JP2937886B2 - Method for forming interlayer insulating film of semiconductor device - Google Patents

Method for forming interlayer insulating film of semiconductor device

Info

Publication number
JP2937886B2
JP2937886B2 JP8244968A JP24496896A JP2937886B2 JP 2937886 B2 JP2937886 B2 JP 2937886B2 JP 8244968 A JP8244968 A JP 8244968A JP 24496896 A JP24496896 A JP 24496896A JP 2937886 B2 JP2937886 B2 JP 2937886B2
Authority
JP
Japan
Prior art keywords
film
forming
silicon
oxide film
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8244968A
Other languages
Japanese (ja)
Other versions
JPH09129625A (en
Inventor
是範 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JPH09129625A publication Critical patent/JPH09129625A/en
Application granted granted Critical
Publication of JP2937886B2 publication Critical patent/JP2937886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の製造方法に
関し、特に半導体素子の層間絶縁膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an interlayer insulating film of a semiconductor device.

【0002】[0002]

【従来の技術】多層の金属配線構造を有するCMOS素
子の平坦化方法において、SOG(Spin On Glass)を層
間絶縁膜に用い、最終層の金属配線を形成した後、その
上にSiNx 保護膜を蒸着することが従来から一般的で
あった。
2. Description of the Related Art In a method of planarizing a CMOS device having a multi-layered metal wiring structure, SOG (Spin On Glass) is used as an interlayer insulating film, a metal wiring of a final layer is formed, and a SiNx protective film is formed thereon. Deposition has conventionally been common.

【0003】この際、後続熱工程によりSOG膜とSi
Nx 膜に含まれたH、OH、H2 O等が半導体素子の内
部に浸透することにより、寄生MOSFETのドレイン
とソース間の絶縁性が低下したり破壊されるフィールド
極性反転(field inversion)現象が発生する。
At this time, the SOG film and the Si
A field inversion phenomenon in which H, OH, H 2 O, etc. contained in the Nx film penetrates into the inside of the semiconductor device, thereby deteriorating or destroying insulation between the drain and source of the parasitic MOSFET. Occurs.

【0004】そのため、ドレインとソース間の臨界電圧
が低下し、漏洩電流が増加して素子の動作特性が不安定
となる問題が生じる。
As a result, there arises a problem that the critical voltage between the drain and the source decreases, the leakage current increases, and the operation characteristics of the device become unstable.

【0005】このような観点から、従来技術による2層
金属配線構造のCMOS素子の形成方法を図1を参照し
て説明すれば次の通りである。
From this viewpoint, a method of forming a CMOS device having a two-layer metal wiring structure according to the prior art will be described with reference to FIG.

【0006】図1は、従来技術による半導体素子の層間
絶縁膜が適用された2層配線構造の半導体素子断面図で
ある。
FIG. 1 is a sectional view of a semiconductor device having a two-layer wiring structure to which an interlayer insulating film of a conventional semiconductor device is applied.

【0007】図1に示すように、半導体基板1にP型ウ
ェル3を形成し、P型ウェル3の表面に活性領域とフィ
ルード領域を定義するフィールド酸化膜5を形成する。
As shown in FIG. 1, a P-type well 3 is formed in a semiconductor substrate 1, and a field oxide film 5 defining an active region and a field region is formed on the surface of the P-type well 3.

【0008】次いで、P型ウェル3の活性領域上にゲー
ト酸化膜7と、このゲート酸化膜7上にゲート電極9を
順次形成する。
Next, a gate oxide film 7 is formed on the active region of the P-type well 3 and a gate electrode 9 is formed on the gate oxide film 7 in this order.

【0009】その次に、ゲート電極9両側の半導体基板
1に不純物をイオン注入してソース/ドレイン領域13
を形成する。
Then, impurities are ion-implanted into the semiconductor substrate 1 on both sides of the gate electrode 9 to form source / drain regions 13.
To form

【0010】このようにして、二つの正常的なMOSF
ET(9a,13a,13b),(9c,13a,13
b)と寄生MOSFET(9b,13a,13b)を形
成する。
In this manner, two normal MOSFs
ET (9a, 13a, 13b), (9c, 13a, 13
b) and a parasitic MOSFET (9b, 13a, 13b).

【0011】次いで、全体構造上部にBPSG膜15を
蒸着して平坦化させ、BPSG膜15の所定部分に第1
層金属配線17を形成する。
Next, a BPSG film 15 is deposited on the entire structure and flattened, and a first portion is formed on a predetermined portion of the BPSG film 15.
The layer metal wiring 17 is formed.

【0012】その次に、全体構造の上部にPECVD方
法で第1層間絶縁膜19を形成し、この第1層間絶縁膜
19上にSOG膜から成る平坦化用第2層間絶縁膜21
を形成し、さらに、この第2層間絶縁膜21上にPEC
VD方法で第3層間絶縁膜23を順次積層する。
Then, a first interlayer insulating film 19 is formed on the entire structure by the PECVD method, and a second planarizing interlayer insulating film 21 made of an SOG film is formed on the first interlayer insulating film 19.
Is formed, and a PEC is formed on the second interlayer insulating film 21.
The third interlayer insulating film 23 is sequentially stacked by the VD method.

【0013】次いで、第3層間絶縁膜23の上部に第2
層金属配線25を形成し、第2層金属配線25上にSi
Nx を蒸着して表面保護膜27を形成しなければならな
い。
Next, a second layer is formed on the third interlayer insulating film 23.
A layer metal wiring 25 is formed, and Si is formed on the second layer metal wiring 25.
The surface protection film 27 must be formed by depositing Nx.

【0014】[0014]

【発明が解決しようとする課題】しかし、従来半導体素
子の層間絶縁膜形成方法においてはSiNx でなる表面
保護膜を蒸着後の熱処理工程の際に、n−チャンネル寄
生MOSFETのドレインとソース間にフィールド極性
反転現象が発生する問題点がある。
However, in a conventional method for forming an interlayer insulating film of a semiconductor device, a field protection film is formed between a drain and a source of an n-channel parasitic MOSFET during a heat treatment step after deposition of a surface protection film made of SiNx. There is a problem that the polarity inversion phenomenon occurs.

【0015】このようなフィールド極性反転現象は、保
護膜内部に含有された水素が下側に拡散されながらSO
G膜内部のOH、CH3 、H2 O等と相互作用を起こし
て反応物を形成し、この反応物は層間絶縁膜を通過して
素子内部に浸透することにより発生する。
Such a field polarity reversal phenomenon is caused by the fact that hydrogen contained in the protective film is diffused downward while SO
It interacts with OH, CH 3 , H 2 O, etc. in the G film to form a reactant, and this reactant is generated by permeating the inside of the device through the interlayer insulating film.

【0016】なお、フィールド極性反転現象はSOG膜
内部のOH、H2 Oも層間絶縁膜を介して半導体素子内
部に浸透しドナー(donor)型不純物に作用したり、フィ
ールド酸化膜にポジティブ電荷(positive charge)を誘
発するため生じる。
In the field polarity reversal phenomenon, OH and H 2 O inside the SOG film also penetrate into the semiconductor device through the interlayer insulating film and act on donor-type impurities, or the field oxide film has a positive charge ( Positive charge).

【0017】即ち、フィールド極性反転現象は下部層間
絶縁膜が工程中に生じる不純物が素子内部に浸透するこ
とを遮断できないため生じる。
That is, the field polarity inversion phenomenon occurs because the lower interlayer insulating film cannot prevent impurities generated during the process from penetrating into the device.

【0018】そのため、n−チャンネル寄生MOSFE
Tのドレインとソース間の臨界電圧が落ち、漏洩電流が
増加することにより半導体素子の動作特性が不安定とな
り動作不良を誘発する。
Therefore, the n-channel parasitic MOSFE
As the critical voltage between the drain and the source of T drops and the leakage current increases, the operating characteristics of the semiconductor device become unstable, leading to operation failure.

【0019】ここに、本発明は寄生MOSFETのドレ
インとソース間のフィールド極性反転現象を防止するこ
とができる、半導体素子の層間絶縁膜形成方法を提供す
ることにその目的がある。
It is an object of the present invention to provide a method of forming an interlayer insulating film of a semiconductor device, which can prevent a field polarity reversal between a drain and a source of a parasitic MOSFET.

【0020】さらに、本発明の他の目的は層間絶縁膜の
特性を改良し半導体素子の信頼性を向上させ得るように
した。半導体素子の層間絶縁膜形成方法を提供すること
にある。
Still another object of the present invention is to improve characteristics of an interlayer insulating film and improve reliability of a semiconductor device. An object of the present invention is to provide a method for forming an interlayer insulating film of a semiconductor device.

【0021】なお、本発明のさらに他の目的は、高集積
半導体素子の適用に適した層間絶縁膜を形成することが
できる半導体素子の層間絶縁膜形成方法を提供すること
にある。
It is a still further object of the present invention to provide a method for forming an interlayer insulating film of a semiconductor device which can form an interlayer insulating film suitable for application of a highly integrated semiconductor device.

【0022】[0022]

【0023】[0023]

【課題を解決するための手段】このような目的を達成す
るために本発明による半導体素子の層間絶縁膜形成方法
は上面に下層金属配線が形成された半導体基板を提供す
る段階と、基板全体構造の露出した表面上にシリコン−
リッチ酸化膜とシリコン−リッチ酸化膜上にシリコン窒
化酸化膜を順次形成する段階と、シリコン窒化膜上にS
OG膜を形成する段階と、SOG膜上に酸化膜を形成す
る段階を含み構成されたことを特徴とする。
In order to achieve the above object, a method for forming an interlayer insulating film of a semiconductor device according to the present invention comprises the steps of providing a semiconductor substrate having a lower metal wiring formed on an upper surface thereof, and an entire structure of the substrate. Silicon on the exposed surface of
Forming a silicon oxynitride film sequentially on the rich oxide film and the silicon-rich oxide film;
The method is characterized by including a step of forming an OG film and a step of forming an oxide film on the SOG film.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態を添付
の図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0025】図2は、本発明による半導体素子の層間絶
縁膜形成方法が適用された2層金属配線構造の半導体素
子断面図である。
FIG. 2 is a sectional view of a semiconductor device having a two-layer metal wiring structure to which the method of forming an interlayer insulating film of a semiconductor device according to the present invention is applied.

【0026】図2に示すように、半導体基板101上に
P型ウェル103を形成し、P型ウェル103の表面に
活性領域とフィールド領域を定義するフィールド酸化膜
105を形成する。
As shown in FIG. 2, a P-type well 103 is formed on a semiconductor substrate 101, and a field oxide film 105 defining an active region and a field region is formed on the surface of the P-type well 103.

【0027】次いでP型ウェル103の活性領域上にゲ
ート酸化膜107と、ゲート酸化膜107上にゲート電
極109a,109b,109cを順次形成する。
Next, a gate oxide film 107 is formed on the active region of the P-type well 103, and gate electrodes 109a, 109b, and 109c are sequentially formed on the gate oxide film 107.

【0028】この際、P型ウェル103は半導体基板1
01の導電性タイプに従いN型ウェルを用いることもで
きる。
At this time, the P-type well 103 is in the semiconductor substrate 1
An N-type well can also be used according to a conductivity type of 01.

【0029】その次に、ゲート電極109a,109
b,109cの側面に側壁スペーサ111を形成する。
Next, the gate electrodes 109a, 109
Side wall spacers 111 are formed on the side surfaces of b and 109c.

【0030】次いで、ゲート電極109a,109b,
109cと側壁スペーサ(spacer)をマスクにし、ゲー
ト電極109a,109b,109c両側の半導体基板
101に、P型ウェル103と反対導電性タイプを有す
る不純物をイオン注入してソース領域113aとドレイ
ン領域113bを形成する。
Next, the gate electrodes 109a, 109b,
The source region 113a and the drain region 113b are ion-implanted into the semiconductor substrate 101 on both sides of the gate electrodes 109a, 109b, and 109c using the mask 109c and the sidewall spacers as a mask. Form.

【0031】こうして、二つの正常的なMOSFET
(109a,113a,113b),(109c,11
3a,113c)と寄生MOSFET(109b,11
3a,113b)を完成する。
Thus, two normal MOSFETs
(109a, 113a, 113b), (109c, 11
3a, 113c) and the parasitic MOSFET (109b, 11c).
3a, 113b) are completed.

【0032】その次に、全体構造の上部にBPSG膜1
15を形成して表面を平坦化させた後、BPSG膜11
5の所定部分上に第1層金属配線117を形成する。
Next, a BPSG film 1 is formed on the entire structure.
15 is formed and the surface is planarized, and then the BPSG film 11 is formed.
The first layer metal wiring 117 is formed on the predetermined portion of No. 5.

【0033】次いで、全体構造、即ち、BPSG膜11
5と第1層金属配線117の露出した表面、上部にPE
CVD(Plasma Enhanced Chemical Vapor Deposition)
方法を用いて第1酸化膜119とシリコン−リッチ(Si
-rich)酸化膜121を順次積層する。
Next, the entire structure, that is, the BPSG film 11
5 and the exposed surface of the first layer metal wiring 117,
CVD (Plasma Enhanced Chemical Vapor Deposition)
The first oxide film 119 and the silicon-rich (Si)
-rich) The oxide films 121 are sequentially stacked.

【0034】この際、シリコン−リッチ酸化膜121は
約500〜3000オングストローム厚さに蒸着する。
この第1酸化膜119とシリコン−リッチ(Si-rich)酸
化膜121は下部層間絶縁膜に用いる。
At this time, the silicon-rich oxide film 121 is deposited to a thickness of about 500-3000 Å.
The first oxide film 119 and the silicon-rich (Si-rich) oxide film 121 are used as a lower interlayer insulating film.

【0035】一方、半導体素子の集積度が増加すること
により第1金属配線の間の間隔が例えば、現在256M
DRAM級素子の場合に第1層金属配線の間隔が約0.
4μm以下程度に減少することを鑑みる時、本発明の他
の実施形態として、第1酸化膜とシリコン−リッチ酸化
膜を形成する代りに、シリコン−リッチ酸化膜のみ形成
して下部層間絶縁膜に用いることもできる。
On the other hand, as the integration degree of the semiconductor device increases, the distance between the first metal wirings is, for example, 256M.
In the case of a DRAM-class element, the distance between the first-layer metal wirings is about 0.
In view of the reduction to about 4 μm or less, as another embodiment of the present invention, instead of forming the first oxide film and the silicon-rich oxide film, only the silicon-rich oxide film is formed and the lower interlayer insulating film is formed. It can also be used.

【0036】なぜならば、第1酸化膜とシリコン−リッ
チ酸化膜を積層する場合に、金属配線の間の間隔が非常
に狭くなりSOG膜の塗布が難しいためである。
This is because, when the first oxide film and the silicon-rich oxide film are stacked, the distance between the metal wirings becomes very narrow, and it is difficult to apply the SOG film.

【0037】また、シリコン−リッチ酸化膜121の蒸
着は通常のPECVD法によるシリコン酸化膜蒸着の際
にSiソースであるSiH4 の流入量を増加させ、Oの
ソーースであるN2 O量を減少させ蒸着する。
The deposition of the silicon-rich oxide film 121 increases the inflow of SiH 4 as a Si source and decreases the amount of N 2 O as a source of O when depositing a silicon oxide film by a normal PECVD method. And vapor deposition.

【0038】この際、N2 Oに対するSiH4 の入力比
が増加するに伴い膜の屈折率が約1.55以上に増加す
る。
At this time, as the input ratio of SiH 4 to N 2 O increases, the refractive index of the film increases to about 1.55 or more.

【0039】なお、膜の応力状態はRF(Radio Freque
ncy)パワー(power)を調節して−0.5乃至−1.5dy
ne/cm2の圧縮応力状態に調節する。
The stress state of the film is RF (Radio Frequent).
ncy) Adjust power (-0.5 to -1.5dy)
Adjust to a compressive stress state of ne / cm 2 .

【0040】そして、シリコン窒化酸化膜121は通常
のPECVD法により蒸着し、SiH4 /N2 O/NH
3 /N2 の反応気体を用いて蒸着することもできる。
Then, the silicon oxynitride film 121 is deposited by a normal PECVD method, and is made of SiH 4 / N 2 O / NH.
Vapor deposition can also be performed using a 3 / N 2 reaction gas.

【0041】即ち、シリコン−リッチ酸化膜121の蒸
着条件でSiH4 流量は約300〜600sccm、N2
流量は4000〜7000sccm、N2 流量は約300〜
6000sccmに調節する。
[0041] That is, the silicon - SiH 4 flow rate in the deposition condition of the rich oxide film 121 is about 300~600sccm, N 2 O
The flow rate 4000~7000sccm, N 2 flow rate of about 300
Adjust to 6000 sccm.

【0042】また、約2〜3torrの蒸着圧力と、13.
56MHzのRF(Radio Frequency)の約0.3〜0.
7kWの電力と、LF(Low Frequency)の約0.4〜
0.8kWの電力を用いる。
Also, a deposition pressure of about 2-3 torr, and 13.
RF (Radio Frequency) of about 56 to about 0.3 to 0.3.
7kW power and LF (Low Frequency) 0.4 ~
A power of 0.8 kW is used.

【0043】また、膜の応力状態はRFパワーを適切に
調節して−0.5乃至−1.5dyne/cm2にする。
The stress state of the film is adjusted to -0.5 to -1.5 dyne / cm 2 by appropriately adjusting the RF power.

【0044】この際、NH3 /N2 O/N2 の流入比が
増加することにより膜の屈折率が約1.68以上に増加
する。
At this time, as the inflow ratio of NH 3 / N 2 O / N 2 increases, the refractive index of the film increases to about 1.68 or more.

【0045】さらに、シリコン−リッチ酸化膜121の
代りにシリコン窒化酸化膜を用いても同様の効果を得る
ことができる。
Further, the same effect can be obtained by using a silicon nitride oxide film instead of the silicon-rich oxide film 121.

【0046】シリコン窒化酸化膜を用いる場合に、シリ
コン窒化酸化膜121は約500〜3000オングスト
ローム厚さに蒸着する。
When a silicon oxynitride film is used, the silicon oxynitride film 121 is deposited to a thickness of about 500 to 3000 angstroms.

【0047】この際、シリコン窒化酸化膜の蒸着条件と
して、SiH4 流量は約200〜350sccm、N2 O流
量は1000〜4000sccm、NH3 流量は約1000
〜4000sccm、N2 流量は約3000〜6000sccm
に調節する。
At this time, the deposition conditions of the silicon oxynitride film are as follows: SiH 4 flow rate is about 200-350 sccm, N 2 O flow rate is 1000-4000 sccm, NH 3 flow rate is about 1000 sccm.
~4000sccm, N 2 flow rate of about 3000~6000sccm
Adjust to.

【0048】この際、NH3 に対するSiH4 の流量比
を適切に調節して膜の屈折率が約1.55〜1.85程
度に調節することが好ましい。
At this time, it is preferable to appropriately adjust the flow ratio of SiH 4 to NH 3 to adjust the refractive index of the film to about 1.55 to 1.85.

【0049】なお、膜の応力状態はRF(Radio Freque
ncy)とパワー(power)を調節して−0.5乃至−1.5
dyne/cm2の圧縮応力に調節する。
The stress state of the film is RF (Radio Frequent).
ncy) and power (-0.5 to -1.5
Adjust to a compressive stress of dyne / cm 2 .

【0050】そして、約2〜3torrの蒸着圧力と、1
3.56MHzのRF(Radio Frequency)の約0.4〜
0.6kWの電力と、280kHzのLF(Low Freque
ncy)の約0.4〜0.7kWの電力を用いる。
Then, a deposition pressure of about 2-3 torr and 1
Approximately 0.4 to 3.56 MHz RF (Radio Frequency)
0.6kW power and 280kHz LF (Low Frequency
ncy) of about 0.4 to 0.7 kW.

【0051】さらに、膜の応力状態はRFパワーを適切
に調節して−0.5乃至−1.5dyne/cm2となるように
する。
Further, the stress state of the film is adjusted so as to be -0.5 to -1.5 dyne / cm 2 by appropriately adjusting the RF power.

【0052】一方、障壁層(barrier)を用いるための一
例として、シリコン−リッチ酸化膜121とシリコン−
リッチ酸化膜121上にシリコン窒化酸化膜(未図示)
を積層して障壁層に用いることができる。
On the other hand, as an example for using a barrier layer, a silicon-rich oxide film 121 and a silicon-rich oxide film 121 are used.
A silicon oxynitride film (not shown) on the rich oxide film 121
Can be used as a barrier layer.

【0053】この際、各層の蒸着は障壁層でシリコン−
リッチ酸化膜121とシリコン窒化酸化膜を選択的に用
いる時の蒸着条件と同様の条件下で行う。
At this time, the deposition of each layer is performed by using a silicon layer in the barrier layer.
The deposition is performed under the same conditions as the deposition conditions when the rich oxide film 121 and the silicon oxynitride film are selectively used.

【0054】その次に、シリコン−リッチ酸化膜121
の上部にSOG膜123を形成して硬化させる。
Next, a silicon-rich oxide film 121 is formed.
An SOG film 123 is formed on top of the substrate and cured.

【0055】この際、SOG膜123は平坦化用層間絶
縁膜に用いる。
At this time, the SOG film 123 is used as an interlayer insulating film for planarization.

【0056】次いで、SOG膜123の上部にPECV
D方法を用いて第2酸化膜125を蒸着する。この第2
酸化膜125は上部層間絶縁膜に用いる。
Next, a PECV is formed on the SOG film 123.
The second oxide film 125 is deposited using the D method. This second
The oxide film 125 is used as an upper interlayer insulating film.

【0057】その次に、第2酸化膜125の上部に第2
層金属配線127を形成する。
Next, a second oxide film 125
The layer metal wiring 127 is formed.

【0058】次いで、第2層金属配線127の上部にS
iNx を蒸着して表面保護膜129を形成した後、これ
を熱処理する。
Next, an S layer is formed on the upper part of the second-layer metal wiring 127.
After a surface protection film 129 is formed by depositing iNx, this is heat-treated.

【0059】この際、シリコン窒化膜は約500〜15
00オングストローム厚さに蒸着する。
At this time, the silicon nitride film has a thickness of about 500 to 15
Deposit to a thickness of 00 Å.

【0060】なお、シリコン窒化膜の蒸着条件として、
SiH4 流量は約450〜550sccm、NH3 流量は3
000〜6000sccm、N2 流量は約2000〜300
0sccmに調節する。
The conditions for depositing the silicon nitride film are as follows:
The SiH 4 flow rate is about 450-550 sccm, and the NH 3 flow rate is 3
000~6000sccm, N 2 flow rate of about 2,000 to 300
Adjust to 0 sccm.

【0061】この際、NH3 に対するSiH4 の流量比
を適切に調節して膜の屈折率が約1.95〜2.1程度
に調節することが好ましい。
At this time, it is preferable to appropriately adjust the flow ratio of SiH 4 to NH 3 to adjust the refractive index of the film to about 1.95 to 2.1.

【0062】そして、約2〜3torrの蒸着圧力と、1
3.56MHzのRF(Radio Frequency)の約0.4〜
0.6kWの電力と,280kHzのLF(Low Freque
ncy)の約0.4〜0.7kWの電力を用いる。
Then, a deposition pressure of about 2-3 torr and 1
Approximately 0.4 to 3.56 MHz RF (Radio Frequency)
0.6kW power and 280kHz LF (Low Frequency
ncy) of about 0.4 to 0.7 kW.

【0063】また、膜の応力状態はRF(Radio Freque
ncy)パワー(power)を調節して−0.5乃至−1.5dy
ne/cm2の圧縮応力状態に調節する。
The stress state of the film is RF (Radio Frequent
ncy) Adjust power (-0.5 to -1.5dy)
Adjust to a compressive stress state of ne / cm 2 .

【0064】一方、図3は絶縁膜の屈折率とソース(n
+ )とドレイン(n+ )間の絶縁破壊臨界電圧との関係
を示したグラフである。
FIG. 3 shows the refractive index of the insulating film and the source (n
4 is a graph showing the relationship between the breakdown voltage between the drain (n + ) and the drain (n + ).

【0065】図3に示すように、屈折率が高くなること
によりソースとドレイン絶縁破壊臨界電圧(critical v
oltage) が増加することが分かる。
As shown in FIG. 3, as the refractive index increases, the critical voltage between the source and drain breakdown (critical v) increases.
oltage) increases.

【0066】従来技術においては第1酸化膜の屈折率が
約1.47程度であるが、本発明においてはシリコン−
リッチ酸化膜の屈折率が1.55乃至1.65に測定さ
れ、シリコン−リッチ酸化膜の応力が−0.5乃至−
1.5dyne/cm2に測定される。
In the prior art, the refractive index of the first oxide film is about 1.47.
The refractive index of the rich oxide film was measured between 1.55 and 1.65, and the stress of the silicon-rich oxide film was between -0.5 and-.
Measured to 1.5 dyne / cm 2 .

【0067】なお、シリコン窒化酸化膜の場合に屈折率
が1.68乃至1.8に測定され、応力は−0.5乃至
−1.5dyne/cm2に測定される。
In the case of a silicon oxynitride film, the refractive index is measured between 1.68 and 1.8, and the stress is measured between -0.5 and -1.5 dyne / cm 2 .

【0068】さらに、図4は絶縁膜の屈折率とMOSF
ETのホットキャリア動作寿命との関係を示すグラフで
ある。
FIG. 4 shows the refractive index of the insulating film and the MOSF.
4 is a graph showing a relationship between ET and a hot carrier operation life.

【0069】図4に示すように、屈折率が高い場合にホ
ットキャリア(hot carrier)動作寿命が増加することが
分かる。
As shown in FIG. 4, when the refractive index is high, the operating life of the hot carrier increases.

【0070】[0070]

【発明の効果】前記で説明したように、本発明による半
導体素子の絶縁膜形成方法においては次のような効果が
ある。
As described above, the method for forming an insulating film of a semiconductor device according to the present invention has the following effects.

【0071】本発明による半導体素子の絶縁膜形成方法
においてはシリコン−リッチ酸化膜、又はシリコン窒化
酸化膜を下部層間絶縁膜に用いることにより、寄生MO
SFETのドレインとソース間のフィールド極性反転現
象を防止することができる。
In the method for forming an insulating film of a semiconductor device according to the present invention, a silicon-rich oxide film or a silicon oxynitride film is used as a lower interlayer insulating film, so that a parasitic MO can be formed.
Field polarity reversal between the drain and source of the SFET can be prevented.

【0072】なお、本発明による半導体素子の絶縁膜形
成方法においては、ホットキャリアの信頼性が確保され
るので半導体素子の動作特性を向上させることができ
る。
In the method for forming an insulating film of a semiconductor device according to the present invention, the operating characteristics of the semiconductor device can be improved because the reliability of hot carriers is ensured.

【0073】さらに、本発明による半導体素子の絶縁膜
形成方法においては層間絶縁膜の障壁(barrier)特性が
改良されるため高集積半導体素子への使用が適切であ
る。
Further, in the method for forming an insulating film of a semiconductor device according to the present invention, the barrier characteristic of the interlayer insulating film is improved, so that it is suitable for use in a highly integrated semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術による半導体素子の層間絶縁膜形成方
法が適用された2層金属配線構造の半導体素子断面図。
FIG. 1 is a cross-sectional view of a semiconductor device having a two-layer metal wiring structure to which a method for forming an interlayer insulating film of a semiconductor device according to a conventional technique is applied.

【図2】本発明による半導体素子の層間絶縁膜形成方法
が適用された2層金属配線構造の半導体素子断面図。
FIG. 2 is a cross-sectional view of a semiconductor device having a two-layer metal wiring structure to which a method for forming an interlayer insulating film of a semiconductor device according to the present invention is applied.

【図3】本発明による絶縁膜の屈折率と絶縁破壊臨界電
圧との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the refractive index of an insulating film according to the present invention and the critical voltage for dielectric breakdown.

【図4】本発明による絶縁膜の屈折率とホットキャリア
の動作寿命との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the refractive index of an insulating film according to the present invention and the operating lifetime of hot carriers.

【符号の説明】[Explanation of symbols]

101…半導体基板 103…P型ウェル 105…フィールド酸化膜 107…ゲート酸化膜 109a,109b,109c…ゲート電極 111…側壁スペーサ 113a…ソース領域 113b…ドレイン領域 115…BPSG膜 117…第1層金属配線 119…第1酸化膜 121…SOG膜 123…第2酸化膜 125…シリコン−リッチ酸化膜 127…第2層金属配線 129…保護膜 DESCRIPTION OF SYMBOLS 101 ... Semiconductor substrate 103 ... P-type well 105 ... Field oxide film 107 ... Gate oxide film 109a, 109b, 109c ... Gate electrode 111 ... Side wall spacer 113a ... Source region 113b ... Drain region 115 ... BPSG film 117 ... 1st layer metal wiring 119: first oxide film 121: SOG film 123: second oxide film 125: silicon-rich oxide film 127: second-layer metal wiring 129: protective film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/31 H01L 21/316 H01L 21/768 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01L 21/31 H01L 21/316 H01L 21/768

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上面に下層金属配線が形成された半導体
基板を提供する段階と、 前記基板全体構造の露出した表面上にシリコン−リッチ
酸化膜及び、前記シリコン−リッチ酸化膜上にシリコン
窒化酸化膜を順次形成する段階と、 前記シリコン窒化膜上にSOG膜を形成する段階と、 前記SOG膜上に酸化膜を形成する段階と、 を含み構成されることを特徴とする半導体素子の層間絶
縁膜形成方法。
Providing a semiconductor substrate having a lower metal wiring formed on an upper surface thereof, a silicon-rich oxide film on an exposed surface of the entire substrate structure, and a silicon nitride oxide film on the silicon-rich oxide film. Forming a film sequentially; forming an SOG film on the silicon nitride film; and forming an oxide film on the SOG film. Film formation method.
【請求項2】 前記シリコン−リッチ酸化膜はSiH4
/N2 O/N2 反応気体中、SiH4 流量は300〜6
00sccm、N2 O流量は4000〜7000sccm、N2
流量は3000〜6000sccmを用い、PECVD方法
で蒸着することを特徴とする請求項1記載の半導体素子
の層間絶縁膜形成方法。
2. The method according to claim 1, wherein the silicon-rich oxide film is SiH 4.
/ N 2 O / N 2 reaction gas, SiH 4 flow rate is 300-6
00sccm, N 2 O flow rate 4000~7000sccm, N 2
2. The method according to claim 1, wherein the flow rate is 3000 to 6000 sccm and the deposition is performed by PECVD.
【請求項3】 前記シリコン−リッチ酸化膜は、1.5
5〜1.65の屈折率と−0.5〜−1.5dyne/cm2
の圧縮応力状態を有することを特徴とする請求項1記載
の半導体素子の層間絶縁膜形成方法。
3. The silicon-rich oxide film has a thickness of 1.5
Refractive index of from 5 to 1.65 and -0.5~-1.5dyne / cm 2
2. The method for forming an interlayer insulating film of a semiconductor device according to claim 1, wherein said method has a compressive stress state of:
【請求項4】 前記シリコン窒化酸化膜はSiH4 /N
3 /N2 O/N2反応気体中、SiH4 流量は200
〜350sccm、N2 O流量は1000〜4000sccm、
NH3 流量は1000〜4000sccm、N2 流量は50
00〜8000sccmを用い、PECVD方法で蒸着する
ことを特徴とする請求項1記載の半導体素子の層間絶縁
膜形成方法。
4. The method according to claim 1, wherein the silicon oxynitride film is SiH 4 / N
In the H 3 / N 2 O / N 2 reaction gas, the SiH 4 flow rate is 200
~350sccm, N 2 O flow rate 1000~4000Sccm,
The NH 3 flow rate is 1000-4000 sccm, and the N 2 flow rate is 50
2. The method according to claim 1, wherein the film is deposited by PECVD using a thickness of 100 to 8000 sccm.
【請求項5】 前記シリコン窒化酸化膜は、1.55〜
1.85の屈折率と−0.5〜−1.5dyne/cm2 の圧
縮応力状態を有することを特徴とする請求項1記載の半
導体素子の層間絶縁膜形成方法。
5. The silicon oxynitride film according to claim 1, wherein
2. The method according to claim 1, wherein the method has a refractive index of 1.85 and a compressive stress state of -0.5 to -1.5 dyne / cm < 2 >.
【請求項6】 前記シリコン酸化膜上に上部金属配線を
形成する段階と、前記上部金属配線を含む全体構造の露
出した上面に保護膜を形成する段階をさらに含むことを
特徴とする請求項1記載の半導体素子の層間絶縁膜形成
方法。
6. The method of claim 1, further comprising: forming an upper metal line on the silicon oxide film; and forming a protective layer on an exposed upper surface of the entire structure including the upper metal line. The method for forming an interlayer insulating film of a semiconductor device according to the above.
【請求項7】 前記下層金属配線を形成する前に、前記
半導体基板上に多数個のMOS素子及び絶縁膜を形成す
る段階をさらに含むことを特徴とする請求項1記載の半
導体素子の層間絶縁膜形成方法。
7. The method of claim 1, further comprising forming a plurality of MOS devices and insulating films on the semiconductor substrate before forming the lower metal wiring. Film formation method.
【請求項8】 前記保護膜は1.95〜2.1の屈折率
と、−0.5〜−1.5dyne/cm2 の圧縮応力状態を有
することを特徴とする請求項1記載の半導体素子の層間
絶縁膜形成方法。
8. The semiconductor according to claim 1, wherein said protective film has a refractive index of 1.95 to 2.1 and a compressive stress state of -0.5 to -1.5 dyne / cm 2. A method for forming an interlayer insulating film of a device.
JP8244968A 1995-09-14 1996-09-17 Method for forming interlayer insulating film of semiconductor device Expired - Fee Related JP2937886B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019950030005A KR100197980B1 (en) 1995-09-14 1995-09-14 Method of manufacturing a semiconductor device
KR95-30005 1995-09-14

Publications (2)

Publication Number Publication Date
JPH09129625A JPH09129625A (en) 1997-05-16
JP2937886B2 true JP2937886B2 (en) 1999-08-23

Family

ID=19426789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8244968A Expired - Fee Related JP2937886B2 (en) 1995-09-14 1996-09-17 Method for forming interlayer insulating film of semiconductor device

Country Status (4)

Country Link
JP (1) JP2937886B2 (en)
KR (1) KR100197980B1 (en)
DE (1) DE19637458A1 (en)
GB (1) GB2305295B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156952A (en) * 2004-10-28 2006-06-15 Renesas Technology Corp Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313968A (en) * 2001-02-08 2002-10-25 Seiko Epson Corp Semiconductor device and its manufacturing method
CN111725180A (en) * 2020-07-23 2020-09-29 华虹半导体(无锡)有限公司 Interlayer dielectric layer structure for power MOS device and manufacturing method thereof
CN112635329A (en) * 2020-12-14 2021-04-09 华虹半导体(无锡)有限公司 Interlayer dielectric layer of DMOS device and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676867A (en) * 1986-06-06 1987-06-30 Rockwell International Corporation Planarization process for double metal MOS using spin-on glass as a sacrificial layer
US5003062A (en) * 1990-04-19 1991-03-26 Taiwan Semiconductor Manufacturing Co. Semiconductor planarization process for submicron devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156952A (en) * 2004-10-28 2006-06-15 Renesas Technology Corp Semiconductor device

Also Published As

Publication number Publication date
DE19637458A1 (en) 1997-03-20
GB2305295A (en) 1997-04-02
JPH09129625A (en) 1997-05-16
GB9619116D0 (en) 1996-10-23
GB2305295B (en) 2000-05-10
KR970018399A (en) 1997-04-30
KR100197980B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
US6503826B1 (en) Semiconductor device and method for manufacturing the same
US7030498B2 (en) Semiconductor device with copper wirings having improved negative bias temperature instability (NBTI)
JP3015717B2 (en) Semiconductor device manufacturing method and semiconductor device
US5472890A (en) Method for fabricating an insulating gate field effect transistor
KR19980070636A (en) Semiconductor device and manufacturing method thereof
US5936300A (en) Semiconductor device with film covering
JP3305901B2 (en) Method for manufacturing semiconductor device
US6794693B2 (en) Semiconductor device and manufacturing method thereof
JPH0752772B2 (en) Manufacturing method of semiconductor device
JPH10199881A (en) Manufacture of semiconductor device
JP2937886B2 (en) Method for forming interlayer insulating film of semiconductor device
US6274417B1 (en) Method of forming a semiconductor device
US6150241A (en) Method for producing a transistor with self-aligned contacts and field insulation
KR100219102B1 (en) Method of manufacturing semiconductor device
US20020000664A1 (en) Silicon nitride composite hdp/cvd process
US7037858B2 (en) Method for manufacturing semiconductor device including an ozone process
JPH05198690A (en) Manufacture of semiconductor device
JPH09213942A (en) Semiconductor device and manufacture thereof
JP2907765B6 (en) Semiconductor device
JPH09293717A (en) Semiconductor device and manufacture thereof
JPH08125168A (en) Semiconductor device and fabrication thereof
JPH0232790B2 (en)
JPH07202181A (en) Mosfet with gate insulating film protection diode and manufacture of mosfet interlayer insulating film
JPH09139383A (en) Semiconductor device
JPH03255636A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees