピレ
ンなどを用い、低収縮性重合成分(B)としては、例え
ば実質的にポリエチレンテレフタレートあるいはポリブ
チレンテレフタレートで固有粘度[η]=0.6以上、好
ましくは0.65〜0.9の高粘度のポリエステル、ポリアミ
ドなどを用いることが出来る。 さらに単繊維繊度は6デニール以下である必要があ
る。6デニールを超える繊維を用いた場合、表面積が減
少し好ましくない。好ましくは0.8〜5デニールであ
る。 また、複合繊維の繊維断面形状は、熱的性質に異方性
が付与され、自発捲縮で螺旋状ミクロクリンプの発現を
妨げないものであれば、円形断面、楕円形断面に限ら
ず、例えば、多葉形、多角形あるいはその他の異形断面
にすることも嵩高性繊維ウエブを得るために好ましい。
この複合繊維には湿式抄紙時の分散性を良くし、又乾式
不織布成型時のカード通過性の点から3〜20個/25mmの
範囲で機械捲縮を加えることが好ましい。また、繊維長
は、湿式抄造法の場合は繊維長3〜30mm、好ましくは4
〜15mmの短繊維、乾式法の場合は繊維長35〜60mmの短繊
維の複合繊維が好ましい。 一方、複合繊維に混繊する熱融着性バインダー繊維
は、温度110〜180℃で融着する熱可塑性重合体からなる
繊維あるいは該熱可塑性重合体を鞘成分とした芯鞘型複
合繊維である。110℃未満で融着する熱可塑性重合体を
用いると十分な不織布強度が得られない。180℃より高
い温度で融着する熱可塑性重合体を用いると主体繊維の
捲縮が損われるので好ましくない。温度110〜180℃で融
着する熱可塑性重合体からなる繊維としては、例えば、
ポリエチレン、ポリプロピレン、エチレンプロピレン共
重合体、エチレン酢酸ビニル共重合体などのポリオレフ
インあるいはオレフイン共重合体からなる繊維、ヘキサ
メチレンテレフタレート、テトラメチレンおよび/また
はヘキサメチレンイソフタレート、イソフタレート変性
エチレンテレフタレートなどのポリエステルなどからな
る繊維が挙げられる。また、温度110〜180℃で融着する
熱可塑性重合体を鞘成分、芯成分に融点200℃以上の高
融点重合体、例えば、ポリエチレンテレフタレート、ポ
リブチレンテレフタレート、6−ナイロン、66−ナイロ
ン、610−ナイロンなどを用い、芯鞘型複合紡糸して得
た繊維であつても良い。この熱融着性バインダー繊維の
好ましい繊度は1〜6デニールであり、太い繊維は繊維
ウエブの地合を悪くし、細いとか接着効果が小さいもの
となる。また、熱融着性バインダー繊維には少なくとも
3個/25mmの機械捲縮を付与しておくことが好ましい。
そして、繊維長は湿式抄造法の場合は繊維長3〜30mm、
乾式法の場合は繊維長35〜60mmの短繊維に切断した熱融
着性バインダー繊維が好ましい。 次に、本発明に用いる不織布は、螺旋状ミクロクリン
プを発現する自発捲縮性複合繊維を95〜30重量%、好ま
しくは90〜35重量%と、温度110〜180℃で熱融着する熱
融着性バインダー繊維を少なくとも5重量%、好ましく
は10〜45重量%と必要に応じて他の繊維とを混繊し、更
に、湿式抄造法の場合は、水溶性バインダー繊維、例え
ば、ポリビニルアルコール系繊維を不織布構成繊維に対
して0.5〜5重量%を混繊し、湿式抄造法あるいは乾式
法で作ることが出来る。繊維分散状態均一性および嵩高
性から湿式抄造法が好ましい。バインダー繊維が5重量
%未満になると、バインダー繊維による紙力の保持が不
十分となる。 また不織布の重量は所望する用途によつて異なり、例
えば、電極用や電磁波遮蔽用として使用する場合には平
均重量20〜100g/m2、装飾用や水素吸蔵担体用などに使
用する場合には平均重量30〜300g/m2の範囲であり、一
般には平均重量20〜300g/m2の範囲のものである。 また、不織布の構成繊維には他の繊維、例えば、ポリ
エチレンテレフタレート、ポリブチレンテレフタレー
ト、エチレンテレフタレート共重合体などのポリエステ
ル繊維、6−ナイロン、66−ナイロン、610−ナイロン
などのポリアミド繊維、アクリル系繊維、ポリビニルア
ルコール系繊維、再生セルロース繊維などを嵩高性を阻
害しない範囲、好ましくは40重量%以下の量を混繊して
もよい。 得られた不織布は、繊維密度を高めることなく熱融着
性バインダー繊維が融着固定する温度110〜180℃で熱処
理する。熱処理方法は熱風式、輻射熱式、加熱体接触方
式などで処理するが、好ましくは不織布の繊維密度を高
めたり、形態を変性させたりしない方式で熱処理し、熱
融着性バインダー繊維の溶融成分で繊維間を接着して固
定した不織布とする。この熱処理は繊維間の固定効果
と、複合繊維の自発捲縮発現を目的として行うが、繊維
の熱接着条件では十分な螺旋状ミクロクリンプを発現し
ない場合には、さらに熱処理温度を高め、例えば、温度
140℃以上で熱処理を行う二段熱処理を施すこともよ
い。この熱処理によつて複合繊維に螺旋状ミクロクリン
プを発現させた不織布とする。熱固定した不織布は荷重
2.5g/cm2で測定した厚みに基づいて算出した見かけ密度
が0.06g/cm3以下、好ましくは0.06〜0.01g/cm3の嵩高性
不織布である。この不織布密度が0.06g/cm3を越えて高
くなると、メツキ処理時に厚み変形が大きくなり、良好
な金属メツキができない。 さらに、吸水量が自重に対して15倍以上の不織布を基
材として用いることにより良好な金属メツキが可能であ
る。 不織布の乾湿時の引張り強度が工程通過性の点から必
要な場合は、メラミン系、ポリアミド−エポキシ系、ア
クリル系、ポリ酢酸ビニル系等のエマルジヨンタイプの
バインダーを不織布に対して5〜30重量%含浸、乾燥、
熱処理することにより、嵩高性を損なわずに強度を大巾
に向上することができる。 また、他の方法として、不織布の片面又は両面に5〜
100デニールのナイロン又はポリエステル等からなる合
成繊維で構成されたチユール編物、格子状の紗、目の荒
い織物などを本発明の不織布に嵩高性を損わずにメラミ
ン系、ポリアミド系、エポキシ系、アクリル系、ポリ酢
酸ビニル系、ウレタン系、イソシアナート系等の接着剤
を用いて貼合した複合不織布として用いることもでき
る。 不織布繊維に金属メツキを施す方法は、不織布に付着
する不純物を除去し、必要に応じて繊維表面の粗面化処
理などの前処理を行つた後、活性化処理を、例えば、Sn
Cl2、TiCl3、AlCl3などの金属塩化物を1〜80g/の濃
度の水溶液もしくは繊維と親和性のある樹脂を1〜10重
量%有する溶液あるいは分散液または金属塩化物1〜80
g/および繊維と親和性のある樹脂を1〜10重量%有す
る溶液で処理し、水洗した後、塩化パラジウムなどの金
属塩化物の水溶液で活性化処理し、水洗してメツキ前処
理不織布を得る。 次に、メツキ前処理不織布には化学メツキ法あるいは
電気メツキ法で所望する金属、例えば、ニツケル、コバ
ルト、銅、錫などをメツキする。化学メツキ処理あるい
は電気メツキ処理の条件、金属塩の濃度、還元剤、緩衝
剤、PH調節剤などは従来より実施されている公知の方法
が適用できる。 金属メツキ繊維不織布はこのまま装飾用、電磁波遮蔽
用、水素吸蔵担体用などに使用することができるが、更
に、不織布繊維を繊維が炭化する温度以上の温度、好ま
しくは500℃以上で焙焼することにより金属化した多孔
質金属繊維不織布が得られる。このものは薄くて表面積
の大きい、均一性の良好な金属繊維不織布であり、電池
の電極などに好適なものとなる。 本発明にいう焙焼とは、不織布を構成する有機繊維を
熱分解することである。
The present invention relates to a single fiber fineness of 6 having a spiral micro crimp.
The apparent density at a load of 2.5 g / cm 2 , which is fixed with at least 5% by weight of a heat-fusible binder fiber with respect to a non-woven fabric from which fibers mainly composed of denier or less composite fibers are obtained.
A metal plating fiber nonwoven fabric characterized by being metal plated on a nonwoven fabric of 0.06 g / cm 3 or less. The present invention is a metal fiber nonwoven fabric obtained by roasting this metal plating fiber nonwoven fabric. The metal plated nonwoven fabric of the present invention is based on a nonwoven fabric mainly composed of a conjugate fiber having a spiral micro crimp. The composite fiber having the helical micro-crimp comprises, for example, a combination of two types of polymers having different heat shrinkage behaviors, with the high shrinkage polymer component (A) as the core, and the low shrinkage polymer component (B) as the sheath. The eccentric core-sheath composite spinning or both components are joined-type composite spinning to form a core-sheath composite fiber or a junction composite fiber, and a micro crimp can be obtained by heat treatment. The number of spiral micro crimps is preferably 40/25 mm or more. If the number of spiral micro crimps is less than 40/25 mm composite fiber, the bulkiness, flexibility and elasticity are reduced, resulting in a paper with a high bulk specific gravity.
In some cases, a nonwoven fabric having a stable form cannot be obtained. The amount of the highly shrinkable polymer component (A) in the conjugate fiber is determined depending on the spontaneous crimp development of the conjugate fiber, the crimp form, and the like, but is generally preferably in the range of 30 to 60% by weight. The conjugate fiber preferably has a dry heat shrinkage at 170 ° C. of not more than 20% in view of the form stability of the obtained nonwoven fabric. As the high shrinkable polymer component (A), for example, an ethylene terephthalate unit or a butylene terephthalate unit is a main component, and 1 to 6 mol% of a metal sulfoisophthalic acid component and 0 to 10 mol% of an isophthalic acid component are copolymerized. Modified polyester or isophthalic acid
For example, the low-shrinkage polymerizable component (B) may be a modified polyester or polypropylene obtained by copolymerizing 20 mol%, and may be, for example, substantially polyethylene terephthalate or polybutylene terephthalate, having an intrinsic viscosity [η] of 0.6 or more, preferably 0.65 to Polyester, polyamide or the like having a high viscosity of 0.9 can be used. Further, the single fiber fineness needs to be 6 denier or less. When fibers having a denier of more than 6 are used, the surface area is undesirably reduced. Preferably it is 0.8 to 5 denier. In addition, the fiber cross-sectional shape of the composite fiber is not limited to a circular cross-section or an elliptical cross-section, as long as the thermal properties are imparted with anisotropy and the spontaneous crimp does not prevent the development of the spiral micro-crimp. In order to obtain a bulky fiber web, it is also preferable to form a multi-lobed, polygonal or other irregular cross section.
It is preferable to apply mechanical crimping to the composite fiber in the range of 3 to 20 fibers / 25 mm from the viewpoint of improving the dispersibility during wet papermaking and the card permeability during dry nonwoven fabric molding. The fiber length is 3 to 30 mm, preferably 4 in the case of wet papermaking.
In the case of the dry method, short fibers having a fiber length of 15 to 15 mm are preferable. On the other hand, the heat-fusible binder fiber to be mixed with the conjugate fiber is a fiber made of a thermoplastic polymer which is fused at a temperature of 110 to 180 ° C. or a core-sheath conjugate fiber having the thermoplastic polymer as a sheath component. . If a thermoplastic polymer that fuses below 110 ° C. is used, sufficient nonwoven fabric strength cannot be obtained. It is not preferable to use a thermoplastic polymer that is fused at a temperature higher than 180 ° C., since the crimp of the main fiber is damaged. As a fiber made of a thermoplastic polymer fused at a temperature of 110 to 180 ° C., for example,
Polyolefins such as polyethylene, polypropylene, ethylene propylene copolymer, ethylene vinyl acetate copolymer or fibers made of olefin copolymer, polyesters such as hexamethylene terephthalate, tetramethylene and / or hexamethylene isophthalate, and isophthalate-modified ethylene terephthalate And the like. Further, a thermoplastic polymer which is fused at a temperature of 110 to 180 ° C is a sheath component, and a high melting point polymer having a melting point of 200 ° C or more, such as polyethylene terephthalate, polybutylene terephthalate, 6-nylon, 66-nylon, 610 -Fibers obtained by core-sheath composite spinning using nylon or the like may be used. The preferred fineness of the heat-fusible binder fiber is 1 to 6 denier, and the thick fiber deteriorates the formation of the fiber web and becomes thin or has a small adhesive effect. Further, it is preferable to apply a mechanical crimp of at least 3/25 mm to the heat-fusible binder fiber.
The fiber length is 3 to 30 mm in the case of wet papermaking,
In the case of the dry method, a heat-fusible binder fiber cut into short fibers having a fiber length of 35 to 60 mm is preferable. Next, the nonwoven fabric used in the present invention has a spontaneously crimpable conjugate fiber exhibiting a helical micro-crimp of 95 to 30% by weight, preferably 90 to 35% by weight, and heat-fused at 110 to 180 ° C. At least 5% by weight, preferably 10 to 45% by weight of the fusible binder fiber is mixed with other fibers as required, and in the case of a wet papermaking method, a water-soluble binder fiber such as polyvinyl alcohol is used. It can be made by wet papermaking or dry method by blending 0.5 to 5% by weight of the system fiber with the nonwoven fabric constituent fiber. The wet papermaking method is preferred from the viewpoint of uniformity of fiber dispersion state and bulkiness. When the content of the binder fiber is less than 5% by weight, the paper strength is insufficiently maintained by the binder fiber. The weight of the nonwoven fabric is different connexion by the desired application, for example, when used as electrode for or an electromagnetic wave shielding when used in such an average weight 20 to 100 g / m 2, for decorative and hydrogen storage carrier It has an average weight in the range of 30 to 300 g / m 2 and generally has an average weight in the range of 20 to 300 g / m 2 . In addition, other fibers such as polyester fibers such as polyethylene terephthalate, polybutylene terephthalate, and ethylene terephthalate copolymer; polyamide fibers such as 6-nylon, 66-nylon, and 610-nylon; and acrylic fibers Alternatively, polyvinyl alcohol-based fibers, regenerated cellulose fibers, or the like may be mixed in a range that does not impair bulkiness, preferably 40% by weight or less. The obtained nonwoven fabric is heat-treated at a temperature of 110 to 180 ° C. at which the heat-fusible binder fibers are fixed by fusion without increasing the fiber density. The heat treatment method is a hot-air method, a radiant heat method, a heating element contact method, etc., but preferably a heat treatment is performed in a manner that does not increase the fiber density of the non-woven fabric or modify the form. A non-woven fabric is used in which the fibers are bonded and fixed. This heat treatment is performed for the purpose of fixing effect between fibers and spontaneous crimping of the conjugate fiber, but if sufficient helical micro-crimp is not developed under the heat bonding condition of the fiber, the heat treatment temperature is further increased, for example, temperature
Two-stage heat treatment in which heat treatment is performed at 140 ° C. or higher may be performed. By this heat treatment, a nonwoven fabric in which the helical micro-crimp is developed in the composite fiber is obtained. Heat-set non-woven fabric is loaded
Apparent density calculated based on the thickness measured at 2.5 g / cm 2 is 0.06 g / cm 3 or less, preferably bulky nonwoven fabric 0.06~0.01g / cm 3. If the density of the nonwoven fabric is higher than 0.06 g / cm 3 , the thickness deformation at the time of the plating process becomes large, and good metal plating cannot be obtained. Further, by using a nonwoven fabric having a water absorption of 15 times or more as much as its own weight as a base material, a good metal finish can be obtained. If the wet / dry tensile strength of the nonwoven fabric is necessary from the viewpoint of processability, a melamine-based, polyamide-epoxy-based, acrylic-based, polyvinylacetate-based, etc. emulsion-type binder is used in an amount of 5 to 30 wt. % Impregnation, drying,
By performing the heat treatment, the strength can be greatly improved without impairing the bulkiness. In addition, as another method, 5 to 5
Melamine-based, polyamide-based, epoxy-based, non-woven fabrics of the present invention, without impairing the bulkiness of the nonwoven fabric of the present invention, such as 100-denier synthetic knitted fabric made of nylon or polyester, etc. It can also be used as a composite nonwoven fabric bonded with an adhesive such as an acrylic, polyvinyl acetate, urethane, or isocyanate. The method of applying metal plating to the nonwoven fabric is to remove impurities adhering to the nonwoven fabric, perform a pretreatment such as a surface roughening treatment of the fiber surface as necessary, and then perform an activation treatment, for example, Sn.
An aqueous solution of metal chlorides such as Cl 2 , TiCl 3 , and AlCl 3 at a concentration of 1 to 80 g / or a solution or dispersion having a resin having an affinity for fiber of 1 to 10% by weight or a metal chloride of 1 to 80
g / and treated with a solution having a resin having an affinity for the fiber of 1 to 10% by weight, washed with water, activated with an aqueous solution of a metal chloride such as palladium chloride, and washed with water to obtain a pretreated nonwoven fabric. . Next, a desired metal, for example, nickel, cobalt, copper, tin or the like is plated on the pre-treated nonwoven fabric by a chemical plating method or an electric plating method. For the conditions of the chemical plating treatment or the electric plating treatment, the concentration of the metal salt, the reducing agent, the buffer, the pH regulator and the like, conventionally known methods can be applied. Metal plating fiber non-woven fabric can be used for decoration, electromagnetic wave shielding, hydrogen storage carrier, etc. as it is, but furthermore, roasting the non-woven fabric at a temperature higher than the temperature at which the fiber is carbonized, preferably at 500 ° C. or higher Thus, a porous metal fiber nonwoven fabric metallized is obtained. This is a metal fiber nonwoven fabric which is thin and has a large surface area and good uniformity, and is suitable for a battery electrode and the like. Roasting according to the present invention is to thermally decompose the organic fibers constituting the nonwoven fabric.

【作 用】[Operation]

本発明は、螺旋状ミクロクリンプ複合繊維を主体とし
た繊維が熱融着性バインダー繊維で固定されて、荷重2.
5g/cm2の見かけ密度が0.06g/cm3以下の形態の安定な嵩
高性不織布を金属メツキ用の基材不織布とすることで、
均一性の良好な金属メツキ繊維不織布を得ることができ
る。 更に、上記金属メツキ繊維不織布の構成繊維を焙焼す
ることで、均一性の高い、薄くて表面積の大きい多孔質
金属繊維不織布ができる。
In the present invention, the fiber mainly composed of the helical micro crimped conjugate fiber is fixed with the heat-fusible binder fiber, and the load 2.
By apparent density of 5 g / cm 2 to a 0.06 g / cm 3 or less in the form of a stable bulky nonwoven fabric as a base material nonwoven for metal plated,
A metal plating fiber nonwoven fabric having good uniformity can be obtained. Further, by roasting the constituent fibers of the metal plating fiber nonwoven fabric, a porous metal fiber nonwoven fabric having high uniformity, thinness and large surface area can be obtained.

【実施例】【Example】

次に、本発明の実施態様を具体的な実施例で説明す
る。なお、実施例中の部および%はことわりのない限
り、重量に関するものである。 実施例中捲縮数はJIS L−1015−7−12−1の方法に
より測定した。 実施例1 高収縮性重合体成分(A)として5−ナトリウムスル
ホイソフタル酸2.0モル%を共重合したエチレンテレフ
タレート重合体(固有粘度[η]=0.56)を、低収縮性
重合体成分(B)として固有粘度[η]=0.68のポリエ
チレンテレフタレートを用い、サイド−バイ−サイド接
合型複合紡糸装置で複合比50:50、紡糸温度285℃、吐出
量355g/min、巻き取り速度1200m/minで紡糸した後、湿
熱延伸で2.6倍に延伸し、150℃で緊張熱処理して単繊維
繊度2.5デニールのポリエステル複合繊維とし、25mm当
り15ケの機械捲縮を施し繊維長5mmに切断して短繊維を
得た。この複合繊維は170℃の乾熱処理における自由収
縮率8%、自発捲縮発現数53個/25mmの自発捲縮性ポリ
エステル複合繊維[I]であつた。 一方、熱融着性バインダー繊維として、鞘成分にヘキ
サメチレンテレフタレート系ポリエステル(融点136
℃)を、芯成分にポリエチレンテレフタレート(融点27
1℃、固有粘度[η]=0.68)を用い、芯鞘型複合紡糸
装置で芯・鞘複合比45:55、紡糸温度285℃で紡糸し、湿
熱延伸で3倍に延伸して単繊維繊度2デニールの芯鞘型
複合繊維とした。この繊維にも機械捲縮で15個/25mmの
捲縮を付与して、繊維長5mmに切断して熱融着性バイン
ダー繊維[I]の短繊維を得た。 また、混繊する繊維として、繊維断面形状がT字型の
異形断面で単繊維繊度2デニール、機械捲縮で捲縮数17
個/25mmを付与したポリエチレンテレフタレート繊維を
繊維長5mmに切断した短繊維を用いた。 自発捲縮性ポリエステル複合繊維50部、異形断面ポリ
エチレンテレフタレート繊維34部、熱融着性バインダー
繊維15部、それに湿式抄造法の水溶性バインダー繊維と
して繊度1デニール、繊維長3mmのポリビニルアルコー
ル系繊維1部を混繊し、水中に分散させて抄造用原液を
調整した後、短網ヤンキー式抄造機で抄造法で平均重要
43.6g/m2の不織布を得た。この不織布は70℃で乾燥した
後、170℃の熱風乾燥機中で2分間熱処理して複合繊維
に自発捲縮を発現させると共に、熱融着性バインダー繊
維で繊維間を熱接着固定した。得られた不織布は荷重2.
5g/cm2で測定した厚みが1.49mmで、算出した見かけ密度
0.029g/cm3の嵩高性不織布であり、不織布繊維の分散状
態を光の透過法で検査した結果は均一性が良いものであ
つた。また、不織布は幅50mm当たりの引張切断強度が30
0gと高く、吸水量が22倍と多いものであつた。 更に、アクリル系樹脂(日本ゼオン製ニツポールLX−
855)を得られた不織布に対して20%付着させ、150℃で
3分間熱処理した。この不織布の強力は50mm巾で3.2kg
で見掛密度は0.031g/cm3であつた。 次に、このアクリル系樹脂を付着した不織布に金属を
化学メツキをするために、NaOHでPH14に調整したアルカ
リ性水溶液中で不織布を処理し、不織布に付着している
不純物の除去と表面の粗面化を行つた後、中和、水洗
し、次いで塩化第一錫10g/を含む水溶液で処理し、水
洗した後、続いて塩化パラジウム0.3g/を含む水溶液
で3分間処理し、十分に水洗して繊維を活性化させた。 繊維に活性化処理した不織布の化学メツキ処理組成液
として、 硫酸ニツケル 30g/、 クエン酸ナトリウム 10g/、 次亜りん酸ナトリウム 10g/、 酢酸ナトリウム 10g/、 塩化アンモニア 1g/、 からなる酸性化学メツキ組成液を調整して、液温70℃で
10分間浸漬処理した後、十分に水洗乾燥し巻き取つた。 得られたニツケルメツキ繊維不織布は金属の付着状態
が良く、顕微鏡で観察したメツキ厚みのむらも小さいも
のであつた。 このニツケルメツキ繊維不織布は布帛として、衣料分
野、装飾用、電磁波遮蔽用として好適なものであつた。 実施例2 高収縮性重合体成分(A)として5−ナトリウムスル
ホイソフタル酸2.5モル%、イソフタル酸5モル%を共
重合したエチレンテレフタレート重合体(固有粘度
[η]=0.49)を芯成分に、低収縮性重合体成分(B)
として固有粘度[η]=0.68のポリエチレンテレフタレ
ートを鞘成分とし、偏芯芯鞘型複合紡糸装置で複合比5
0:50で実施例1と同様に紡糸、延伸して、170℃の乾熱
処理における自由収縮率7%、自発捲縮発現数61個/25m
mの自発捲縮性ポリエステル複合繊維[II]を得た。 ポリエステル複合繊維[II]80部、熱融着性バインダ
ー繊維[I]19部、水溶性バインダー繊維1部を混繊
し、実施例1と同じ抄造法で平均重量46.6g/m2、見かけ
密度0.037g/cm3の嵩高性で、繊維の分散状態の良い不織
布を得た。 この嵩高性不織布に実施例1と同じ方法で金属メツキ
を行つたものは金属の付着状態がよく、装飾性のよい衣
料用、電磁波遮蔽用として好適なものであつた。 実施例3 実施例1および2で得たニツケルメツキ繊維不織布を
不活性ガス気流中の電気炉で1200℃で焙焼処理し、平均
厚さ0.15mm、重量680g/m2の多孔質ニツケル繊維シート
が得られた。 該シートはシートの厚さの均一性と平滑性の点から活
物質を均一に練り込むことが出来、作業性も大変よいも
のであつた。該シートを用いて電池の製造を試みたとこ
ろ工程中での折り曲げ及び巻きつけ時のひび割れ、毛羽
立ち等のない取り扱い性に優れたものであつた。 また、電気特性としては従来の発泡ウレタンシートか
ら得られた発泡ニツケルシートに比べて電極重量が約1/
2と軽量となり放電寿命が約2倍と延長した。 このように電池の軽量化と小型化が可能となつた。 この多孔質ニツケル繊維シートは多孔質金属繊維が均
一に存在し、厚みむらの小さいシートで乾電池の電極や
水素吸蔵担体用として好適なものであつた。
Next, embodiments of the present invention will be described with reference to specific examples. The parts and percentages in the examples relate to weight unless otherwise specified. In the examples, the number of crimps was measured by the method of JIS L-1015-7-12-1. Example 1 An ethylene terephthalate polymer (intrinsic viscosity [η] = 0.56) copolymerized with 2.0 mol% of 5-sodium sulfoisophthalic acid was used as a high shrinkage polymer component (B) as a high shrinkage polymer component (A). Using a polyethylene terephthalate having an intrinsic viscosity [η] of 0.68, and spinning at a composite ratio of 50:50, a spinning temperature of 285 ° C., a discharge rate of 355 g / min, and a take-up speed of 1200 m / min with a side-by-side joining type composite spinning apparatus. After stretching by 2.6 times by wet heat stretching, it is subjected to tension heat treatment at 150 ° C. to give a polyester composite fiber with a single fiber fineness of 2.5 denier, subjected to 15 mechanical crimps per 25 mm, cut into fiber lengths of 5 mm, and cut short fibers. Obtained. This conjugate fiber was a spontaneously crimpable polyester conjugate fiber [I] having a free shrinkage of 8% in a dry heat treatment at 170 ° C. and a spontaneous crimp appearance of 53 pieces / 25 mm. On the other hand, as a heat-fusible binder fiber, a hexamethylene terephthalate-based polyester (having a melting point of 136) is used as a sheath component.
℃) and polyethylene terephthalate (melting point 27
1 ° C, intrinsic viscosity [η] = 0.68), spun at a core / sheath composite ratio of 45:55 at a spinning temperature of 285 ° C using a core-sheath composite spinning device, and stretched three times by wet heat drawing to obtain a single fiber fineness. The core-sheath type composite fiber of 2 denier was used. This fiber was also crimped at 15/25 mm by mechanical crimping and cut into a fiber length of 5 mm to obtain a short fiber of the heat-fusible binder fiber [I]. In addition, the fibers to be mixed are irregular densities having a T-shaped cross section and a single fiber fineness of 2 deniers.
Short fibers obtained by cutting polyethylene terephthalate fibers having a length of 5 pieces / 25 mm into fiber lengths of 5 mm were used. 50 parts of spontaneously crimped polyester composite fiber, 34 parts of irregular cross-section polyethylene terephthalate fiber, 15 parts of heat-fusible binder fiber, and polyvinyl alcohol fiber 1 having a denier of 1 denier and a fiber length of 3 mm as a water-soluble binder fiber in a wet papermaking method. After mixing the fiber parts and dispersing them in water to prepare a stock solution, the average weight is important in the papermaking method using a short net Yankee machine.
43.6 g / m 2 of nonwoven fabric was obtained. This nonwoven fabric was dried at 70 ° C. and then heat-treated in a hot air drier at 170 ° C. for 2 minutes to cause the composite fiber to exhibit spontaneous crimp and heat-bonded and fixed between the fibers with a heat-fusible binder fiber. The resulting nonwoven fabric has a load of 2.
1.49 mm thickness measured at 5 g / cm 2 , calculated apparent density
It was a bulky nonwoven fabric of 0.029 g / cm 3 , and the dispersion of the nonwoven fabric was examined by a light transmission method. The result was good uniformity. In addition, the nonwoven fabric has a tensile cutting strength of 30 per 50 mm width.
It was as high as 0 g and the water absorption was as much as 22 times. In addition, acrylic resin (Nippon Zeon LX-
855) was adhered to the obtained nonwoven fabric by 20% and heat-treated at 150 ° C. for 3 minutes. The strength of this nonwoven fabric is 3.2kg with 50mm width
And the apparent density was 0.031 g / cm 3 . Next, in order to chemically bond the metal to the non-woven fabric to which the acrylic resin is attached, the non-woven fabric is treated in an alkaline aqueous solution adjusted to PH14 with NaOH to remove impurities adhering to the non-woven fabric and roughen the surface. After neutralization, washing with water, treatment with an aqueous solution containing 10 g / stannous chloride, washing with water, followed by treatment with an aqueous solution containing 0.3 g / palladium chloride for 3 minutes, and washing thoroughly with water To activate the fiber. An acidic chemical paint composition consisting of 30 g of nickel sulfate, 10 g of sodium citrate, 10 g of sodium hypophosphite, 10 g of sodium acetate, and 1 g of ammonium chloride as a chemical paint treatment liquid for non-woven fabric activated on fibers Adjust the solution and at a solution temperature of 70 ° C
After immersion treatment for 10 minutes, it was thoroughly washed with water, dried and wound up. The obtained nickel-plated fiber nonwoven fabric had a good adhesion state of metal and had a small thickness unevenness observed with a microscope. This nickel-plated fiber non-woven fabric was suitable as a fabric for the field of clothing, decoration, and electromagnetic wave shielding. Example 2 As a core component, an ethylene terephthalate polymer (intrinsic viscosity [η] = 0.49) obtained by copolymerizing 2.5 mol% of 5-sodium sulfoisophthalic acid and 5 mol% of isophthalic acid as a highly shrinkable polymer component (A) was used. Low shrinkage polymer component (B)
As the sheath component, polyethylene terephthalate having an intrinsic viscosity [η] of 0.68 is used as a sheath component.
The fiber was spun and stretched at 0:50 in the same manner as in Example 1 and had a free shrinkage of 7% in a dry heat treatment at 170 ° C. and a spontaneous crimping rate of 61/25 m.
m spontaneously crimped polyester composite fiber [II] was obtained. 80 parts of polyester composite fiber [II], 19 parts of heat-fusible binder fiber [I], and 1 part of water-soluble binder fiber were mixed, and the average paper weight was 46.6 g / m 2 and the apparent density was the same as in Example 1. A nonwoven fabric having a bulkiness of 0.037 g / cm 3 and a good fiber dispersion state was obtained. The bulky nonwoven fabric which had been subjected to metal plating in the same manner as in Example 1 had a good metal adhesion state and was suitable for clothing having good decorativeness and for shielding electromagnetic waves. Example 3 The nickel-plated fiber nonwoven fabric obtained in Examples 1 and 2 was roasted in an electric furnace in an inert gas stream at 1200 ° C. to obtain a porous nickel fiber sheet having an average thickness of 0.15 mm and a weight of 680 g / m 2. Obtained. The sheet was capable of uniformly kneading the active material in view of the uniformity of the sheet thickness and the smoothness, and the workability was very good. When an attempt was made to manufacture a battery using the sheet, it was found to be excellent in handleability without cracking or fluffing during bending and winding in the process. Also, as for the electrical characteristics, the electrode weight is about 1 / compared to the foamed nickel sheet obtained from the conventional foamed urethane sheet.
2 and the discharge life was extended to about twice. Thus, the weight and size of the battery can be reduced. This porous nickel fiber sheet had a uniform thickness of porous metal fibers, and was a sheet having a small thickness unevenness, which was suitable for electrodes of a dry battery or a hydrogen storage carrier.

【発明の効果】【The invention's effect】

本発明の金属メツキ繊維不織布は、厚みが薄くて均一
性が良く、金属の付着むらが小さいものであり、装飾
用、衣料用、電磁波遮蔽用として好適なものである。更
に金属メツキ繊維不織布を焙焼処理したものは多孔質金
属繊維で、厚みむらの小さい多孔質金属繊維シートとな
り、乾電池の電極や水素吸蔵担体用として好適なもので
ある。
The metal plated fiber nonwoven fabric of the present invention has a small thickness, good uniformity, and small unevenness of metal adhesion, and is suitable for decoration, clothing, and electromagnetic wave shielding. Further, the roasted metal plated nonwoven fabric is a porous metal fiber, which becomes a porous metal fiber sheet having a small thickness unevenness, and is suitable as an electrode of a dry battery or a hydrogen storage carrier.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−139415(JP,A) 特開 昭51−111270(JP,A) 特開 昭61−146868(JP,A) 特開 昭63−264964(JP,A) 特表 平3−500429(JP,A) (58)調査した分野(Int.Cl.6,DB名) D06M 11/83 D04H 1/00 - 5/08 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-139415 (JP, A) JP-A-51-111270 (JP, A) JP-A-61-146868 (JP, A) JP-A-63-146 264964 (JP, A) Special Table Hei 5-500429 (JP, A) (58) Fields surveyed (Int. Cl. 6 , DB name) D06M 11/83 D04H 1/00-5/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】螺旋状ミクロクリンプを有する単繊維繊度
6デニール以下の複合繊維を主体とした繊維が得られる
不織布に対して少なくとも5重量%の熱融着性バインダ
ー繊維で固定されている、荷重2.5g/cm2の見かけ密度が
0.06g/cm3以下の不織布に、金属メツキされていること
を特徴とする金属メツキ繊維不織布。
The present invention relates to a non-woven fabric having a helical micro-crimp and a fiber mainly composed of a conjugate fiber having a denier of 6 denier or less, which is fixed with at least 5% by weight of a heat-fusible binder fiber to a nonwoven fabric. 2.5g / cm 2 apparent density
A metal plating fiber nonwoven fabric characterized by being metal plated on a nonwoven fabric of 0.06 g / cm 3 or less.
【請求項2】請求項1に記載の金属メツキ繊維不織布が
焙焼された金属繊維不織布。
2. A metal fiber nonwoven fabric obtained by roasting the metal plating fiber nonwoven fabric according to claim 1.
JP2144848A 1990-06-01 1990-06-01 Metal plating fiber non-woven fabric Expired - Fee Related JP2948867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2144848A JP2948867B2 (en) 1990-06-01 1990-06-01 Metal plating fiber non-woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2144848A JP2948867B2 (en) 1990-06-01 1990-06-01 Metal plating fiber non-woven fabric

Publications (2)

Publication Number Publication Date
JPH0436958A JPH0436958A (en) 1992-02-06
JP2948867B2 true JP2948867B2 (en) 1999-09-13

Family

ID=15371829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2144848A Expired - Fee Related JP2948867B2 (en) 1990-06-01 1990-06-01 Metal plating fiber non-woven fabric

Country Status (1)

Country Link
JP (1) JP2948867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126824A (en) * 2008-11-26 2010-06-10 Daiwabo Holdings Co Ltd Metal-plated fiber structure and metal structure obtained by firing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313038A (en) * 2000-02-21 2001-11-09 Mitsubishi Materials Corp Current collector material for alkali secondary cell and manufacturing method of the same, and alkali secondary cell using the same
JP4557990B2 (en) * 2007-01-10 2010-10-06 富山住友電工株式会社 Foreign object detection device for porous metal
BRPI0921460A2 (en) * 2008-11-18 2016-01-12 Johnson Controls Tech Co electrical storage devices
JP2016062701A (en) * 2014-09-16 2016-04-25 有限会社アイレックス Conductive structure and conductive fusion, manufacturing method of conductive structure and conductive fusion, and conductive plastic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126824A (en) * 2008-11-26 2010-06-10 Daiwabo Holdings Co Ltd Metal-plated fiber structure and metal structure obtained by firing the same

Also Published As

Publication number Publication date
JPH0436958A (en) 1992-02-06

Similar Documents

Publication Publication Date Title
EP2058424B1 (en) Stretchable nonwoven fabric and tapes
US4368227A (en) Suede-like sheet materials of ultrafine fibers
JP3682432B2 (en) Nonwoven materials for manufacturing cleanroom protective garments
JPH11217757A (en) Staple fiber nonwoven fabric and its production
JP2004169261A (en) Polymer alloy fiber
JP2948867B2 (en) Metal plating fiber non-woven fabric
JP4869784B2 (en) Method for producing cellulosic nonwoven fabric
JPH09302563A (en) Nonwoven fabric, its production, battery separator and filter using the same
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JP2002105826A (en) Porous nonwoven fabric and method of producing the same
CN111133137B (en) Hygroscopic acrylic fiber, method for producing the fiber, and fiber structure containing the fiber
JP2002054036A (en) Crimped polyester fiber and method for producing the same
JPH0350034B2 (en)
JP2022083165A (en) Nonwoven fabric for electromagnetic shield material
JPS62236731A (en) Fabric and knitted good-like clothing
JPH073598A (en) Nonwoven fabrics and fabric lamination
JPH08325930A (en) Nonwoven fabric and its production
JPS6241375A (en) Production of extremely fine fiber sheet
JP2000136477A (en) Laminated nonwoven fabric and its production
JPH10310976A (en) Electromagnetic wave shielding fibrous structure
JPH04370256A (en) Curtain cloth and production thereof
JP2612350B2 (en) Elastic composite fiber
TWI793244B (en) Water-absorbing fiber precursor, water-absorbing nonwoven fabric precursor and water-absorbing nonwoven fabric; as well as facial mask containing the same and face mask having lotion already filled with, and their manufacturing method
JPH05186967A (en) Fiber, knit or woven fabric and nonwoven fabric having electric conductivity and their production
JP2002275737A (en) Bulky yarn having network structure and woven and knitted fabric

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees