JP2939375B2 - Electromagnetic pump - Google Patents

Electromagnetic pump

Info

Publication number
JP2939375B2
JP2939375B2 JP26945891A JP26945891A JP2939375B2 JP 2939375 B2 JP2939375 B2 JP 2939375B2 JP 26945891 A JP26945891 A JP 26945891A JP 26945891 A JP26945891 A JP 26945891A JP 2939375 B2 JP2939375 B2 JP 2939375B2
Authority
JP
Japan
Prior art keywords
coil
heat
electromagnetic pump
resistant
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26945891A
Other languages
Japanese (ja)
Other versions
JPH05111238A (en
Inventor
正好 中崎
敏高 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26945891A priority Critical patent/JP2939375B2/en
Publication of JPH05111238A publication Critical patent/JPH05111238A/en
Application granted granted Critical
Publication of JP2939375B2 publication Critical patent/JP2939375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アニュラ・リニア型の
三相誘導電磁ポンプに係り、特に冷却材として液体金属
を使用する液体金属冷却型原子炉の冷却材循環ポンプ等
の高温環境下で使用される電磁ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an annular linear type three-phase induction electromagnetic pump, and more particularly to a high-temperature environment such as a coolant circulation pump for a liquid metal-cooled reactor using liquid metal as a coolant. It relates to the electromagnetic pump used.

【0002】[0002]

【従来の技術】冷却材として液体金属(液体金属として
はナトリウムが使用されることが多いため以下液体ナト
リウムと記す)を使用する液体ナトリウム冷却型原子炉
の液体ナトリウム冷却材循環ポンプ等の高温環境下で使
用される大容量三相誘導電磁ポンプは、構造上大別して
フラット・リニア型とアニュラ・リニア型に分けられる
が、本発明においてはアニュラ・リニア型を対象とす
る。このアニュラ・リニア型電磁ポンプは流路断面が円
環状であることからAPIL(Annular Liner InductionPun
p)と呼ばれている。ダクト構造の信頼性、安全性が高い
ので大容量の原子炉冷却材循環ポンプに適する。図5の
斜視断面図に本発明と従来例とに共通したアニュラ・リ
ニア型電磁ポンプの基本的な構造を示すが、構造上の特
徴として次の点が挙げられる。 (1) ダクトは、ステンレス製の外側ダクト1と内側ダク
ト2からなる同心二重管でアニュラス流路3を形成して
いる。このダクト形状が円環状となっており、強度的に
優れているので信頼性が高い。 (2) 固定子4は、外側ダクト1の外側に設けられ、放射
状に配置された複数の積層固定子鉄心5とリング状の耐
熱コイル6からなっている。 (3) 内側ダクト2の内部には、磁気回路を形成するため
の積層内部鉄心7が納められている。 (4) 液体であるナトリウムは、アニュラス流路3を矢印
のように流れる。三相電磁ポンプの耐熱コイル6は、流
の方向に沿って各相グループ毎に並べられている。即
ち、リング状の各耐熱コイル6は、三相交流のU相,V
相,W相の順に繰返し配置され、このU相,V相,W相
の耐熱コイル6は直列に結線されている。さらに、全体
が外側ダクト1との間でケーシング8により覆って密封
されている。前記耐熱コイル6の各相に三相交流を通電
することにより移動磁界が生じ、誘導電流との相互作用
により液体ナトリウムに推力が発生することになる。な
お、アニュラ・リニア型電磁ポンプの基本的な形式とし
ては、上記の外側ダクト1の外側に放射状の積層固定子
鉄心5とリング状の耐熱コイル6が設けられ、また内側
ダクト2の内部には、磁気回路を形成するための積層内
部鉄心7が納められているシングルステータ(単固定
子)型電磁ポンプと、この他に外側ダクト1の外側に放
射状の積層固定子鉄心5とリング状の耐熱コイル6が設
けられていると同時に、内側ダクト2の内部にも放射状
の積層固定子鉄心とリング状の耐熱コイルが設けられて
いるダブルステータ(複固定子)型電磁ポンプがある。
2. Description of the Related Art A high temperature environment such as a liquid sodium coolant circulating pump of a liquid sodium cooled reactor using liquid metal as a coolant (sodium is often used as a liquid metal). The large-capacity three-phase induction electromagnetic pump used below is roughly classified into a flat linear type and an annular linear type in terms of structure. In the present invention, the annular linear type is targeted. This annular linear electromagnetic pump has an annular liner induction
p). High reliability and safety of duct structure make it suitable for large capacity reactor coolant pump. FIG. 5 is a perspective sectional view showing the basic structure of an annular linear electromagnetic pump common to the present invention and the conventional example. The structural features include the following. (1) The duct forms an annulus flow path 3 with a concentric double pipe composed of an outer duct 1 and an inner duct 2 made of stainless steel. This duct has an annular shape and is excellent in strength, so that the reliability is high. (2) The stator 4 is provided outside the outer duct 1, and includes a plurality of radially arranged laminated stator cores 5 and a ring-shaped heat-resistant coil 6. (3) Inside the inner duct 2, a laminated inner core 7 for forming a magnetic circuit is accommodated. (4) The liquid sodium flows through the annulus flow path 3 as shown by the arrow. The heat-resistant coils 6 of the three-phase electromagnetic pump are arranged in each phase group along the flow direction. That is, each of the ring-shaped heat-resistant coils 6 is a three-phase alternating current U-phase, V-phase.
The heat-resistant coils 6 of the U-phase, V-phase, and W-phase are connected in series. Furthermore, the whole is covered with a casing 8 between the outer duct 1 and hermetically sealed. When a three-phase alternating current is applied to each phase of the heat-resistant coil 6, a moving magnetic field is generated, and an interaction with the induced current generates a thrust in the liquid sodium. As a basic form of the annular linear electromagnetic pump, a radial laminated stator core 5 and a ring-shaped heat-resistant coil 6 are provided outside the outer duct 1, and inside the inner duct 2. A single stator (single stator) type electromagnetic pump in which a laminated internal core 7 for forming a magnetic circuit is housed, and a radial laminated stator core 5 and a ring-shaped heat-resistant outside the outer duct 1. At the same time as the coil 6 is provided, there is a double stator (double stator) type electromagnetic pump in which a radial laminated stator core and a ring-shaped heat-resistant coil are also provided inside the inner duct 2.

【0003】本発明は、この両方の形式の電磁ポンプに
共通であるので、以下シングルステータ型電磁ポンプに
ついて説明する。従来の電磁ポンプの耐熱コイル6の構
造を図6及び図7により説明する。図6の耐熱コイル斜
視図に示すように、コイル導体9が必要な数だけリング
状に巻かれ、その外側はコイル主絶縁材10が巻かれてお
り、三相誘導電磁ポンプの場合は3か所からコイルリー
ド端子11が引出されている。図7は耐熱コイルの断面図
で、コイル導体9とコイル主絶縁材10の断面が示されて
いる。なお、コイル導体9は複数の素線が必要な数だけ
リング状に巻かれているが、ここでは個々の素線の断面
は示していない。さらに、リング状の耐熱コイル6の一
部を示す斜視断面図を図8に示す。通常の電磁ポンプの
耐熱コイル6では、導体に銅あるいは耐熱性に優れた銅
合金が用いられている。また液体ナトリウム冷却型原子
炉の液体ナトリウム冷却材循環ポンプ等に使用される電
磁ポンプでは、高温環境で運転されるために従来の有機
系の絶縁材料は使用できず、コイル絶縁材としてセラミ
ック系材料が用いられる。その基本的構成は、コイル導
体9の外側に絶縁性の良好なマイカテープ12を巻き、さ
らにこの上にセラミックテープ13を重ねて巻いて、接着
剤を塗布して固定する構成としていた。このマイカテー
プ12は、図9(A) の斜視図に示すようにアルミナあるい
はガラスクロスの裏打材121の上に集成マイカ122 を接
着剤123 により接着して構成した耐熱性の良好なもので
ある。なお、セラミックテープ13の形状は図9(B) の斜
視図で示す。
Since the present invention is common to both types of electromagnetic pumps, a single stator type electromagnetic pump will be described below. The structure of the heat-resistant coil 6 of the conventional electromagnetic pump will be described with reference to FIGS. As shown in the perspective view of the heat-resistant coil in FIG. 6, the required number of coil conductors 9 are wound in a ring shape, and the outside of the coil conductor 9 is wound with a coil main insulating material 10. In the case of a three-phase induction electromagnetic pump, three coils are used. The coil lead terminal 11 is drawn out from the place. FIG. 7 is a cross-sectional view of the heat-resistant coil, showing a cross section of the coil conductor 9 and the coil main insulating material 10. The coil conductor 9 is formed by winding a required number of wires in a ring shape, but the cross section of each wire is not shown here. FIG. 8 is a perspective sectional view showing a part of the ring-shaped heat-resistant coil 6. In the heat-resistant coil 6 of an ordinary electromagnetic pump, copper or a copper alloy having excellent heat resistance is used for the conductor. In addition, the electromagnetic pump used for the liquid sodium coolant circulation pump of a liquid sodium cooled reactor cannot be used with conventional organic insulating materials because it is operated in a high-temperature environment. Is used. The basic configuration is such that a mica tape 12 having good insulating properties is wrapped around the outside of the coil conductor 9, and a ceramic tape 13 is further wrapped around the mica tape 12, and an adhesive is applied and fixed. The mica tape 12 has good heat resistance, as shown in the perspective view of FIG. 9A, in which the mica 122 is adhered to an alumina or glass cloth backing material 121 with an adhesive 123. . The shape of the ceramic tape 13 is shown in the perspective view of FIG.

【0004】[0004]

【発明が解決しようとする課題】通常コイル導体9とし
て用いられている銅あるいは銅合金の熱膨張率は13〜15
×10-6[1/度]程度であり、また絶縁材として用いら
れるセラミック系材料の熱膨張率は3〜5×10-6程度で
ある。このため比較的小型の電磁ポンプにおいては、リ
ング状の耐熱コイル6の直径が小さいので支障が生じな
いが、大型の電磁ポンプの場合では耐熱コイル6が大型
化して、熱膨張率の差が大きくなりこの熱膨張差を吸収
しきれない場合には、コイル主絶縁材10に亀裂が発生し
て絶縁性が低下するという課題があった。
The coefficient of thermal expansion of copper or copper alloy which is usually used as the coil conductor 9 is 13-15.
Is about × 10 -6 [1 / degree, and the thermal expansion coefficient of the ceramic material used as the insulating material is approximately 3 to 5 × 10 -6. For this reason, in a relatively small electromagnetic pump, no problem occurs because the diameter of the ring-shaped heat-resistant coil 6 is small, but in the case of a large electromagnetic pump, the heat-resistant coil 6 becomes large and the difference in the coefficient of thermal expansion is large. If the difference in thermal expansion cannot be completely absorbed, there is a problem that a crack is generated in the coil main insulating material 10 and the insulating property is reduced.

【0005】本発明の目的とするところは、コイル導体
の熱膨脹に追従した伸縮性を有する絶縁材あるいは、コ
イル導体と主絶縁材との間に空隙を設けた絶縁を施し
て、高温環境下での使用によりコイル導体が膨脹しても
絶縁材に亀裂が生じず絶縁性の低下しない電磁ポンプを
提供することにある。
An object of the present invention is to provide an insulating material having elasticity following the thermal expansion of a coil conductor, or to provide insulation by providing a gap between the coil conductor and a main insulating material, so that the insulating material can be used in a high-temperature environment. It is an object of the present invention to provide an electromagnetic pump in which the insulating material is not cracked even if the coil conductor expands due to the expansion of the coil conductor, and the insulating property does not decrease.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、放射状の固定子鉄心とリング状の耐熱コイ
ルをケーシング内に有するアニュラ・リニア型の電磁ポ
ンプにおいて、前記耐熱コイルがコイル導体の外側に
セラミッククロスを裏打材としたはがしマイカテープを
接着剤を用いずに巻回した主絶縁と、この主絶縁の上に
施したセラミック繊維の袋編み状の保護絶縁有する
構成とする。あるいは、前記耐熱コイルコイル導体の
リングに低融点ガラス管を配してセラミック系の主
絶縁材で包囲した後に、焼成して前記低融点ガラス管の
溶融縮減からコイル導体のリング外周と主絶縁材との間
にコイル導体の熱膨張による逃げ代となる空隙を形成
た構成とする。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
The present invention relates to an annular linear electromagnetic pump having a radial stator core and a ring-shaped heat-resistant coil in a casing, wherein the heat-resistant coil has a peeling mica tape using a ceramic cloth as a backing material outside a coil conductor. Is wound without using an adhesive, and on top of this main insulation
And a bag-knitted protective insulating ceramic fiber which has been subjected
Configuration . Alternatively, the coil conductor of the heat-resistant coil
After surrounded by the main insulation of the ceramic by arranging the low melting point glass tube in a ring outside the circumference, the coil conductors between said calcined from melt reduction of the low melting point glass tube and the ring outer periphery of the coil conductor and the main insulating material To form a space that allows for escape due to the thermal expansion of
Configuration .

【0007】[0007]

【作用】電磁ポンプが高温環境におかれると、コイル導
体が膨脹する。これに伴い絶縁材のはがしマイカは、そ
の保有するへき開性によるすべりが生じて、絶縁性が低
下する原因の亀裂生じない。マイカテープの裏打材は
無機質のセラミックであるので、溶融や分解を起こさず
マイカを安定に保持する。さらに、主絶縁の外側に施し
たセラミックの繊維による伸縮自由な袋編み状の保護絶
縁で、コイル導体とはがしマイカテープの膨脹差を吸収
し、また外傷から保護する。またコイル導体の熱膨脹に
よる伸びは、コイル導体のリングに配した低融点ガ
ラス管の溶融縮減によって形成されたコイル主絶縁材と
の間の空隙を自由に移動して、コイル主絶縁材に応力を
与えず、従ってコイル絶縁材に亀裂生じることが
い。
When the electromagnetic pump is placed in a high temperature environment, the coil conductor expands. Mica stripped of insulation due to this, slippage occurs due to cleavage of it holds, insulation resistance is not cracks caused to decrease. The backing material of mica tape is
Since it is an inorganic ceramic, it does not melt or decompose
Keep mica stable. In addition, the flexible insulation of the knitted bag made of ceramic fiber applied to the outside of the main insulation absorbs the difference in the expansion of the mica tape.
And protect against trauma . The elongation due to thermal expansion of the coil conductors, the gap between the coil main insulating material formed by melt reduction of the low melting point glass tube placed in a ring outside the circumference of the coil conductor to move freely, the coil main insulation without giving stress, thus Rukoto is Do <br/> physician crack the coil main insulation.

【0008】[0008]

【実施例】本発明の一実施例を図面を参照して説明す
る。図1は耐熱コイルの一部を示す斜視断面図で、耐熱
コイル20は、液体ナトリウム冷却型原子炉の液体ナトリ
ウム冷却材循環ポンプ等のように高温環境下で使用され
るアニュラ・リニア型の電磁ポンプのリング状固定子コ
イルで、コイル素線をリング状に巻いたコイル導体9の
外側の主絶縁には接着剤を用いない、はがしマイカテー
プ21と、その外側には伸縮自由なセラミック繊維を袋編
みにした保護絶縁21で被覆して構成されている。図2は
絶縁材の一部を示す斜視図で、図2(A) の斜視図は前記
はがしマイカテープ21の一部を示し、ガラスクロスある
いはセラミッククロス等からなる裏打材211 に、はがし
マイカ212 を張合わせて構成したもので、裏打材211 と
はがしマイカ212 との境界面における接着強度は期待し
ていない。このはがしマイカテープ21を図1に示すよう
に巻線を終了したコイル導線9の外側にラップ巻し、さ
らに、このはがしマイカテープ21の固定のために、図2
(B) の斜視図に示す袋編みの保護絶縁22で覆って側面等
で縫合する。この保護絶縁22は、アルミナ繊維等耐熱性
の高いセラミック系繊維を袋編みにして、コイル導体9
の熱膨脹に伴うコイル寸法に変化があっても、はがしマ
イカテープ21の固定を堅固に行うものである。次に上記
一実施例の構成による作用について説明する。コイル導
体9が 600℃程度の高温におかれた場合に、コイル導体
9の熱膨張によりコイル導体9は大きくなる。この場合
に、はがしマイカテープ20のはがしマイカ212 のへき開
面で滑りが生ずるが、マイカりん片は互いに重なってお
り絶縁機能上は支障がない。また、はがしマイカテープ
20の周囲は、伸縮自由の袋編みの保護絶縁22で被覆され
ているため、熱的荷重あるいは振動荷重等による脱落は
発生せず、安定した絶縁機能を維持することができる。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective sectional view showing a part of a heat-resistant coil. A heat-resistant coil 20 is an annular linear electromagnetic type used in a high-temperature environment such as a liquid sodium coolant circulation pump of a liquid sodium-cooled reactor. In the ring-shaped stator coil of the pump, no adhesive is used for the main insulation on the outer side of the coil conductor 9 in which the coil wire is wound in a ring shape. It is constituted by covering with a protective insulation 21 formed in a bag. FIG. 2 is a perspective view showing a part of the insulating material. FIG. 2A is a perspective view showing a part of the peeling mica tape 21. The peeling mica 212 is attached to a backing material 211 made of glass cloth or ceramic cloth. The adhesive strength at the boundary surface between the backing material 211 and the mica 212 is not expected. As shown in FIG. 1, the peeled mica tape 21 is wrapped around the coil wire 9 whose winding has been completed, and furthermore, in order to fix the peeled mica tape 21, FIG.
(B) is covered with a protective insulation 22 of a bag knitting shown in the perspective view and sewn on the side and the like. The protective insulation 22 is made of a highly heat-resistant ceramic fiber such as an alumina fiber in a bag-knitted form, and
The peeling mica tape 21 can be firmly fixed even if the coil dimensions change due to the thermal expansion. Next, the operation of the configuration of the above embodiment will be described. When the coil conductor 9 is exposed to a high temperature of about 600 ° C., the coil conductor 9 becomes large due to thermal expansion of the coil conductor 9. In this case, the peeling of the mica tape 20 causes a slip on the cleaved surface of the mica 212, but the mica pieces overlap each other, so that there is no problem in the insulating function. Also, peel mica tape
Since the periphery of the cover 20 is covered with the protective insulation 22 made of a free-stretch bag, no drop due to a thermal load or a vibration load occurs, and a stable insulation function can be maintained.

【0009】図3及び図4は本発明の他の実施例を示
す。図3の耐熱コイル斜視図に示すように、電磁ポンプ
の耐熱コイル30はコイル導体9が必要な数だけリング状
に巻かれ、その外側に環状の低融点ガラス管31を配し
て、周囲にコイル主絶縁材10が巻かれて構成されてい
る。また三相誘導電磁ポンプの場合には3か所からコイ
ルリード端子11を引出す。図4は耐熱コイルの断面図
で、図4(A) は耐熱コイル組立て後を示し、コイル導体
9の外側に密着して低融点ガラス管31が配設され、コイ
ル主絶縁材10で覆っている。この耐熱コイル30はコイル
主絶縁材10としてセラミック系材料が使用されるため、
耐熱コイル30組立て後に高温の焼成炉に入れて適切な温
度でセラミック系絶縁材を焼成する。この絶縁材焼成時
には、耐熱コイル30の全体を図示しない型枠に収納して
焼成炉内に入れる。このため図4(B) に示すように、コ
イル導体9は熱膨張によって外側に拡大されるが、コイ
ル導体9の外側に配した低融点ガラス管31は軟化溶融し
て押し潰され、内側空間32aが形成される。従って熱膨
張率が小さいコイル主絶縁材10に過大な応力を与えずに
焼成を行う。絶縁材焼成が終了して温度が下がると、図
4(C) に示す状態となる。この時コイル導体9も常温状
態の大きさに戻るが、焼成されたコイル主絶縁材10内で
は前記低融点ガラス管31は押し潰されたままの状態で残
るため、コイル導体9との間に外側空隙32bが形成され
る。次にこの図4(C) のように構成された耐熱コイル30
を電磁ポンプに適用すると、コイル導体9が高温になっ
た場合にコイル導体9は熱膨張により拡大するが、この
膨脹分は外側空隙32bにおいて自由に伸び縮みして、熱
膨張率が小さいコイル主絶縁材10と直接干渉せず、従っ
てこのコイル主絶縁材10に亀裂等が生じて絶縁性が低下
することがない。
FIGS. 3 and 4 show another embodiment of the present invention. As shown in the perspective view of the heat-resistant coil in FIG. 3, the heat-resistant coil 30 of the electromagnetic pump is formed by winding a required number of coil conductors 9 in a ring shape, and an annular low-melting-point glass tube 31 is arranged on the outside thereof. The coil main insulating material 10 is wound. In the case of a three-phase induction electromagnetic pump, the coil lead terminals 11 are drawn from three places. FIG. 4 is a cross-sectional view of the heat-resistant coil, and FIG. 4A shows a state after the heat-resistant coil is assembled. A low-melting glass tube 31 is provided in close contact with the outside of the coil conductor 9, and is covered with the coil main insulating material 10. I have. Since the heat-resistant coil 30 uses a ceramic material as the coil main insulating material 10,
After assembling the heat-resistant coil 30, it is placed in a high-temperature firing furnace and the ceramic insulating material is fired at an appropriate temperature. During firing of the insulating material, the entire heat-resistant coil 30 is housed in a mold (not shown) and placed in a firing furnace. Therefore, as shown in FIG. 4 (B), the coil conductor 9 expands outward due to thermal expansion, but the low melting point glass tube 31 disposed outside the coil conductor 9 is softened and melted and crushed to form an inner space. 32a is formed. Therefore, firing is performed without giving excessive stress to the coil main insulating material 10 having a small coefficient of thermal expansion. When the temperature is lowered after the completion of the firing of the insulating material, the state shown in FIG. At this time, the coil conductor 9 also returns to the normal temperature state, but the low melting point glass tube 31 remains crushed in the fired coil main insulating material 10, so that the coil conductor 9 is located between the coil conductor 9 and the coil conductor 9. An outer space 32b is formed. Next, the heat-resistant coil 30 constructed as shown in FIG.
Is applied to an electromagnetic pump, when the coil conductor 9 becomes high temperature, the coil conductor 9 expands due to thermal expansion. However, the expansion part expands and contracts freely in the outer gap 32b, and the coil main body having a small thermal expansion coefficient The coil main insulating material 10 does not directly interfere with the insulating material 10, so that cracks and the like do not occur in the coil main insulating material 10 and the insulating property does not decrease.

【0010】[0010]

【発明の効果】以上本発明によると、液体ナトリウム冷
却材循環ポンプ等の高温環境下で使用される大容量の電
磁ポンプにおけるリング状のコイルにおいて、高温状態
になった時のコイル導体の熱膨張による伸び及び冷却時
の収縮量が外周に被覆された絶縁材との違いにより、絶
縁材が破損することが防止でき、絶縁性が低下しないの
で電磁ポンプ及びこれを採用した原子力プラントの安全
性、信頼性が向上する効果がある。
As described above, according to the present invention, in a ring-shaped coil of a large-capacity electromagnetic pump used in a high-temperature environment such as a liquid sodium coolant circulation pump, thermal expansion of a coil conductor at a high temperature state The amount of elongation and shrinkage during cooling due to the difference from the insulating material coated on the outer periphery can prevent the insulating material from being damaged, and the insulation does not decrease, so the safety of the electromagnetic pump and the nuclear power plant employing this, This has the effect of improving reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の耐熱コイルの一部を示す斜
視断面図。
FIG. 1 is a perspective sectional view showing a part of a heat-resistant coil according to one embodiment of the present invention.

【図2】本発明の一実施例の絶縁材の一部を示す斜視図
(図2(A) ははがしマイカテープの斜視図、図2(B) は
袋編み保護絶縁の斜視図)。
FIG. 2 is a perspective view showing a part of an insulating material according to one embodiment of the present invention (FIG. 2 (A) is a perspective view of a peeling mica tape, and FIG. 2 (B) is a perspective view of a bag-knitting protective insulation).

【図3】本発明の他の実施例の耐熱コイルの斜視図。FIG. 3 is a perspective view of a heat-resistant coil according to another embodiment of the present invention.

【図4】本発明の他の実施例の耐熱コイルの断面図(図
4(A) は組立てた耐熱コイルの断面図、図4(B) は焼成
中の耐熱コイルの断面図、図4(C) は焼成終了後の耐熱
コイルの断面図)。
FIG. 4 is a cross-sectional view of a heat-resistant coil according to another embodiment of the present invention (FIG. 4 (A) is a cross-sectional view of an assembled heat-resistant coil, FIG. 4 (B) is a cross-sectional view of a heat-resistant coil being fired, FIG. C) is a cross-sectional view of the heat-resistant coil after firing.

【図5】アニュラ・リニア型電磁ポンプの斜視断面図。FIG. 5 is a perspective sectional view of an annular linear electromagnetic pump.

【図6】従来の耐熱コイルの斜視図。FIG. 6 is a perspective view of a conventional heat-resistant coil.

【図7】従来の耐熱コイルの断面図。FIG. 7 is a cross-sectional view of a conventional heat-resistant coil.

【図8】従来の耐熱コイルの一部を示す斜視断面図。FIG. 8 is a perspective sectional view showing a part of a conventional heat-resistant coil.

【図9】従来の絶縁材の一部を示す斜視図(図9(A) は
マイカテープの斜視図、図9(B) はセラミックテープの
斜視図)。
FIG. 9 is a perspective view showing a part of a conventional insulating material (FIG. 9 (A) is a perspective view of a mica tape, and FIG. 9 (B) is a perspective view of a ceramic tape).

【符号の説明】 1…外側ダクト、2…内側ダクト、3…アニュラス流
路、4…固定子、5…積層固定子鉄心、7…積層内部鉄
心、8…ケーシング、9…コイル導体、10…コイル主絶
縁材、20,30…耐熱コイル、21…はがしマイカテープ、
22…保護絶縁、31…低融点ガラス管、32a…内側空隙、
32b…外側空隙。
[Description of Signs] 1 ... Outer duct, 2 ... Inner duct, 3 ... Annulus flow path, 4 ... Stator, 5 ... Laminated stator core, 7 ... Laminated inner core, 8 ... Casing, 9 ... Coil conductor, 10 ... Coil main insulation, 20, 30 ... heat-resistant coil, 21 ... peeling mica tape,
22: protective insulation, 31: low melting point glass tube, 32a: inner space,
32b: Outside gap.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放射状の固定子鉄心とリング状の耐熱コ
イルをケーシング内に有するアニュラ・リニア型の電磁
ポンプにおいて、前記耐熱コイルがコイル導体の外側
にセラミッククロスを裏打材としたはがしマイカテープ
を接着剤を用いずに巻回した主絶縁と、この主絶縁の
施したセラミック繊維の袋編み状の保護絶縁有す
ことを特徴とする電磁ポンプ。
1. An annular linear electromagnetic pump having a radial stator core and a ring-shaped heat-resistant coil in a casing, wherein the heat-resistant coil has a peeling mica tape having a ceramic cloth as a backing material outside a coil conductor. having a main insulating wound without using an adhesive, and a bag-knitted protective insulating ceramic fibers were applied over this main insulation
Electromagnetic pump, characterized in that that.
【請求項2】 放射状の固定子鉄心とリング状の耐熱コ
イルをケーシング内に有するアニュラ・リニア型の電磁
ポンプにおいて、前記耐熱コイルコイル導体のリング
に低融点ガラス管を配してセラミック系の主絶縁材
で包囲した後に、焼成して前記低融点ガラス管の溶融縮
減からコイル導体のリング外周と主絶縁材との間にコイ
ル導体の熱膨張による逃げ代となる空隙を形成したこと
を特徴とする電磁ポンプ。
2. A radial stator core and the ring-shaped heat coil in annular linear type electromagnetic pump having a casing, a low-melting glass tube in a ring <br/> outside periphery of the coil conductor of the heat coil After being arranged and surrounded by a ceramic-based main insulating material, it is fired to provide a clearance between the outer periphery of the coil conductor ring and the main insulating material due to the thermal reduction of the low-melting glass tube due to thermal expansion of the coil conductor. An electromagnetic pump comprising:
JP26945891A 1991-10-17 1991-10-17 Electromagnetic pump Expired - Lifetime JP2939375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26945891A JP2939375B2 (en) 1991-10-17 1991-10-17 Electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26945891A JP2939375B2 (en) 1991-10-17 1991-10-17 Electromagnetic pump

Publications (2)

Publication Number Publication Date
JPH05111238A JPH05111238A (en) 1993-04-30
JP2939375B2 true JP2939375B2 (en) 1999-08-25

Family

ID=17472720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26945891A Expired - Lifetime JP2939375B2 (en) 1991-10-17 1991-10-17 Electromagnetic pump

Country Status (1)

Country Link
JP (1) JP2939375B2 (en)

Also Published As

Publication number Publication date
JPH05111238A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
KR970006068B1 (en) Method for producing inner stators for electromagnetic pumps
US5530308A (en) Electromagnetic pump stator coil
JP4298450B2 (en) Superconducting cable terminal structure
JP2013135611A (en) Electric machine with encapsulated end turns
JP2939375B2 (en) Electromagnetic pump
EP0387072A1 (en) Superconducting coil apparatus
JPH04272685A (en) Sheath heater
JPS61113218A (en) Superconductive magnet
JPS63196016A (en) Superconducting coil
KR100498972B1 (en) High temperature superconducting cable and process for manufacturing the same
US6577028B2 (en) High temperature superconducting rotor power leads
JP2000114027A (en) Superconducting coil device
JPH0950719A (en) Superconducting power cable
JP2001128404A (en) Motor
JP2002008459A (en) Superconducting cable
JP2702993B2 (en) Heat resistant drive coil and control rod drive
JPH0595666A (en) Electromagnetic pump
JP2001244108A (en) Superconducting coil of induction apparatus
JPH0557821B2 (en)
JP2002299019A (en) Heating element heat-retaining type induction heater
JPH059781Y2 (en)
JPS6119089B2 (en)
JP2024039332A (en) Rotor of superconducting rotary electric machine, and superconducting rotary electric machine
JP2001245450A (en) Protection method for lead wire of stator coil of electromagnetic pump
JP2760640B2 (en) Electromagnetic pump