JP2702993B2 - Heat resistant drive coil and control rod drive - Google Patents

Heat resistant drive coil and control rod drive

Info

Publication number
JP2702993B2
JP2702993B2 JP63261657A JP26165788A JP2702993B2 JP 2702993 B2 JP2702993 B2 JP 2702993B2 JP 63261657 A JP63261657 A JP 63261657A JP 26165788 A JP26165788 A JP 26165788A JP 2702993 B2 JP2702993 B2 JP 2702993B2
Authority
JP
Japan
Prior art keywords
coil
control rod
heat
ceramic
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63261657A
Other languages
Japanese (ja)
Other versions
JPH02108998A (en
Inventor
高志 井口
正雄 高橋
省三 田口
愼一 村川
達彦 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63261657A priority Critical patent/JP2702993B2/en
Publication of JPH02108998A publication Critical patent/JPH02108998A/en
Application granted granted Critical
Publication of JP2702993B2 publication Critical patent/JP2702993B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Electromagnets (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は原子炉の制御棒駆動装置、並びにその制御棒
駆動装置に用いられる駆動コイルに関する。
Description: TECHNICAL FIELD The present invention relates to a control rod driving device for a nuclear reactor and a driving coil used in the control rod driving device.

<従来の技術> 原子炉の制御棒駆動装置は、駆動源として種々のもの
を用いるが、電磁駆動式のものでは駆動コイルの励磁力
によって制御棒を駆動し、これを炉心に挿脱する。第6
図は代表的な制御棒駆動装置の切欠斜視図、第7図は従
来の駆動コイルの断面図である。制御棒駆動装置1にお
いては、第6図に示すように、その下部に制御棒が連結
される駆動軸10が中心部に配設されると共に、その駆動
軸10の周囲には3つの駆動コイル11,12,13が上下に並ん
で位置している。駆動軸10は駆動軸ハウジング14に、各
駆動コイル11,12,13はコイルハウジング15に各々収納さ
れている。
<Related Art> Various types of control rod driving devices for a nuclear reactor are used as a driving source. In the case of an electromagnetic driving type, a control rod is driven by an exciting force of a driving coil and is inserted into and removed from a reactor core. Sixth
FIG. 1 is a cutaway perspective view of a typical control rod driving device, and FIG. 7 is a sectional view of a conventional driving coil. In the control rod driving device 1, as shown in FIG. 6, a drive shaft 10 to which a control rod is connected is provided at the center at a lower portion thereof, and three drive coils are provided around the drive shaft 10. 11,12,13 are located side by side. The drive shaft 10 is housed in a drive shaft housing 14, and the drive coils 11, 12, and 13 are housed in a coil housing 15, respectively.

この駆動コイルとしての下部のステイショナリ・グリ
ッパ・コイル(以下、SGCと称する)11はラッチハウジ
ング16に収納された固定つかみラッチ17を作動させるも
のであり、原子炉を一定出力で運転しているときには駆
動軸10(制御棒)を一定位置に保持するためSGC11は連
続的に励磁されている。中間部のムーバブル・グリッパ
・コイル(以下、MGCと称する)12はラッチハウジング1
6に収納された可動つかみラッチ18を作動させるもの
で、駆動軸10が上下動するときに励磁される。上部のリ
フト・コイル(以下、LCと称する)13は駆動軸10を上昇
あるいは下降させるもので、そのときに励磁される。
The lower stationary gripper coil (hereinafter, referred to as SGC) 11 as a drive coil operates a fixed gripping latch 17 housed in a latch housing 16 and is used when the reactor is operated at a constant output. The SGC 11 is continuously excited to hold the drive shaft 10 (control rod) at a fixed position. An intermediate movable gripper coil (hereinafter referred to as MGC) 12 is a latch housing 1
This actuates the movable gripping latch 18 housed in 6 and is excited when the drive shaft 10 moves up and down. An upper lift coil (hereinafter, referred to as LC) 13 raises or lowers the drive shaft 10 and is excited at that time.

なお、原子炉の運転中に常時SGC11を励磁するように
したのは、運転中の停電事故の際にSGC11が無励磁状態
となることで制御棒を炉心内に自然落下させて、原子炉
をトリップさせ原子炉の安全性を維持する、所謂フェイ
ルセーフの設計思想に基づくものである。
The reason that the SGC11 is always excited during the operation of the reactor is that the control rod naturally falls into the reactor core due to the non-excitation state of the SGC11 in the event of a power failure during operation, and the reactor is operated. This is based on the so-called fail-safe design concept of maintaining the safety of the reactor by tripping.

第7図に示すように、駆動軸ハウジング14にはガラス
シリコン樹脂の成形品である円筒状をなすボビン20が取
付けられており、このボビン20の外周部には銅導体を二
重ガラス巻の被覆材(H種絶縁体)で被覆した線材21が
巻き付けられている。そして、この線材21の両端部には
リード線22が接続されている。更に、この線材21を保持
するためにその隙間にシリコン樹脂を主成分とする充填
材23が充填されると共に、その外周が外筒2にて覆われ
ている。
As shown in FIG. 7, a cylindrical bobbin 20, which is a molded product of glass silicon resin, is attached to the drive shaft housing 14, and a copper conductor is wound around the bobbin 20 by a double glass winding. A wire 21 covered with a covering material (H class insulator) is wound. Lead wires 22 are connected to both ends of the wire 21. Further, in order to hold the wire 21, the gap is filled with a filler 23 mainly composed of silicone resin, and the outer periphery thereof is covered with the outer cylinder 2.

この従来の駆動コイルは、その構成材料の性質から耐
熱温度が200℃程度に限られていた。これ以上高温状態
になると酸化が進み、例えば、銅導体の被覆材が剥がれ
てしまう等の虞れがあった。
The heat resistance temperature of this conventional drive coil was limited to about 200 ° C. due to the properties of the constituent materials. If the temperature becomes higher than this, oxidation proceeds, and for example, there is a fear that the coating material of the copper conductor is peeled off.

ところで、制御棒駆動装置1内の各駆動コイル11,12,
13はコイルの自己の抵抗発熱によってその温度が上昇す
る。例えば、MGC12及びLC13に流れる電流は各々瞬時8
及び40Aであるが、SGC11に流れる電流は瞬時8A、連続的
には4.4Aである。MGC12及びLC13の電流は大きいが瞬時
であるのに対し、SGC11の電流は比較的小さいが原子炉
の運転中には連続して流れるため、この通電によるSGC1
1の温度は他の駆動コイルよりも高くなり、200℃付近ま
で上昇する。これは高い周囲温度によって線材21の銅導
体の抵抗値が経時的に高くなるからである。そして、更
に炉心からの熱伝導によってコイルハウジング15の周囲
が加熱されて、SGC11の励磁中にはそのコイルの温度は4
50℃近くまで上昇する可能性があり、その結果、コイル
の損傷、劣化を生じる虞れがあった。
By the way, each drive coil 11,12,
The temperature of the coil 13 rises due to its own resistance heat generation. For example, the currents flowing through MGC12 and LC13 each
And 40 A, but the current flowing through the SGC 11 is 8 A instantaneously and 4.4 A continuously. The current of MGC12 and LC13 is large but instantaneous, while the current of SGC11 is relatively small but flows continuously during operation of the reactor.
The temperature of 1 becomes higher than other drive coils and rises to around 200 ° C. This is because the resistance value of the copper conductor of the wire 21 increases with time due to the high ambient temperature. Further, the periphery of the coil housing 15 is further heated by heat conduction from the core, and the temperature of the coil becomes 4 while the SGC 11 is excited.
There is a possibility that the temperature may rise to about 50 ° C., and as a result, the coil may be damaged or deteriorated.

そのため、従来の制御棒駆動装置1には自己発熱や外
部要因による各駆動コイル11,12,13の耐熱温度以上の温
度上昇を防ぐ目的で、そのコイルの周辺部の空気を強制
的に循環して冷却する冷却装置を具えている。
Therefore, the conventional control rod driving device 1 forcibly circulates the air around the coils in order to prevent the temperature of each of the driving coils 11, 12, and 13 from rising due to self-heating or external factors. It has a cooling device for cooling.

第8図は従来の制御棒駆動装置用冷却装置の構成図、
第9図はその冷却装置が装着された原子炉の一部切欠側
面図である。第8図及び第9図に示すように、原子炉容
器2の上部蓋3に配設された各制御棒駆動装置1は外部
から供給される冷却空気によって冷却されるようになっ
ている。即ち、制御棒駆動装置1を冷却する冷却空気は
多数の制御棒駆動装置1が収容される冷却室30に浸入し
てこれを冷却し、その後、熱気となってリングダクト31
より外部に排出されパイプ32を通って冷却ユニット33に
送られる。この冷却ユニット33に送られた熱気はここで
冷却されて冷却空気となり、冷却ファン34によって再び
冷却室30に送られ制御棒駆動装置1を冷却するようにな
っている。
FIG. 8 is a configuration diagram of a conventional cooling device for a control rod driving device,
FIG. 9 is a partially cutaway side view of a reactor equipped with the cooling device. As shown in FIGS. 8 and 9, each control rod driving device 1 disposed on the upper lid 3 of the reactor vessel 2 is cooled by cooling air supplied from the outside. That is, the cooling air for cooling the control rod driving device 1 enters the cooling chamber 30 in which a large number of the control rod driving devices 1 are accommodated, cools the cooling room 30, and then becomes hot air to form the ring duct 31.
It is further discharged to the outside and sent to the cooling unit 33 through the pipe 32. The hot air sent to the cooling unit 33 is cooled here to become cooling air, and is sent again to the cooling chamber 30 by the cooling fan 34 to cool the control rod driving device 1.

<発明が解決しようとする課題> 前述したように、従来の駆動コイルは耐熱性があまり
良くなく、そのため、従来は原子炉に制御棒駆動装置1
を冷却するための空調設備を設置することが必要であっ
た。これに伴って冷却空気の供給や熱気の排出のための
ファンやダクト,配管等の付帯設備も必要となって原子
炉が大規模なものとなっていた。更に、その周囲の構造
も複雑となってしまい、それに費やす費用も莫大なもの
となっていた。更に、原子炉の点検補修作業や燃料交換
時における冷却用の配管を取外し、取付け作業が煩わし
く、それに要する時間や人員も多く必要となってしまう
という問題点があった。
<Problems to be Solved by the Invention> As described above, the conventional drive coil has not so good heat resistance, and therefore, the control rod driving device 1 is conventionally provided in the nuclear reactor.
It was necessary to install an air conditioner for cooling the air conditioner. Along with this, additional equipment such as fans, ducts, and piping for supplying cooling air and discharging hot air was required, and the reactor became large-scale. Furthermore, the surrounding structure has become complicated, and the cost spent on it has become enormous. Further, there has been a problem that the inspection and repair work of the nuclear reactor and the removal of the cooling pipe at the time of refueling and the installation work are troublesome, and the time and personnel required for the work are also large.

この発明はこのような問題点を解決するものであっ
て、コイルの自己発熱や外部からの加熱によっても損傷
・劣化することがなく、特別な冷却装置を必要としない
耐熱駆動コイル及び制御棒駆動装置を提供することを目
的とする。
The present invention solves such a problem, and is not damaged or deteriorated by self-heating of the coil or external heating, and does not require a special cooling device. It is intended to provide a device.

<課題を解決するための手段> 上述の目的を達成するための本発明の耐熱駆動コイル
は、セラミックあるいは金属製の円筒状をなすボビン
と、導体の表面がセラミック被覆され前記ボビンの外周
部に巻き付けられてコイルを構成する線材と、該線材の
隙間に充填されたセラミック系充填材とを具えたことを
特徴とするものである。
<Means for Solving the Problems> A heat-resistant drive coil according to the present invention for achieving the above-mentioned object comprises a ceramic or metal cylindrical bobbin, and a conductor coated with ceramic on the outer peripheral portion of the bobbin. It is characterized by comprising a wire wound around the coil to form a coil, and a ceramic filler filled in a gap between the wires.

また、上述の目的を達成するための本発明の制御棒駆
動装置は、制御棒の駆動コイルに前記耐熱駆動コイルを
用いたことを特徴とするものである。
Further, a control rod driving device according to the present invention for achieving the above object is characterized in that the heat-resistant driving coil is used as a driving coil of a control rod.

<作用> 耐熱駆動コイルの構成部材はセラミック系材料よりな
るので耐熱性が向上する。
<Operation> Since the components of the heat-resistant drive coil are made of a ceramic material, the heat resistance is improved.

また、この耐熱駆動コイルを用いた制御棒駆動装置
は、高温下で稼働できるので冷却装置及びその付帯設備
を設ける必要がなくなり、原子炉及びその周辺の構造物
が簡素化される。
Further, since the control rod driving device using the heat-resistant driving coil can be operated at a high temperature, there is no need to provide a cooling device and ancillary equipment thereof, and the reactor and its surrounding structures are simplified.

<実 施 例> 以下、図面に基づいて本発明の実施例を詳細に説明す
る。
<Embodiment> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例に係る耐熱駆動コイルの縦
断面図、第2図はその側面図、第3図はその平面図、第
4図は耐熱駆動コイルに用いられる線材の断面図、第5
図は本実施例の耐熱駆動コイルを装着した制御棒駆動装
置を示す原子炉の一部切欠側面図である。なお、従来と
同一部材には同一の符号を付して重複する説明は省略す
る。
1 is a longitudinal sectional view of a heat-resistant driving coil according to an embodiment of the present invention, FIG. 2 is a side view thereof, FIG. 3 is a plan view thereof, and FIG. 4 is a sectional view of a wire used for the heat-resistant driving coil. , Fifth
FIG. 1 is a partially cutaway side view of a nuclear reactor showing a control rod driving device equipped with a heat-resistant driving coil of the present embodiment. Note that the same members as those in the related art are denoted by the same reference numerals, and redundant description will be omitted.

まず耐熱駆動コイルについて説明する。第1図乃至第
3図に示すように、上部及び下部全周に外方に突出する
フランジ部50を有する円筒状をなすボビン51はステンレ
ス鋼(SUS304)を素材として製作され、その外周部表面
には必要に応じてセラミック被覆材としてのセラミック
シートが貼り付けられている。なお、ボビン51をマシナ
ブルセラミックにて構成してもよい。このボビン51の外
周部には線材としてのセラミック電線52が所定の巻数分
だけ巻き付けられてコイルを構成している。このセラミ
ック電線52は、第4図に示すように、ニッケルメッキ銅
の導体53をセラミック被覆材54にて被覆し、その外周部
に絶縁体55を設け、更にその外側をセラミック被覆材56
にて被覆して構成され、導体53は従来の線材よりも線径
が若干太くなっている。ここで、セラミック電線52のコ
イルとしての製作性を考慮した場合、セラミック被覆材
をコーティングした線材をコイルに加工成形した後に焼
結してセラミック化・耐熱化するのがよい。なお、この
セラミック被覆材54,56としては酸化アルミニウム(ア
ルミナ系)や酸化ケイ素(シリカ系)等、あるいはそれ
らの混合物などを用いることができる。そして、ボビン
51に巻かれたセラミック電線52の両端部にはMIケーブル
からなる通電用のリード線57がスポット溶接にて接続さ
れている。
First, the heat-resistant drive coil will be described. As shown in FIGS. 1 to 3, a cylindrical bobbin 51 having a flange portion 50 protruding outward around the entire upper and lower portions is made of stainless steel (SUS304), and the outer peripheral surface thereof is formed. A ceramic sheet as a ceramic covering material is adhered as necessary. Note that the bobbin 51 may be made of machinable ceramic. A ceramic electric wire 52 as a wire is wound around the bobbin 51 by a predetermined number of turns to form a coil. As shown in FIG. 4, the ceramic electric wire 52 is formed by coating a nickel-plated copper conductor 53 with a ceramic coating material 54, providing an insulator 55 on the outer periphery thereof, and further forming a ceramic coating material 56 on the outside thereof.
The conductor 53 has a slightly larger wire diameter than a conventional wire. Here, in consideration of the manufacturability of the ceramic electric wire 52 as a coil, it is preferable that a wire coated with a ceramic coating material is formed into a coil, sintered, and then turned into ceramic and heat resistant. In addition, as the ceramic coating materials 54 and 56, aluminum oxide (alumina-based), silicon oxide (silica-based), or the like, or a mixture thereof can be used. And bobbin
Lead wires 57 for electric conduction composed of an MI cable are connected to both ends of the ceramic electric wire 52 wound around 51 by spot welding.

ボビン51の外周部に巻き付けられ重なりあっているセ
ラミック電線52の隙間には、このセラミック電線52の弛
みやそれによる振動等を防止するためセラミック系の充
填材(例えば、セラマボンド)58が必要量真空引きによ
り含浸させることで充填されている。そして、巻き付け
られたセラミック電線52全体を覆うように、その外周辺
に位置してボビン51と同材料よりなる補強用の外筒59が
ボビン51に被着されている。なお、この外筒59に代え
て、セラミック電線52及び充填材58の外周部にセラミッ
クシートを貼り付けたり、セラミック材を塗布するよう
にしてもよい。
In the gap between the ceramic wires 52 that are wound around and overlapped with the outer periphery of the bobbin 51, a ceramic-based filler (for example, ceramer bond) 58 is used in a necessary amount to prevent the ceramic wires 52 from being loosened and caused by vibration. It is filled by impregnation by pulling. Further, a reinforcing outer cylinder 59 made of the same material as that of the bobbin 51 is attached to the bobbin 51 so as to cover the entire wound ceramic electric wire 52 and to be located around the outer periphery thereof. Instead of the outer cylinder 59, a ceramic sheet may be attached to the outer peripheral portions of the ceramic electric wire 52 and the filler 58, or a ceramic material may be applied.

このように構成された耐熱駆動コイルにおいて、上述
のボビン51の耐熱温度は600〜800℃であり、線材52は導
体53に変温時の劣化特性に勝れたニッケルメッキ銅を用
いると共にそれをセラミック被覆しているので、その耐
熱温度は450〜800℃とすることができる。更に導体53の
径を太くしているのでその電気抵抗値は低く、高温時の
抵抗増加に対処できる。また、セラミック系の充填材58
の耐熱温度は1400℃、MIケーブルから成るリード線57の
耐熱温度は600℃、セラミックシートあるいはセラミッ
クコーティング材は500〜800℃である。従って、これら
の構成部材よりなる耐熱駆動コイルは、従来のものに比
べてその耐熱温度を数段上昇させることができ、約450
℃で加熱されても劣化することなく十分に耐えることが
できる。
In the heat-resistant drive coil configured as described above, the heat-resistant temperature of the above-described bobbin 51 is 600 to 800 ° C., and the wire 52 is made of nickel-plated copper that excels in deterioration characteristics at the time of temperature change for the conductor 53, and Because of ceramic coating, its heat-resistant temperature can be 450-800 ° C. Further, since the diameter of the conductor 53 is made large, its electric resistance value is low, and it is possible to cope with an increase in resistance at high temperatures. In addition, ceramic filler 58
Has a heat resistance temperature of 1400 ° C., a heat resistance temperature of the lead wire 57 composed of the MI cable is 600 ° C., and a ceramic sheet or ceramic coating material is 500 to 800 ° C. Therefore, the heat-resistant drive coil composed of these components can raise the heat-resistant temperature by several steps as compared with the conventional one, and can be increased by about 450
Even if heated at ℃, it can withstand sufficiently without deterioration.

更に、セラミック充填材58は接着力が強く適度な粘性
を有しているので、その熱伝導率が向上すると共に機械
的な振動の伝達を防止することができる。そして、ボビ
ン51と外筒59の表面に貼り付けられたセラミックシート
は充填材58との熱膨張差を吸収し、経時的安定性、耐久
性を向上させることができる。
Further, since the ceramic filler 58 has a strong adhesive force and an appropriate viscosity, its thermal conductivity is improved, and transmission of mechanical vibration can be prevented. The ceramic sheet attached to the surface of the bobbin 51 and the outer cylinder 59 absorbs a difference in thermal expansion between the filler 58 and the ceramic sheet, so that the stability over time and durability can be improved.

なお、本実施例の耐熱駆動コイルは上述の耐熱特性以
外の特性、即ち、耐放射線特性、電気的特性(耐電圧特
性、絶縁抵抗特性、導体抵抗特性)及び機械的特性(熱
伝導率、膨張係数、曲げ強さ)の点でも従来のものに比
べ同等、もしくはそれ以上の特性を確保することができ
る。また、その大きさを比較しても、ボビンの寸法、線
材の径、巻き数、導体抵抗、コイル周辺の磁気回路の寸
法、材質等の点でも同等であって、本実施例の耐熱駆動
コイルは従来のものと同等の起磁力や磁束(磁気力)を
生じさせることができる。
The heat-resistant drive coil of this embodiment has characteristics other than the above-described heat-resistant characteristics, namely, radiation-resistant characteristics, electric characteristics (withstand voltage characteristics, insulation resistance characteristics, conductor resistance characteristics) and mechanical characteristics (thermal conductivity, expansion). (E.g., modulus, flexural strength) as compared with conventional ones, or more. Further, even when comparing the sizes, the dimensions of the bobbin, the diameter of the wire, the number of windings, the conductor resistance, the dimensions of the magnetic circuit around the coil, the material, and the like are the same, and the heat-resistant driving coil of the present embodiment is the same. Can generate a magnetomotive force and a magnetic flux (magnetic force) equivalent to those of the related art.

以上のように、本実施例の耐熱駆動コイルは高温で加
熱されてもそれに耐えることができるため高温下で稼働
でき、従って、この耐熱駆動コイルを原子炉の制御棒駆
動装置に用いることで、コイルの冷却設備を不要とする
ことができる。
As described above, the heat-resistant drive coil of the present embodiment can withstand even when heated at a high temperature and thus can be operated at a high temperature.Therefore, by using this heat-resistant drive coil for a control rod drive of a nuclear reactor, The coil cooling equipment can be eliminated.

即ち、第5図に示すように、この耐熱駆動コイルを用
いた制御棒駆動装置を装備した原子炉においては、従
来、原子炉の上部に配設されていた制御棒駆動装置の冷
却用空調設備を具えていない。従って、冷却装置として
の供給・排出ダクト、パイプ、冷却ユニット、冷却ファ
ン等の装備が不要となり、原子炉並びにその周辺の構造
物が簡素化できる。更に、その冷却装置の設計、資材購
入、建設等の膨大な費用を削減することができる。
That is, as shown in FIG. 5, in a nuclear reactor equipped with a control rod driving device using the heat-resistant driving coil, a cooling air-conditioning system for the control rod driving device conventionally provided at the upper part of the reactor is used. Not equipped. Therefore, equipment such as a supply / discharge duct, a pipe, a cooling unit, and a cooling fan as a cooling device is not required, and the reactor and its surrounding structures can be simplified. Further, enormous costs for designing the cooling device, purchasing materials, and construction can be reduced.

<発明の効果> 以上、実施例を挙げて詳細に説明したように本発明の
耐熱駆動コイルによれば、耐熱駆動コイルを構成する各
部材をセラミック系材料よりなるものとしたので、従来
あった駆動コイルの各特性を失うことなくその耐熱温度
を上昇させることができる。
<Effects of the Invention> As described above in detail with the examples, according to the heat-resistant drive coil of the present invention, each member constituting the heat-resistant drive coil is made of a ceramic-based material. The heat-resistant temperature can be increased without losing the characteristics of the drive coil.

また本発明の制御棒駆動装置はこの耐熱駆動コイルを
駆動軸の駆動コイルとして用いているので、従来必要で
あった冷却装置並びにその付帯設備を不要とすることが
でき、原子炉やその周辺の構造物を簡素化することがで
きる。これにより、冷却装置の設計、建設、資材等の費
用の削減、原子炉の点検・補修作業の容易化が可能とな
る。
Further, since the control rod drive device of the present invention uses the heat-resistant drive coil as the drive coil of the drive shaft, the cooling device and its auxiliary equipment which were conventionally required can be dispensed with, and the reactor and its surroundings can be eliminated. The structure can be simplified. This makes it possible to reduce the cost of designing, constructing, and using materials for the cooling device, and to facilitate the inspection and repair work of the reactor.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る耐熱駆動コイルの縦断
面図、第2図はその側面図、第3図はその平面図、第4
図は耐熱駆動コイルに用いられる線材の断面図、第5図
は本実施例の耐熱駆動コイルを装着した制御棒駆動装置
を示す原子炉の一部切欠側面図である。また、第6図は
一般的な制御棒駆動装置の切欠斜視図、第7図は従来の
駆動コイルの断面図、第8図は従来の制御棒駆動装置用
冷却装置の構成図、第9図はその冷却装置が装着された
原子炉の一部切欠側面図である。 図面中、 1は制御棒駆動装置、 10は駆動軸、 51はボビン、 52はセラミック電線(線材)、 53は導体、 54,56はセラミック被覆材、 57はリード線、 58はセラミック充填材、 59は外筒である。
FIG. 1 is a longitudinal sectional view of a heat-resistant drive coil according to an embodiment of the present invention, FIG. 2 is a side view thereof, FIG.
FIG. 5 is a cross-sectional view of a wire rod used for a heat-resistant drive coil, and FIG. 5 is a partially cutaway side view of a nuclear reactor showing a control rod drive device equipped with the heat-resistant drive coil of the present embodiment. FIG. 6 is a cutaway perspective view of a general control rod driving device, FIG. 7 is a sectional view of a conventional driving coil, FIG. 8 is a configuration diagram of a conventional cooling device for a control rod driving device, and FIG. FIG. 2 is a partially cutaway side view of a nuclear reactor equipped with the cooling device. In the drawing, 1 is a control rod drive, 10 is a drive shaft, 51 is a bobbin, 52 is a ceramic electric wire (wire), 53 is a conductor, 54 and 56 are ceramic coating materials, 57 is a lead wire, 58 is a ceramic filler, 59 is an outer cylinder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村川 愼一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 平本 達彦 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (56)参考文献 特開 平2−36396(JP,A) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinichi Murakawa 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Tatsuhiko Hiramoto Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Prefecture 1-1, 1-1 Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (56) References JP-A-2-36396 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックあるいは金属製の円筒状をなす
ボビンと、導体の表面がセラミック被覆され前記ボビン
の外周部に巻き付けられてコイルを構成する線材と、該
線材の隙間に充填されたセラミック系充填材とを具えた
ことを特徴とする耐熱駆動コイル。
1. A bobbin having a cylindrical shape made of ceramic or metal, a conductor coated with ceramic on the surface of a conductor and wound around the outer periphery of the bobbin to form a coil, and a ceramic material filled in a gap between the wires. A heat-resistant drive coil comprising a filler.
【請求項2】制御棒を駆動する駆動コイルに請求項
(1)記載の耐熱駆動コイルを用いたことを特徴とする
原子炉の制御棒駆動装置。
2. A control rod driving device for a nuclear reactor, wherein the heat-resistant driving coil according to claim 1 is used as a driving coil for driving the control rod.
JP63261657A 1988-10-19 1988-10-19 Heat resistant drive coil and control rod drive Expired - Fee Related JP2702993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261657A JP2702993B2 (en) 1988-10-19 1988-10-19 Heat resistant drive coil and control rod drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261657A JP2702993B2 (en) 1988-10-19 1988-10-19 Heat resistant drive coil and control rod drive

Publications (2)

Publication Number Publication Date
JPH02108998A JPH02108998A (en) 1990-04-20
JP2702993B2 true JP2702993B2 (en) 1998-01-26

Family

ID=17364953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261657A Expired - Fee Related JP2702993B2 (en) 1988-10-19 1988-10-19 Heat resistant drive coil and control rod drive

Country Status (1)

Country Link
JP (1) JP2702993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711998B2 (en) 2008-02-22 2014-04-29 Mitsubishi Heavy Industries, Ltd. Cooling structure and cooling method for control rod drive mechanism and nuclear reactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101086056B1 (en) * 2010-02-01 2011-11-22 한국전력기술 주식회사 Cooling unit for nuclear reactor control rod driving apparatus
US10032529B2 (en) * 2010-12-09 2018-07-24 Westinghouse Electric Company Llc Nuclear reactor internal electric control rod drive mechanism assembly
CN114420401B (en) * 2022-01-04 2022-12-27 上海第一机床厂有限公司 Electromagnetic coil for control rod driving mechanism of nuclear power station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711998B2 (en) 2008-02-22 2014-04-29 Mitsubishi Heavy Industries, Ltd. Cooling structure and cooling method for control rod drive mechanism and nuclear reactor

Also Published As

Publication number Publication date
JPH02108998A (en) 1990-04-20

Similar Documents

Publication Publication Date Title
US6157282A (en) Transformer cooling method and apparatus therefor
JP2008172961A (en) Apparatus and method for heating stator coil
GB2226221A (en) Inductively heated apparatus
JP2702993B2 (en) Heat resistant drive coil and control rod drive
JPS6310661B2 (en)
JP3696263B2 (en) X-ray tube rotating anode drive device
JP2005510833A (en) Electromagnetic induction and short circuit type liquid heating apparatus and liquid heating method using three-phase commercial frequency power supply
JP6527931B1 (en) Water-cooled transformer
US2295404A (en) Dynamoelectric machine
US11417446B2 (en) Load resistor
GB2103022A (en) A rotor of a superconductive rotary electric machine
US2937217A (en) Electric furnace
JPH11176629A (en) Superconducting magnet device
JP4005973B2 (en) Superconducting winding heating device
JP2009266916A (en) High-frequency induction heating type resistor
JPH1195584A (en) Fixing device with induction heating
JPH02151242A (en) Fixing method of thermal fuse
JP4219761B2 (en) Magnetic field generator and driving method thereof
JP2586216B2 (en) Roll device
JP2001245410A (en) Switchgear for gas insulation
US7091811B2 (en) Fixing member
KR200348860Y1 (en) a Troidal coil for use in Electric power saving appliance the composition
JPH05114521A (en) Dc reactor for semiconductor power converter mounted on electric car
JP2939375B2 (en) Electromagnetic pump
CN114868212A (en) Parallel reactor with auxiliary power

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees