JP2943386B2 - Purification method of acrylamide aqueous solution - Google Patents

Purification method of acrylamide aqueous solution

Info

Publication number
JP2943386B2
JP2943386B2 JP10661291A JP10661291A JP2943386B2 JP 2943386 B2 JP2943386 B2 JP 2943386B2 JP 10661291 A JP10661291 A JP 10661291A JP 10661291 A JP10661291 A JP 10661291A JP 2943386 B2 JP2943386 B2 JP 2943386B2
Authority
JP
Japan
Prior art keywords
aqueous solution
resin tower
ppm
copper
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10661291A
Other languages
Japanese (ja)
Other versions
JPH04312562A (en
Inventor
穣 内田
孝之 西嶋
敏広 後藤
一雄 中安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP10661291A priority Critical patent/JP2943386B2/en
Publication of JPH04312562A publication Critical patent/JPH04312562A/en
Application granted granted Critical
Publication of JP2943386B2 publication Critical patent/JP2943386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アクリロニトリルの接
触水和法により得られるアクリルアミド水溶液を精製す
る際の脱銅方法に関するものである。アクリルアミド
(以下AMと略称する)は紙力増強剤、凝集剤などに利
用されるアクリルアミド系ポリマーの製造に用いられる
他、多方面の用途に向けられる産業上、有用なモノマー
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper removal method for purifying an aqueous solution of acrylamide obtained by a contact hydration method of acrylonitrile. Acrylamide (hereinafter abbreviated as AM) is an industrially useful monomer that is used for producing acrylamide-based polymers used for paper strength agents, flocculants, and the like, and for various applications.

【0002】[0002]

【従来の技術】金属銅系触媒の存在下に、アクリロニト
リルを接触水和してAMを製造する方法はすでに良く知
られている。この銅系触媒を使用して得られたAM含有
反応液中には微量の銅が溶出してくるのを避けることが
できず。AM水溶液を原料としてポリマーを製造しよう
とする場合、その溶存銅は、重合反応を阻害するためA
M水溶液の商品価値を著しく低下させる原因となる。従
って、該AM反応液から得られるAM水溶液をポリマー
原料として使用するためには、溶存銅を除去する必要が
ある。溶存銅の除去方法としては、キレート樹脂により
処理する方法やイオン交換樹脂により処理する方法がと
られるが、通常AM水溶液を陽イオン交換樹脂により処
理する方法が取られる。この場合陽イオン交換樹脂を塔
に充填して通液してもよいし、槽に充填して必要に応じ
て撹拌を行う方法でもよい。
2. Description of the Related Art A method for producing AM by catalytic hydration of acrylonitrile in the presence of a copper metal catalyst is already well known. It is unavoidable that a trace amount of copper is eluted into the AM-containing reaction solution obtained using this copper-based catalyst. When a polymer is to be produced from an AM aqueous solution, the dissolved copper inhibits the polymerization reaction and
This causes the commercial value of the M aqueous solution to be significantly reduced. Therefore, in order to use an AM aqueous solution obtained from the AM reaction solution as a polymer raw material, it is necessary to remove dissolved copper. As a method of removing dissolved copper, a method of treating with a chelate resin or a method of treating with an ion exchange resin is used, and usually, a method of treating an AM aqueous solution with a cation exchange resin is employed. In this case, the column may be filled with a cation exchange resin and passed therethrough, or a method may be used in which the column is filled and stirred as necessary.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、得られ
たAMは反応性に富むため、その重合などの損失を伴う
ことなく工業的にAM反応液中の溶存銅を除去すること
は極めて難しい。そして、陽イオン交換樹脂により銅イ
オンの除去を行った場合特に難しく、それらが遊離酸型
(以下H型と略称する)であっても、ナトリウム塩型
(以下Na型と略称する)であっても樹脂塔(または
槽)内部でAMが重合し、樹脂塔(または槽)を詰まら
せて、安定な製造ができなかったり、あるいは製品の品
質を著しく低下させるという問題があった。
However, since the obtained AM is highly reactive, it is extremely difficult to industrially remove dissolved copper in the AM reaction solution without a loss such as polymerization. It is particularly difficult to remove copper ions with a cation exchange resin. Even if they are free acid type (hereinafter abbreviated as H type), they are sodium salt type (hereinafter abbreviated as Na type). Also, there is a problem that AM polymerizes inside the resin tower (or tank) and clogs the resin tower (or tank), so that stable production cannot be performed or the quality of the product is significantly reduced.

【0004】一方、AM水溶液は、その溶存酸素(以下
DOと略称する)の存在により安定化されることはよく
知られている(Kishore,K. andBhanu,V.A.;J. Polym.Sc
i.,Part A: Polym. Chem., 26(10),2831-3(1988);Kisho
re,K. and Bhanu,V.A.;J. Polym.Sci., Part A: Polym.
Chem., 24(2),379-81(1986))。例えば、AM水溶液の
重合安定性について、本発明者らの知見によれば、AM
水溶液は、濃度50%、60℃の条件下においてAM水
溶液を窒素ガスにより置換して、溶存酸素がまったく無
い状態においては3時間で重合する。それに対して、空
気及び窒素の混合ガスによりAM水溶液の溶存酸素を
0.1ppm とした場合には、同条件下、40日間保持し
てもAMの重合物はみられず極めて安定である。
On the other hand, it is well known that an AM aqueous solution is stabilized by the presence of dissolved oxygen (hereinafter abbreviated as DO) (Kishore, K. and Bhanu, VA; J. Polym. Sc).
i., Part A: Polym. Chem., 26 (10), 2831-3 (1988); Kisho
re, K. and Bhanu, VA; J. Polym. Sci., Part A: Polym.
Chem., 24 (2), 379-81 (1986)). For example, regarding the polymerization stability of an AM aqueous solution, according to the findings of the present inventors, it has been reported that AM
The aqueous solution is polymerized in 3 hours in a state where the AM aqueous solution is replaced with nitrogen gas under the condition of a concentration of 50% and 60 ° C. and there is no dissolved oxygen at all. On the other hand, when the dissolved oxygen in the aqueous AM solution is adjusted to 0.1 ppm by a mixed gas of air and nitrogen, the polymer of AM is not observed even when the solution is kept for 40 days under the same conditions, and is extremely stable.

【0005】また、銅を除去する工程においてAMの重
合を避けるために別に安定化剤を添加する方法もある。
例えば、AM水溶液に重合防止剤として、有機系のもの
としてハイドロキノン、メトキシ−ハイドロキノン、ア
ンスラキノン、P−3級ブチルカテコール、2・5−ジ
−3級ブチル−ハイドロキノン、ピロガロール、P−ハ
イドロキシルジフェニルアミン、ジチオベンゾイルサル
ファイド、フェニルβ−ナフチルアミン、ピクリン酸等
を、また無機系のものとして、塩化第二鉄、塩化第二
銅、銅粉、三塩化チタン、赤血塩、黄血塩、硫酸マンガ
ン、コバルト錯塩、クロム錯塩等を添加する方法があ
る。
There is also a method in which a stabilizer is separately added in order to avoid polymerization of AM in the step of removing copper.
For example, as a polymerization inhibitor in an aqueous AM solution, organic compounds such as hydroquinone, methoxy-hydroquinone, anthraquinone, P-tert-butylcatechol, 2,5-di-tert-butyl-hydroquinone, pyrogallol, and P-hydroxyldiphenylamine , Dithiobenzoyl sulfide, phenyl β-naphthylamine, picric acid, etc., and as inorganic ones, ferric chloride, cupric chloride, copper powder, titanium trichloride, red blood salt, yellow blood salt, manganese sulfate, There is a method of adding a cobalt complex salt, a chromium complex salt, or the like.

【0006】しかしながらこの方法は、添加した重合防
止剤がAMポリマーの原料としてのAMモノマー製品の
品質を著しく悪化させる原因となるため、後の工程でそ
れらの添加物を除去する必要があり、かなりの不利益を
もたらす。それに対して、溶存酸素によりAMの重合を
防止する方法ではAMモノマー製品を重合させてポリマ
ーを製造する際、窒素ガス等不活性ガスによる置換によ
り容易に酸素ガスを取り除くことができる。従って、A
M水溶液の安定化の方法としては溶存酸素による安定化
がもっとも好ましい。
However, in this method, since the added polymerization inhibitor causes the quality of the AM monomer product as a raw material of the AM polymer to be remarkably deteriorated, it is necessary to remove those additives in a later step. The disadvantages. On the other hand, in the method of preventing AM polymerization by dissolved oxygen, when polymerizing an AM monomer product to produce a polymer, oxygen gas can be easily removed by replacement with an inert gas such as nitrogen gas. Therefore, A
As a method of stabilizing the M aqueous solution, stabilization by dissolved oxygen is most preferable.

【0007】そこで、前記AM水溶液の溶存銅を陽イオ
ン交換樹脂を充填した樹脂塔(または槽)により除去す
るに際し、あらかじめAM水溶液に溶存酸素を存在させ
ておき安定化することが考えられる。しかしながら、A
M水溶液の溶存銅を陽イオン交換樹脂を充填した樹脂塔
(または槽)により除去するに際し、あらかじめAM水
溶液にDOを確保し安定化させたにも拘らず、樹脂塔
(または槽)内部でAMが重合し詰まる場合もあり、必
ずしも安定な操業ができるとは限らない問題があった。
本発明者らは、アクリロニトリルの接触水和法により得
られるAM水溶液を、陽イオン交換樹脂により精製する
にあたり、AMの重合を確実に防止しつつ銅を除去する
方法について鋭意検討した結果、本発明を完成するにい
たった。
Therefore, when removing the dissolved copper in the AM aqueous solution by a resin tower (or tank) filled with a cation exchange resin, it is conceivable that dissolved oxygen is present in the AM aqueous solution in advance to stabilize it. However, A
When removing the dissolved copper in the M aqueous solution by the resin tower (or tank) filled with the cation exchange resin, the AM aqueous solution was previously secured and DO was stabilized in the resin tower (or tank). However, there is a problem that polymerization may be clogged, and stable operation cannot always be performed.
The present inventors have conducted intensive studies on a method of removing copper while reliably preventing the polymerization of AM in purifying an AM aqueous solution obtained by a contact hydration method of acrylonitrile with a cation exchange resin. Was completed.

【0008】[0008]

【課題を解決するための手段】すなわち、アクリロニト
リルの接触水和法により得られるアクリルアミド水溶液
を、陽イオン交換樹脂により脱銅する際、アクリルアミ
ド水溶液中の溶存酸素濃度を樹脂塔、または樹脂槽出口
において少なくとも2ppm 以上、更に望ましくは5ppm
以上に保つことにより、AMの重合を確実に回避して、
安定的に溶存銅を除去できることを見い出し本発明を完
成させた。
That is, when the acrylamide aqueous solution obtained by the contact hydration method of acrylonitrile is decoppered with a cation exchange resin, the dissolved oxygen concentration in the acrylamide aqueous solution is measured at the outlet of the resin tower or the resin tank. At least 2 ppm, more preferably 5 ppm
By keeping the above, AM polymerization is reliably avoided,
It has been found that the dissolved copper can be removed stably, and the present invention has been completed.

【0009】以下、本発明の詳細について順次説明す
る。本発明に用いられるAM水溶液は、アクリロニトリ
ルを原料として通常の接触水和法により得られる。すな
わち、アクリロニトリルを水とともに耐圧の反応器に仕
込み、金属銅触媒の存在下、70〜150℃の温度で1
〜3時間反応させる。得られた反応液には未反応のアク
リロニトリルが残存するので、通常これを予め除去して
おく。このようにして得られるAM水溶液中のAM濃度
は20〜50%であり、その中には通常10〜50ppm
の銅が含有されている。
Hereinafter, details of the present invention will be sequentially described. The AM aqueous solution used in the present invention is obtained by a usual contact hydration method using acrylonitrile as a raw material. That is, acrylonitrile was charged together with water into a pressure-resistant reactor, and was heated at a temperature of 70 to 150 ° C. in the presence of a copper metal catalyst.
Let react for ~ 3 hours. Since unreacted acrylonitrile remains in the obtained reaction solution, it is usually removed in advance. The AM concentration in the AM aqueous solution thus obtained is 20 to 50%, and usually 10 to 50 ppm
Contains copper.

【0010】次に、このようにして得られた液を、陽イ
オン交換樹脂塔での脱銅性能をより良くするために、あ
らかじめH型の弱酸性イオン交換樹脂塔に通液してAM
水溶液のpHを6以下とする。ここで使用するH型の弱
酸性イオン交換樹脂としては、通常市販のアンバーライ
トIRC−76、ダイヤイオンWK−10、WK−1
1、WK−20などがあげられる。
Next, in order to improve the copper removal performance in the cation exchange resin tower, the liquid obtained in this way is passed through an H-type weakly acidic ion exchange resin tower in advance and the AM
The pH of the aqueous solution is adjusted to 6 or less. Examples of the H-type weakly acidic ion exchange resin used here include commercially available Amberlite IRC-76, Diaion WK-10, and WK-1.
1, WK-20 and the like.

【0011】このようにして得られるAM水溶液の溶存
銅を、陽イオン交換樹脂により除去するに際し、AM水
溶液を安定化するために樹脂塔(または槽)に通液する
前に予めDOを確保したにも拘らずAMが重合する場合
がある。例えば、AM水溶液を陽イオン交換樹脂塔に通
液するに際し、あらかじめAM水溶液を安定化するため
に大気圧下空気と接触させDOを10ppm とした後、通
常の脱銅を行った場合においてさえも樹脂塔内部でAM
が重合する場合があった。この場合のDO10ppm は、
先に示したAM水溶液の60℃での重合安定性試験にお
いて、40日間安定であった0.1ppm と比べて実に1
00倍の量であり、前述のAM水溶液に対する溶存酸素
の安定化効果からは全く予想もできないことであった。
この例でもわかるように、樹脂塔入口でのAM水溶液の
DOを保っただけでは、安定的に溶存銅を除去すること
はできない。
When the dissolved copper in the AM aqueous solution thus obtained is removed by a cation exchange resin, DO is previously secured before passing the solution through a resin tower (or tank) in order to stabilize the AM aqueous solution. Nevertheless, AM may polymerize in some cases. For example, even when the AM aqueous solution is passed through a cation exchange resin tower, it is brought into contact with air at atmospheric pressure in advance to stabilize the AM aqueous solution to bring DO to 10 ppm, and even when ordinary copper removal is performed. AM inside the resin tower
Was polymerized in some cases. DO10ppm in this case is
In the polymerization stability test at 60 ° C. of the AM aqueous solution described above, it was actually 1 compared with 0.1 ppm which was stable for 40 days.
That is, the amount was 00 times, and it could not be predicted at all from the effect of stabilizing dissolved oxygen in the AM aqueous solution.
As can be seen from this example, it is not possible to stably remove the dissolved copper simply by keeping the DO of the AM aqueous solution at the entrance of the resin tower.

【0012】このことは、樹脂塔内部でのAM水溶液の
安定性が、樹脂塔外での安定性と大きく異なることを示
している。すなわち、AM水溶液を陽イオン交換樹脂に
より溶存銅を除去するに際し、AM水溶液を樹脂塔の入
口においてそのDOを確保しても、必ずしもAM水溶液
を樹脂塔内で安定化し、AMが重合しないことを保証す
ることはできない。本発明者らは、樹脂塔内部において
AMの重合が起こらない方法についてさらに詳しく検討
した結果、樹脂塔出口における溶存酸素濃度を実質的に
2ppm 以上に保つことにより安定に運転できることを見
い出した。また、樹脂塔出口の溶存酸素濃度を2ppm 以
上に保つために、樹脂塔の入口において溶存酸素をある
一定濃度以上に管理することも考えられるが、本発明者
らの実験によると、樹脂塔の入口においてAM水溶液中
の溶存酸素濃度が常に一定であっても、樹脂塔出口にお
ける溶存酸素濃度は常に安定した値を示さないのであ
る。
This indicates that the stability of the AM aqueous solution inside the resin tower is greatly different from the stability outside the resin tower. That is, when removing the dissolved copper with the cation exchange resin from the AM aqueous solution, even if the AM aqueous solution secures its DO at the entrance of the resin tower, the AM aqueous solution is not necessarily stabilized in the resin tower, and the AM is not polymerized. There is no guarantee. The present inventors have studied in more detail a method in which AM polymerization does not occur inside the resin tower, and as a result, have found that stable operation can be achieved by keeping the dissolved oxygen concentration at the outlet of the resin tower substantially at 2 ppm or more. Further, in order to keep the dissolved oxygen concentration at the outlet of the resin tower at 2 ppm or more, it is conceivable to control the dissolved oxygen at a certain concentration or more at the inlet of the resin tower. Even if the dissolved oxygen concentration in the AM aqueous solution is always constant at the inlet, the dissolved oxygen concentration at the resin tower outlet does not always show a stable value.

【0013】つまり、樹脂塔内部での重合を確実に防止
しつつ安定に銅を除去するためには樹脂塔の入口におい
てAM水溶液を酸素、又は酸素含有ガスと接触させ安定
化することは必要ではあるが、それだけでは全く不十分
で、樹脂塔内で重合しない保証はない。従って、AM水
溶液中の溶存銅を樹脂塔内において重合が起こることな
く確実、かつ安定して除去するためには樹脂塔出口の溶
存酸素濃度を常時管理することが必須である。そして、
保持すべき溶存酸素濃度は、樹脂が存在しない場合のよ
うに0.1ppm では全く不十分であり、2ppm以上、さ
らに好ましくは5ppm 以上の多量の溶存酸素が必要であ
る。このように、樹脂塔出口のAM水溶液中のDOを2
ppm 以上に実質的に保持することによってはじめて、樹
脂塔内でAMが重合することなく極めて安定した運転が
可能となる。このような保持管理方法は、今まで知られ
ていなかった方法である。
In other words, it is not necessary to bring the AM aqueous solution into contact with oxygen or an oxygen-containing gas at the inlet of the resin tower and stabilize it in order to reliably remove copper while reliably preventing polymerization inside the resin tower. However, this is not enough by itself, and there is no guarantee that polymerization will not occur in the resin tower. Therefore, it is essential to constantly control the dissolved oxygen concentration at the outlet of the resin tower in order to reliably and stably remove the dissolved copper in the AM aqueous solution without causing polymerization in the resin tower. And
As for the concentration of dissolved oxygen to be maintained, 0.1 ppm, as in the case where no resin is present, is quite insufficient, and a large amount of dissolved oxygen of 2 ppm or more, more preferably 5 ppm or more, is required. Thus, DO in the AM aqueous solution at the outlet of the resin tower was reduced by 2%.
Only when the concentration is substantially maintained at ppm or more, extremely stable operation becomes possible without polymerization of AM in the resin tower. Such a retention management method is a method that has not been known until now.

【0014】また、樹脂塔出口においてAM水溶液の溶
存酸素濃度を管理することによる利点としては、以下の
ことがあげられる。樹脂塔内部でのAMの重合危険を
予知でき、重合による機器類の破損塔を未然に防ぐこと
ができる。樹脂塔出口の溶存酸素濃度見合いで、樹脂
塔入口でAMの安定化のために供給する酸素ガス量を経
済的にコントロールすることができる。また、樹脂塔
(または槽)出口液のDOを管理する方法としては、
樹脂塔(または槽)出口液のDOを溶存酸素計によりオ
ンラインで管理する方法。樹脂塔(または槽)出口液
を外気と接触しないようにサンプリングし、溶存酸素
計、ミラー変法、ウィンクラーアジ化ナトリウム法等に
よりDOを測定し管理する方法。等があげられる。
[0014] Advantages of controlling the dissolved oxygen concentration of the AM aqueous solution at the outlet of the resin tower include the following. The danger of polymerization of AM inside the resin tower can be predicted, and a damaged tower of equipment due to polymerization can be prevented beforehand. Depending on the dissolved oxygen concentration at the outlet of the resin tower, the amount of oxygen gas supplied for stabilizing AM at the inlet of the resin tower can be economically controlled. In addition, as a method of managing the DO of the resin tower (or tank) outlet liquid,
A method in which the DO of the resin tower (or tank) outlet liquid is managed online by a dissolved oxygen meter. A method in which a resin tower (or tank) outlet liquid is sampled so as not to come into contact with outside air, and DO is measured and managed by a dissolved oxygen meter, a modified Miller method, a Winkler sodium azide method, or the like. And the like.

【0015】の方法の方が、測定結果が即座に出るの
で好ましい。これらの方法により、樹脂塔(または槽)
出口AM水溶液のDOを管理し、DOが減少した際に何
らかのDOをあげるような操作を加えながら通液を行っ
た場合に、はじめて樹脂塔(または槽)内部での重合は
長期間にわたって起こらず安定な運転ができる。そし
て、DOをあげる操作としては、樹脂塔通液前におい
て、AM水溶液と接触させるガスの酸素濃度を上げる方
法。樹脂塔通液前において、AM水溶液と酸素または
酸素含有ガスとを接触させる容器を加圧にする方法。が
とられる。これらの方法により、容易に樹脂塔出口の溶
存酸素濃度を2ppm 以上に実質的に保持することができ
る。
The method of (1) is preferable because a measurement result is immediately obtained. By these methods, the resin tower (or tank)
When the DO of the outlet AM aqueous solution is controlled and the liquid is passed while adding an operation to raise the DO when the amount of DO decreases, the polymerization inside the resin tower (or tank) does not occur for a long time for the first time. Stable operation is possible. As an operation for raising the DO, a method of increasing the oxygen concentration of the gas to be brought into contact with the AM aqueous solution before passing through the resin tower. A method of pressurizing a container for bringing an AM aqueous solution into contact with oxygen or an oxygen-containing gas before passing through a resin tower. Is taken. By these methods, the dissolved oxygen concentration at the outlet of the resin tower can easily be substantially maintained at 2 ppm or more.

【0016】使用される陽イオン交換樹脂としては、通
常のスチレン系陽イオン交換樹脂(たとえば、アンバー
ライトIR−120B、IR−124、ダイヤイオンS
K−1B、SK−10など)があげられる。次いで、銅
を除去したAM水溶液を濃縮装置により50%に濃縮
し、活性炭により脱色を行った後、AMポリマーの原料
として良好なAMモノマーを得ることができる。
As the cation exchange resin to be used, ordinary styrene cation exchange resins (for example, Amberlite IR-120B, IR-124, Diaion S)
K-1B, SK-10, etc.). Next, the AM aqueous solution from which copper has been removed is concentrated to 50% by a concentration device, and after decoloring with activated carbon, a good AM monomer can be obtained as a raw material of an AM polymer.

【0017】[0017]

【実施例】次に、実施例をもってさらに詳細に説明す
る。 実施例1 銅含有触媒(K社製品:改良型CDT−60)を用い
て、アクリロニトリルの接触水和によりAM水溶液の合
成反応を行った。反応器として容量20Lのステンレス
製の反応槽を使用した。上記触媒2.2kgをあらかじ
め、反応槽に仕込んでおき、これにアクリロニトリルと
水をそれぞれ2.8kg/Hr、6.53kg/Hrの速度で供
給し、撹拌下120℃で反応を行った。なお、反応の促
進安定剤として硝酸銅をフィード水中の銅イオン濃度が
5ppm となるように添加した。
Next, the present invention will be described in more detail with reference to examples. Example 1 An aqueous AM solution was synthesized by catalytic hydration of acrylonitrile using a copper-containing catalyst (K-product: improved CDT-60). A 20 L stainless steel reaction tank was used as a reactor. 2.2 kg of the above catalyst was previously charged in a reaction tank, and acrylonitrile and water were supplied thereto at a rate of 2.8 kg / Hr and 6.53 kg / Hr, respectively, and the reaction was carried out at 120 ° C. with stirring. Note that copper nitrate was added as a reaction promoting stabilizer so that the copper ion concentration in feed water was 5 ppm.

【0018】反応生成液はフィルターにより触媒を分離
して抜き出した後、減圧下で未反応のANを留去し、A
Mの25%水溶液を得た。この液中には銅イオンが30
ppm溶存しており、そのpHは6.5であった。このA
M水溶液を空気と接触させながらH型陽イオン交換樹脂
アンバーライトIRC−76 1.0Lを充填した塔に
SV4.0/Hr、LV3.0m/Hr、温度40℃で通液
した。得られた液はpH5.5、銅イオンは15ppm で
あり、溶存酸素濃度は10ppm であった。
The reaction product is separated from the catalyst by a filter and extracted, and then unreacted AN is distilled off under reduced pressure.
A 25% aqueous solution of M was obtained. This solution contains 30 copper ions.
ppm dissolved, and its pH was 6.5. This A
The M aqueous solution was passed through a column filled with 1.0 L of an H-type cation exchange resin Amberlite IRC-76 at SV 4.0 / Hr and LV 3.0 m / Hr at a temperature of 40 ° C. while being in contact with air. The resulting solution had a pH of 5.5, copper ions of 15 ppm, and a dissolved oxygen concentration of 10 ppm.

【0019】このようにして得られた液に、空気を接触
させてDOを補給し10ppm とし、Na型陽イオン交換
樹脂アンバーライトIR−120B 1.0Lを充填し
た塔にSV4.0/Hr、LV3.0m/Hr、温度40℃
の条件で塔出口液の溶存酸素濃度をオンラインの溶存酸
素計により監視しつつ通液した。通液開始後、3日目に
出口液のDOは5ppm となった。そこで、DOの補給を
している空気に酸素を混合し空気:酸素の割合を85:
15にした。この時の樹脂塔入口のAM水溶液中のDO
は15ppm となり、樹脂塔出口液のDOは8ppm と高く
なった。さらに5日後に、樹脂塔出口のDOは、5ppm
まで低下し、ここで更に酸素の供給量を増し、空気:酸
素の割合を57:43とした。この時の樹脂塔入口のD
Oは25ppm であり、樹脂塔出口のDOは、10ppm に
上昇した。このような操作を繰り返すことによって、樹
脂塔出口のDOを2ppm 以上に保った。その結果、30
日間AMの重合物ができることなく極めて安定に運転で
き、得られた液の銅濃度は10ppb 以下であった。
The liquid thus obtained is brought into contact with air to replenish DO to 10 ppm, and a column filled with 1.0 L of Na-type cation exchange resin Amberlite IR-120B is charged with SV 4.0 / Hr, LV 3.0m / Hr, temperature 40 ° C
Under the conditions described above, the solution was passed while monitoring the dissolved oxygen concentration of the liquid at the outlet of the tower with an online dissolved oxygen meter. On the third day after the start of the flow, the DO of the outlet liquid became 5 ppm. Therefore, oxygen is mixed with the air that is replenishing DO, and the air: oxygen ratio is adjusted to 85:
It was 15. The DO in the AM aqueous solution at the entrance of the resin tower at this time
Was 15 ppm, and the DO of the liquid at the outlet of the resin tower was as high as 8 ppm. After another 5 days, DO at the outlet of the resin tower is 5 ppm
The oxygen supply was further increased, and the air: oxygen ratio was 57:43. D at the entrance of the resin tower at this time
O was 25 ppm, and DO at the outlet of the resin tower rose to 10 ppm. By repeating such an operation, DO at the outlet of the resin tower was kept at 2 ppm or more. As a result, 30
The operation was extremely stable without producing a polymer of AM for one day, and the copper concentration of the obtained liquid was 10 ppb or less.

【0020】比較例1 実施例1と同様、樹脂塔通液前に空気によりDOを補給
し樹脂塔出口でのAM水溶液のDOを管理すること無し
に運転を継続した。このときの、樹脂塔入口におけるD
Oは通常10ppm であった。通液開始後、3日目に出口
の液のDOは5ppm となり、さらに2日後に出口液のD
Oが1ppm となったところで樹脂塔内部にAMの重合物
が確認され、通液が不能となり運転を継続することがで
きなくなった。
Comparative Example 1 In the same manner as in Example 1, DO was supplied with air before passing through the resin tower, and the operation was continued without controlling the DO of the AM aqueous solution at the outlet of the resin tower. At this time, D at the entrance of the resin tower
O was usually 10 ppm. On the third day after the start of the passage, the DO of the outlet liquid became 5 ppm, and two days later, the D
When the amount of O became 1 ppm, a polymer of AM was confirmed inside the resin tower, and the passage of liquid was impossible, so that the operation could not be continued.

【0021】比較例2 比較例2の空気の代わりに、空気と酸素を57:43の
割合で混合したものをAM水溶液と接触させ樹脂塔への
通液を行った。この時のAM水溶液のDOを25ppm で
一定にコントロールした。通液を開始して、10日目に
出口でのDOが5ppm と減少したが運転をそのまま継続
した。さらに2日後には、樹脂塔出口でのDOは1ppm
となり樹脂塔内でAMの重合物が確認され、通液が不能
となり運転を継続することができなくなった。
Comparative Example 2 Instead of the air of Comparative Example 2, a mixture of air and oxygen at a ratio of 57:43 was brought into contact with an AM aqueous solution to flow through a resin tower. At this time, the DO of the AM aqueous solution was constantly controlled at 25 ppm. On the 10th day after the start of the passage, the DO at the outlet decreased to 5 ppm, but the operation was continued. Two days later, the DO at the outlet of the resin tower was 1 ppm.
Then, a polymer of AM was confirmed in the resin tower, and the passage of liquid was impossible, so that the operation could not be continued.

【0022】比較例3 実施例1の脱銅後の液を濃縮し、AM50%の水溶液と
した。このAM水溶液700mlを、1Lのガラス製容
器に仕込みAM水溶液を窒素と空気を45:1の割合で
混合したものと接触させながら、温度60℃の条件下A
M水溶液の重合安定性試験を行った。この時のAM水溶
液中の溶存酸素濃度は0.1ppm であった。また、試験
開始後40日経過した後においてもAM水溶液中にAM
の重合物は見られなかった。
Comparative Example 3 The solution after copper removal in Example 1 was concentrated to give an aqueous solution of 50% AM. 700 ml of this AM aqueous solution was charged into a 1 L glass container, and the AM aqueous solution was brought into contact with a mixture of nitrogen and air at a ratio of 45: 1 while the A solution was heated at a temperature of 60 ° C.
An M aqueous solution was subjected to a polymerization stability test. At this time, the dissolved oxygen concentration in the AM aqueous solution was 0.1 ppm. Further, even after 40 days from the start of the test, the AM aqueous solution remained in the AM aqueous solution.
No polymer was found.

【0023】[0023]

【発明の効果】本発明によって、アクリロニトリルの接
触水和反応によりアクリルアミド水溶液から長期、安定
かつ経済的に微量の銅を除去することが可能になり、こ
のことはアクリルアミドの工業的生産にとって、極めて
大きな利益を与えるものである。
According to the present invention, it is possible to remove a trace amount of copper from an aqueous acrylamide solution for a long time, stably and economically by a catalytic hydration reaction of acrylonitrile, which is extremely large for industrial production of acrylamide. It gives profit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中安 一雄 神奈川県川崎市川崎区千鳥町2番3号 昭和電工株式会社 川崎工場内 (56)参考文献 特開 昭52−100418(JP,A) 特開 昭52−91818(JP,A) (58)調査した分野(Int.Cl.6,DB名) C07C 231/24 C07C 233/09 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Kazuo Nakayasu 2-3-3 Chidori-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Denko KK Kawasaki Plant (56) References JP-A-52-100418 (JP, A) 52-91818 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C07C 231/24 C07C 233/09

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アクリロニトリルの接触水和法により得
られるアクリルアミド水溶液を、陽イオン交換樹脂によ
り精製するにあたり、樹脂塔または樹脂槽出口における
アクリルアミド水溶液中の溶存酸素濃度を2ppm 以上に
保ちながら精製することを特徴とするアクリルアミド水
溶液の精製方法。
1. Purification of an aqueous acrylamide solution obtained by a contact hydration method of acrylonitrile with a cation exchange resin while maintaining the dissolved oxygen concentration in the aqueous acrylamide solution at the outlet of a resin tower or a resin tank at 2 ppm or more. A method for purifying an aqueous acrylamide solution, comprising:
JP10661291A 1991-04-11 1991-04-11 Purification method of acrylamide aqueous solution Expired - Fee Related JP2943386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10661291A JP2943386B2 (en) 1991-04-11 1991-04-11 Purification method of acrylamide aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10661291A JP2943386B2 (en) 1991-04-11 1991-04-11 Purification method of acrylamide aqueous solution

Publications (2)

Publication Number Publication Date
JPH04312562A JPH04312562A (en) 1992-11-04
JP2943386B2 true JP2943386B2 (en) 1999-08-30

Family

ID=14437947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10661291A Expired - Fee Related JP2943386B2 (en) 1991-04-11 1991-04-11 Purification method of acrylamide aqueous solution

Country Status (1)

Country Link
JP (1) JP2943386B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099783A (en) * 2007-01-22 2007-04-19 Mitsui Chemicals Inc Method for purifying aqueous solution of acrylamide
JP2009062373A (en) * 2008-09-16 2009-03-26 Mitsui Chemicals Inc Method for preventing polymerization
JP5428942B2 (en) * 2010-03-01 2014-02-26 東亞合成株式会社 Method for producing N-tert-butylacrylamide with reduced coloring
WO2011145687A1 (en) * 2010-05-21 2011-11-24 三井化学株式会社 Method for stabilizing amide compound having unsaturated bond
JP6491559B2 (en) * 2015-07-15 2019-03-27 旭化成株式会社 Letterpress and its manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JPH04312562A (en) 1992-11-04

Similar Documents

Publication Publication Date Title
US3970696A (en) Process for producing aromatic carboxylic acid
JPS6041056B2 (en) Cyclohexane oxidation method
PL120521B1 (en) Method of manufacture of terephtalic acid
JPH08325197A (en) Production of terephthalic acid
EP1200381B1 (en) Process for the preparation of 3-hydroxypropanal
JPH04300844A (en) Method of preparing 1,3-propanediol
US4745214A (en) Process for the preparation of an aqueous solution of unsaturated quaternary ammonium salts
JP2943386B2 (en) Purification method of acrylamide aqueous solution
EP0161484A1 (en) Essentially ortho-linked poly(aryl ethers)
JPH0643386B2 (en) Removal of metals from aqueous peroxy acids or peroxy salts
AU756907B2 (en) Method for producing aqueous hydroxylamine solutions which are substantially free of metal ions
US4108893A (en) Purification of an aqueous solution of acrylamide
JPS59205373A (en) Reactivation of vanadium phosphide catalyst and manufacture of maleic acid anhydride catalyst treated with ortho-phosphoric acid alkyl ester under presence of water
US4493938A (en) Method for the production of thioalkylene glycols
KR102382774B1 (en) Improved oxime preparation method
US5166418A (en) Method for producing ibuprofen
JPH11240715A (en) Production of boron trifluoride and sulfuric acid from boron trifluoride hydrate
JPH0345517A (en) Production of aqueous solution of ferric chloride
JP4601120B2 (en) Acrylic acid production method
DE2918754C2 (en)
CA1058634A (en) Process for producing pure racemic acid and mesotartaric acid
JP4321216B2 (en) A method for producing 1,2,3,4-butanetetracarboxylic acid.
JP3528859B2 (en) Synthetic method of ketazine
JPH04270253A (en) Purification of aqueous solution of acrylamide
US4032572A (en) Method for concentrating an acrylamide aqueous solution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees