JP2942911B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2942911B2
JP2942911B2 JP4345360A JP34536092A JP2942911B2 JP 2942911 B2 JP2942911 B2 JP 2942911B2 JP 4345360 A JP4345360 A JP 4345360A JP 34536092 A JP34536092 A JP 34536092A JP 2942911 B2 JP2942911 B2 JP 2942911B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4345360A
Other languages
Japanese (ja)
Other versions
JPH06168723A (en
Inventor
茂生 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18376076&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2942911(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP4345360A priority Critical patent/JP2942911B2/en
Publication of JPH06168723A publication Critical patent/JPH06168723A/en
Application granted granted Critical
Publication of JP2942911B2 publication Critical patent/JP2942911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池の
改良に関するもので、高容量の炭素負極を使用した非水
電解液二次電池を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a non-aqueous electrolyte secondary battery, and provides a non-aqueous electrolyte secondary battery using a high capacity carbon negative electrode.

【0002】[0002]

【従来の技術】非水電解液二次電池の正極活物質には、
二硫化チタンをはじめとしてリチウムコバルト複合酸化
物、スピネル型リチウムマンガン酸化物、五酸化バナジ
ウムおよび三酸化モリブデンなどの種々のものが検討さ
れている。中でも、リチウムコバルト複合酸化物( LixC
oO2 ) およびスピネル型リチウムマンガン酸化物(LixMn
2 O4 ) は、リチウムに対して4V以上のきわめて貴な電
位で充放電を行うため、正極として用いることで高い放
電電圧を有する電池が実現する。
2. Description of the Related Art The positive electrode active material of a non-aqueous electrolyte secondary battery includes:
Various compounds such as titanium disulfide, lithium cobalt composite oxide, spinel type lithium manganese oxide, vanadium pentoxide and molybdenum trioxide have been studied. Among them, lithium cobalt composite oxide (LixC
oO 2 ) and spinel lithium manganese oxide (LixMn
Since 2 O 4 ) charges and discharges lithium at a very noble potential of 4 V or more, a battery having a high discharge voltage can be realized by using it as a positive electrode.

【0003】非水電解液は、非プロトン性の有機溶媒に
電解質となる金属塩を溶解させたものが用いられてい
る。例えば、リチウム塩に関しては、 LiClO4 、LiP
F6 、LiBF4 、 LiAsF6 、LiCF3 SO3 、等をプロピレン
カーボネート、エチレンカーボネート、1,2-ジメトキシ
エタン、γ- ブチロラクトン、ジオキソラン、2-メチル
テトラヒドロフラン、ジエチルカーボネート、ジメチル
カーボネート、スルホラン等の単独溶媒あるいは、混合
溶媒に溶解させたものが使用されている。これら非水電
解液は、電池容器に注入されて使用されるが、多孔質の
セパレータに含浸したり、高分子量の樹脂を添加して高
粘性にしたり、ゲル化させて流動性をなくした状態で使
用されることもある。
As the non-aqueous electrolyte, a solution in which a metal salt serving as an electrolyte is dissolved in an aprotic organic solvent is used. For example, for lithium salts, LiClO 4 , LiP
F 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , etc. can be used alone such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, dioxolan, 2-methyltetrahydrofuran, diethyl carbonate, dimethyl carbonate, sulfolane, etc. A solution dissolved in a solvent or a mixed solvent is used. These non-aqueous electrolytes are used by being injected into a battery container, but are impregnated in a porous separator, are made highly viscous by adding a high molecular weight resin, or are gelled to lose fluidity. Sometimes used in.

【0004】非水電解液二次電池の負極活物質として、
従来より様々な物質が検討されてきたが、高エネルギー
密度が期待されるものとして、リチウム系の負極が注目
を浴びている。
As a negative electrode active material of a non-aqueous electrolyte secondary battery,
Conventionally, various substances have been studied, but a lithium-based negative electrode has attracted attention as a material expected to have a high energy density.

【0005】リチウムは高い起電力を有し、高エネルギ
ー密度が期待できるが、その高い反応性のために、電池
の安全性に問題があり、また、充電反応において微粒子
状の金属リチウムが発生しやすく、内部短絡や充放電効
率の低下が起こるという大きな問題があり、これを同時
に解決するものとして、リチウムイオンを保持するホス
ト物質として、例えば特開昭61-111907 号公報に記載さ
れているようなカーボン材料の結晶格子の層間に、リチ
ウムイオンを吸蔵、放出することが可能な炭素材料を用
いた、リチウムイオンタイプの二次電池が開発されてい
る。
[0005] Lithium has a high electromotive force and can be expected to have a high energy density. However, due to its high reactivity, there is a problem in the safety of the battery. There is a major problem that it is easy to cause internal short circuit and reduction of charge / discharge efficiency. As a solution to this problem, as a host material holding lithium ions, for example, as described in JP-A-61-111907. A lithium ion type secondary battery using a carbon material capable of inserting and extracting lithium ions between layers of a crystal lattice of a carbon material has been developed.

【0006】[0006]

【発明が解決しようとする課題】従来、非水電解液二次
電池の電解液としては、良好な電気電導度を得るため
に、主に環状エステルとしてプロピレンカーボネートを
用い、ジエチルカーボネート等の鎖状エステルの混合溶
媒に、電解質となるリチウム塩を溶解した有機電解液が
用いられていた関係上、負極炭素に関しては、完全に黒
鉛化したものは、プロピレンカーボネートとの反応性か
ら好ましくないとされていた。黒鉛化の程度は炭素結晶
の格子面間距離である d002 とC 軸方向の結晶子の長さ
Lcで表され、完全に黒鉛化したものは、 d002 =0.3354n
m 、Lc=100nm以上であるが、たとえば特開昭62-122066
、特開昭63-26953、特開昭63-69154、特開昭63-114056
、特開昭63-276873 など、 d002 =0.337nm以上、Lc=15
nm 以下と黒鉛化の充分でないもののほうが好ましい特
性を示すとされていた。しかし、これらの炭素材料は、
リチウムインターカレーション時の侵入サイトである六
角網状構造が発達していないために、放電容量は、150
〜200mAh/gしか得られず高容量化に対し問題があった。
Conventionally, propylene carbonate is mainly used as a cyclic ester as an electrolyte for a non-aqueous electrolyte secondary battery in order to obtain a good electric conductivity, and a chain form such as diethyl carbonate is used. Due to the use of an organic electrolyte solution in which a lithium salt serving as an electrolyte was dissolved in a mixed solvent of esters, it was considered that completely graphitized negative electrode carbon was not preferred due to its reactivity with propylene carbonate. Was. The degree of graphitization is the distance between the lattice planes of the carbon crystal d 002 and the length of the crystallite in the C-axis direction
Lc, fully graphitized, d 002 = 0.3354n
m, Lc = 100 nm or more, for example, JP-A-62-122066
JP-A-63-26953, JP-A-63-69154, JP-A-63-114056
, JP-A-63-276873, etc., d 002 = 0.337 nm or more, Lc = 15
It was said that those having a graphitization of less than nm and not sufficient exhibited more preferable properties. However, these carbon materials
Discharge capacity is 150
Only ~ 200 mAh / g was obtained, and there was a problem in increasing the capacity.

【0007】炭素材料を高容量化するためには、リチウ
ムのインターカレーションサイトの増大のため、炭素六
角網状構造を発達させる必要があり、炭素の結晶パラメ
ータとしては、X線広角回折法による(002) 面の面間隔
(d002 ) を0.3354nmに近づける必要があった。
In order to increase the capacity of a carbon material, it is necessary to develop a hexagonal carbon network structure in order to increase the number of lithium intercalation sites. 002) Face spacing
(d 002 ) needed to approach 0.3354 nm.

【0008】しかし、炭素六角網状構造を発達させた高
結晶性炭素材料に、電解液溶媒の環状エステルとしてプ
ロピレンカーボネートを用いると、充電時に炭素表面で
電解液の分解反応が起こり、リチウムのインターカレー
ションが進みにくくなり、容量が低下する。このため、
高容量の炭素材料の発見が遅れた。
However, when propylene carbonate is used as a cyclic ester of the electrolyte solvent in a highly crystalline carbon material having a carbon hexagonal network structure, a decomposition reaction of the electrolyte occurs on the carbon surface during charging, and lithium intercalation occurs. And the capacity is reduced. For this reason,
The discovery of high capacity carbon materials has been delayed.

【0009】そこで、炭素との反応性の低いエチレンカ
ーボネートを用い、最も結晶化の進んだ天然黒鉛につい
て放電容量を測定したところ、黒鉛のリチウム吸蔵理論
量とされる C6 Li(372mAh/g)に近い、初期放電容量が得
られた。ところが、天然黒鉛には不純物が多く含まれて
いるため、充放電を繰り返すサイクル特性において、サ
イクルの進行に伴い放電容量が低下するという問題を有
していた。
Therefore, when the discharge capacity of natural graphite, which has been most crystallized, was measured using ethylene carbonate having low reactivity with carbon, C 6 Li (372 mAh / g), which is considered to be the theoretical amount of lithium occlusion of graphite, was measured. , The initial discharge capacity was obtained. However, since natural graphite contains many impurities, there is a problem that the discharge capacity decreases as the cycle progresses in the cycle characteristics of repeating charge and discharge.

【0010】本発明は、このような従来の問題を解決
し、高容量の炭素負極を用いた非水電解液二次電池を提
供するものである。
The present invention solves such a conventional problem and provides a non-aqueous electrolyte secondary battery using a high-capacity carbon negative electrode.

【0011】[0011]

【課題を解決するための手段】これらの課題を解決する
ために、本発明は、繰り返し充放電可能な正極と、アル
カリ金属イオンを含む非水電解液と、アルカリ金属イオ
ンを吸蔵放出することが可能な炭素材料より成る負極を
具備した非水電解液二次電池において、前記炭素材料
が、X線広角回折法による(002)面の面間隔(d0
02)が0.3355nm以上、0.3358nm以
、平均粒子径が5μm〜50μm、表面積が4〜20
/gである人造黒鉛を炭素負極に使用することを特
徴とする非水電解液二次電池を提供するものである。
In order to solve these problems, the present invention provides a positive electrode which can be repeatedly charged and discharged, a non-aqueous electrolyte containing an alkali metal ion, and an occlusion / release of an alkali metal ion. In a non-aqueous electrolyte secondary battery provided with a negative electrode made of a carbon material capable of being used, the carbon material has a (002) plane spacing (d0) determined by X-ray wide-angle diffraction.
02) is 0.3355 nm or more and 0.3358 nm or less, the average particle diameter is 5 μm to 50 μm, and the surface area is 4 to 20 μm.
An object of the present invention is to provide a non-aqueous electrolyte secondary battery using m 2 / g artificial graphite for a carbon negative electrode.

【0012】[0012]

【作用】高容量が得られる天然黒鉛のサイクル特性を改
善するために、不純物の少ない高結晶性の人造黒鉛を検
討したところ、X線広角回折法による(002)面の面
間隔(d002)が0.3355nm以上、0.335
8nm以下、平均粒子径が5μm〜50μm、表面積が
4〜20m /gの範囲で、天然黒鉛と同等の放電容量
が得られ、天然黒鉛より優れた良好なサイクル特性が得
られた。
In order to improve the cycle characteristics of natural graphite which can provide a high capacity, high crystallinity artificial graphite with few impurities was examined. The plane spacing (d002) of the (002) plane by the X-ray wide-angle diffraction method was determined. 0.3355 nm or more, 0.335
8 nm or less , average particle diameter of 5 μm to 50 μm, surface area
In the range of 4 to 20 m 2 / g , a discharge capacity equivalent to natural graphite was obtained, and good cycle characteristics superior to natural graphite were obtained.

【0013】この天然黒鉛と、本発明の人造黒鉛の不純
物を分析した結果、天然黒鉛には、アルミニウム:700p
pm、鉄:500ppm、珪素:3000ppm 、マグネシウム:30pp
m 含まれていたが、本発明の人造黒鉛は、アルミニウ
ム:6ppm、鉄:40ppm 、珪素:90ppm 、マグネシウム:
1ppmであった。理由は明らかではないが、この不純物量
の差がサイクル性能に影響していると考えられる。
As a result of analyzing the impurities of the natural graphite and the artificial graphite of the present invention, the natural graphite contained 700 p
pm, iron: 500ppm, silicon: 3000ppm, magnesium: 30pp
m, but the artificial graphite of the present invention contained aluminum: 6 ppm, iron: 40 ppm, silicon: 90 ppm, and magnesium:
It was 1 ppm. Although the reason is not clear, it is considered that this difference in the amount of impurities affects the cycle performance.

【0014】また、上記人造黒鉛のC 軸方向の結晶子長
さ(Lc)は、100nm 以上であり、真密度は、2.24〜2.26g/
cm3 であった。
The artificial graphite has a crystallite length (Lc) in the C-axis direction of 100 nm or more and a true density of 2.24 to 2.26 g / cm 2.
It was cm 3.

【0015】次に本発明の人造黒鉛を実施例で示すよう
なバインダーと有機溶剤でペースト状にして塗布する負
極を考えた場合、均一に高密度に塗布するには炭素粒子
の粒子径と表面積が重要な因子となる。炭素材料の表面
積が大きく、粒子径が小さい場合は、炭素材料のかさ密
度が低くなり、電極への充填密度が小さくなる。また粒
子径が大きくなりすぎると均一に塗布することが困難に
なる。炭素材料の平均粒子径は5 μm 〜50μm 、表面積
は4 〜20 m2 /gが好ましい。
Next, considering a negative electrode in which the artificial graphite of the present invention is applied in the form of a paste with a binder and an organic solvent as shown in the examples, the particle diameter and the surface area of the carbon particles are required for uniform high-density application. Is an important factor. When the surface area of the carbon material is large and the particle diameter is small, the bulk density of the carbon material is low, and the packing density of the electrode is low. If the particle size is too large, it becomes difficult to apply the particles uniformly. The carbon material preferably has an average particle size of 5 μm to 50 μm and a surface area of 4 to 20 m 2 / g.

【0016】[0016]

【実施例】以下に、好適な実施例をもちいて本発明を説
明する。 [実施例1]実施例の高結晶炭素材料として石油系原料
より得られた人造黒鉛を用い、比較例として低結晶性炭
素、天然黒鉛を用いて、負極板を次の方法で作製した。
The present invention will be described below with reference to preferred embodiments. [Example 1] A negative electrode plate was produced by the following method using artificial graphite obtained from a petroleum-based material as the highly crystalline carbon material of the example and low crystalline carbon and natural graphite as a comparative example.

【0017】重量比で炭素材料88部と、結着剤のポリフ
ッ化ビニリデン12部と溶剤のN-メチル-2- ピロリドン15
0 部を混練してペースト状にし、厚さ 20 μm の銅箔に
塗布した後、乾燥し、厚さ 0.60mm の電極基板を作製し
た。この電極を、打ち抜いて、幅14mm、長さ52mmの短冊
状とした。
88 parts by weight of a carbon material, 12 parts of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone 15 as a solvent
0 parts were kneaded to form a paste, applied to a copper foil having a thickness of 20 μm, and then dried to produce an electrode substrate having a thickness of 0.60 mm. This electrode was punched out to form a strip having a width of 14 mm and a length of 52 mm.

【0018】この負極板の単極特性を測定した。対極と
してリチウムを使用し、1 モル濃度のLiPF6 を溶解した
エチレンカーボネートとジエチルカーボネートの等量混
合液中で充放電試験を行った。電流 3mAで、リチウム電
位に対して0Vまで充電した後、同じ 3mAの電流で1.2Vま
で放電した。表1に、炭素材料の物性と単極特性の測定
結果を示す。実施例の炭素材料は、天然黒鉛と同等の高
い放電容量を得た。
The monopolar characteristics of the negative electrode plate were measured. Using lithium as a counter electrode, a charge / discharge test was carried out in a mixed solution of ethylene carbonate and diethyl carbonate in which 1 mol of LiPF 6 was dissolved. After charging to 0 V with respect to lithium potential at a current of 3 mA, the battery was discharged to 1.2 V at the same current of 3 mA. Table 1 shows the measurement results of the physical properties and unipolar characteristics of the carbon material. The carbon material of the example obtained a high discharge capacity equivalent to that of natural graphite.

【0019】[0019]

【表1】 [実施例2]図1は、本発明の一実施例である角形電池
の要部断面図である。1 はステンレス鋼製の角形容器で
あり、その内部に負極2 と、セパレータ3 、正極4 を収
納している。負極2 は、銅箔に炭素材料を実施例1と同
様の方法で塗布し、作製したものである。非水電解液を
含浸したポリプロピレン製の多孔質セパレータ3 を介し
て、 LiCoO2 正極と交互に挿入されている。5 は容器蓋
であり、容器1 の開口部に周縁部で溶接されている。容
器蓋5 の中央部にはガスケット6を介してはとめ7 が固
定されており、正極端子9 が溶接されている。8 は正極
端子9 の内部に固定された安全弁であり、はとめ7 の開
口部を封止している。10は、電池の異常時に内部圧力が
上昇し、安全弁8 が作動した時の排気口である。11は、
負極2 の上部に設けた負極リードであり、電池蓋5の内
面に接続されている。12は、正極4 の上部に設けた正極
リードであり、正極接続片13を介してはとめ7 と接続し
ている。
[Table 1] [Embodiment 2] FIG. 1 is a sectional view of a main part of a prismatic battery according to an embodiment of the present invention. Reference numeral 1 denotes a rectangular container made of stainless steel, in which a negative electrode 2, a separator 3, and a positive electrode 4 are housed. The negative electrode 2 was prepared by applying a carbon material to a copper foil in the same manner as in Example 1. LiCoO 2 cathodes are alternately inserted through a porous separator 3 made of polypropylene impregnated with a non-aqueous electrolyte. Reference numeral 5 denotes a container lid, which is welded to the opening of the container 1 at the periphery. At the center of the container lid 5, a fitting 7 is fixed via a gasket 6, and a positive electrode terminal 9 is welded. Reference numeral 8 denotes a safety valve fixed inside the positive electrode terminal 9, and seals an opening of the eyelet 7. Reference numeral 10 denotes an exhaust port when the internal pressure increases when the battery is abnormal and the safety valve 8 operates. 11 is
A negative electrode lead provided on the upper part of the negative electrode 2 is connected to the inner surface of the battery cover 5. Reference numeral 12 denotes a positive electrode lead provided above the positive electrode 4, and is connected to the fitting 7 via a positive electrode connecting piece 13.

【0020】正極は、次のように作製した。重量比で正
極活物質である LiCoO2 を87部と、導電助剤のアセチレ
ンブラック 1.5部と、結着剤のポリフッ化ビニリデン1
1.5部を溶剤のN-メチル-2- ピロリドン100 部を混練し
てペースト状にし、厚さ 20 μm のアルミニウム箔に塗
布した後、乾燥、圧延、を施して、厚さ 0.40mm の正極
基板を作製した。この基板を打ち抜いて、幅14mm、長さ
52mmの短冊状の正極を得た。正極1 枚で、75mAh の放電
が可能である。
The positive electrode was manufactured as follows. 87 parts by weight of LiCoO 2 as a positive electrode active material, 1.5 parts of acetylene black as a conductive additive, and 1 part of polyvinylidene fluoride 1 as a binder
1.5 parts of a solvent, 100 parts of N-methyl-2-pyrrolidone, is kneaded into a paste, applied to a 20-μm-thick aluminum foil, dried and rolled to obtain a 0.40-mm-thick positive electrode substrate. Produced. Punch this board, width 14mm, length
A 52 mm strip-shaped positive electrode was obtained. A single positive electrode can discharge 75 mAh.

【0021】正極 6枚、負極 7枚で、二次電池を構成し
た。セパレータとして、厚さ0.10mm、目付け50 g/m2
ポリプロピレン不織布を用い、正極板を被覆し、周囲を
ヒートシールした。非水電解液として、エチレンカーボ
ネートとジエチルカーボネートの1:1 混合溶媒に、LiPF
6 1モル/リットルの割合で溶解したものを使用した。
実施例電池の寸法は、厚さ6mm 、幅16mm、高さ65mmであ
る。
A secondary battery was composed of six positive electrodes and seven negative electrodes. A positive electrode plate was coated using a nonwoven polypropylene fabric having a thickness of 0.10 mm and a basis weight of 50 g / m 2 as a separator, and the periphery thereof was heat sealed. As a non-aqueous electrolyte, LiPF in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate
6 A solution dissolved at a rate of 1 mol / liter was used.
The dimensions of the battery of the example were 6 mm in thickness, 16 mm in width, and 65 mm in height.

【0022】実施例電池を80mAの電流で端子電圧が4.1V
を示すまで充電した後、同じく80mAの電流で放電した。
表2に試作した電池の初期の1 サイクル目の放電容量と
エネルギー密度を、図2に上記充放電条件によるサイク
ル特性を示す。
The battery was operated at a current of 80 mA and a terminal voltage of 4.1 V.
And then discharged at a current of 80 mA.
Table 2 shows the discharge capacity and energy density in the initial first cycle of the prototype battery, and FIG. 2 shows the cycle characteristics under the above charging and discharging conditions.

【0023】[0023]

【表2】 本発明の電池は、高いエネルギー密度を有し、かつサイ
クルの進行に伴う放電容量の低下がみられず、サイクル
寿命に優れている。
[Table 2] The battery of the present invention has a high energy density, does not show a decrease in discharge capacity as the cycle proceeds, and has an excellent cycle life.

【0024】[0024]

【発明の効果】本発明によれば、繰り返し充放電可能な
正極と、アルカリ金属イオンを含む非水電解液と、アル
カリ金属イオンを吸蔵放出することが可能な炭素材料よ
り成る負極を具備した非水電解液二次電池において、前
記炭素材料のX線広角回折法による(002)面の面間
隔(d002)が0.3355nm以上、0.3358
nm以下、平均粒子径が5μm〜50μm、表面積が4
〜20m /gである人造黒鉛を炭素負極に使用するこ
とにより、高容量の非水電解液二次電池を提供すること
が可能となった。
According to the present invention, a non-aqueous battery comprising a positive electrode which can be repeatedly charged and discharged, a non-aqueous electrolyte containing alkali metal ions, and a negative electrode made of a carbon material capable of inserting and extracting alkali metal ions. In the aqueous electrolyte secondary battery, the carbon material has a (002) plane spacing (d002) of 0.3355 nm or more and 0.3358 by X-ray wide-angle diffraction.
nm or less , the average particle diameter is 5 μm to 50 μm, and the surface area is 4
By using artificial graphite having a capacity of 2020 m 2 / g for a carbon negative electrode, a high-capacity nonaqueous electrolyte secondary battery can be provided.

【0025】尚、実施例では、負極集電体に銅箔を用い
たが、ニッケルあるいはニッケル−銅合金、銀、鉄、ス
テンレス鋼等、使用するアルカリ金属に耐食性のある金
属であれば使用でき、形状は箔に限らず、発泡金属、金
属繊維フエルト、穿孔板などが使用できる。
Although a copper foil was used for the negative electrode current collector in the embodiment, any metal having corrosion resistance to the alkali metal used, such as nickel or a nickel-copper alloy, silver, iron, stainless steel, etc., can be used. The shape is not limited to a foil, and a foam metal, a metal fiber felt, a perforated plate, or the like can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電池の構造を示す断面
図。
FIG. 1 is a sectional view showing the structure of a battery according to an embodiment of the present invention.

【図2】本発明の実施例における電池のサイクル特性
図。
FIG. 2 is a cycle characteristic diagram of a battery according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 容器 2 負極 3 セパレータ 4 正極 5 容器蓋 6 ガスケット 7 はとめ 8 安全弁 9 正極端子 10 排気孔 11 負極リード 12 正極リード 13 正極接続片 DESCRIPTION OF SYMBOLS 1 Container 2 Negative electrode 3 Separator 4 Positive electrode 5 Container lid 6 Gasket 7 Stopper 8 Safety valve 9 Positive electrode terminal 10 Exhaust hole 11 Negative lead 12 Positive electrode lead 13 Positive electrode connection piece

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】繰り返し充放電可能な正極と、アルカリ金
属イオンを含む非水電解液と、アルカリ金属イオンを吸
蔵放出することが可能な炭素材料より成る負極を具備し
た非水電解液二次電池において、前記炭素材料のX線広
角回折法による(002)面の面間隔(d002)が
0.3355nm以上、0.3358nm以下、平均粒
子径が5μm〜50μm、表面積が4〜20m /g
ある人造黒鉛を負極に使用することを特徴とする非水電
解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode that can be repeatedly charged and discharged, a non-aqueous electrolyte containing alkali metal ions, and a negative electrode made of a carbon material capable of inserting and extracting alkali metal ions. In the above, the plane spacing (d002) of the (002) plane of the carbon material measured by the X-ray wide angle diffraction method is 0.3355 nm or more and 0.3358 nm or less ,
A non-aqueous electrolyte secondary battery characterized in that artificial graphite having a diameter of 5 μm to 50 μm and a surface area of 4 to 20 m 2 / g is used for a negative electrode.
JP4345360A 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2942911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345360A JP2942911B2 (en) 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345360A JP2942911B2 (en) 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06168723A JPH06168723A (en) 1994-06-14
JP2942911B2 true JP2942911B2 (en) 1999-08-30

Family

ID=18376076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345360A Expired - Lifetime JP2942911B2 (en) 1992-11-30 1992-11-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2942911B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310144A (en) * 1993-04-23 1994-11-04 Yuasa Corp Secondary battery
JP2006092760A (en) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd Method of manufacturing negative electrode plate for nonaqueous secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884746B2 (en) * 1990-09-03 1999-04-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH06168723A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US20110064980A1 (en) Cathodic active material , cathode, and nonaqueous secondary battery
KR20160112947A (en) Electrode, nonaqueous electrolyte battery and battery pack
JP5245201B2 (en) Negative electrode, secondary battery
WO2014010476A1 (en) Electrode for lithium secondary cell, method for manufacturing same, lithium secondary cell, and method for manufacturing same
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery
JPH08115742A (en) Lithium secondary battery
JP3769647B2 (en) Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP3140880B2 (en) Lithium secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP2792373B2 (en) Non-aqueous electrolyte secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
JP5126851B2 (en) Lithium-containing transition metal chalcogenide, method for producing the same, and method for producing a non-aqueous secondary battery
JP2942911B2 (en) Non-aqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3720959B2 (en) Secondary battery electrode material
JP3329162B2 (en) Non-aqueous electrolyte secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery