JP2936657B2 - Measurement method of heat treatment hardened layer depth - Google Patents

Measurement method of heat treatment hardened layer depth

Info

Publication number
JP2936657B2
JP2936657B2 JP16801690A JP16801690A JP2936657B2 JP 2936657 B2 JP2936657 B2 JP 2936657B2 JP 16801690 A JP16801690 A JP 16801690A JP 16801690 A JP16801690 A JP 16801690A JP 2936657 B2 JP2936657 B2 JP 2936657B2
Authority
JP
Japan
Prior art keywords
heat
hardened layer
coercive force
depth
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16801690A
Other languages
Japanese (ja)
Other versions
JPH0455753A (en
Inventor
正行 小林
力 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP16801690A priority Critical patent/JP2936657B2/en
Publication of JPH0455753A publication Critical patent/JPH0455753A/en
Application granted granted Critical
Publication of JP2936657B2 publication Critical patent/JP2936657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波焼入軸受,ハブユニット,CVJ等の合
金鋼又は炭素鋼製熱処理硬化品の硬化層深さの測定方法
に関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the depth of a hardened layer of a heat-hardened product made of an alloy steel or carbon steel such as an induction hardened bearing, a hub unit, and a CVJ.

〔従来の技術〕[Conventional technology]

一般に、高周波焼入軸受,ハブユニット,CVJ等の合金
又は炭素鋼製熱処理硬化品においては、寿命,耐摩耗性
等の特性を充分確保するため、熱処理硬化層深さの保証
が重要となる。
In general, in the case of heat-hardened products made of alloys such as induction hardened bearings, hub units, and CVJ or carbon steel, it is important to guarantee the depth of the heat-treated hardened layer in order to ensure sufficient properties such as life and wear resistance.

そこで、熱処理硬化層深さを非破壊的に精度良く測定
する必要があるが、この測定方法の従来例に特公昭41−
2435,特公昭45−28274号に記載された焼入層深度の非破
壊測定方法が存在する。
Therefore, it is necessary to accurately and nondestructively measure the depth of the heat-treated hardened layer.
There is a non-destructive method for measuring the quenched depth described in Japanese Patent Publication No. 2435, JP-B-45-28274.

この従来例で開示された測定方法は、焼入硬化層深さ
と保磁力との線形関係を利用して焼入硬化深度の異なる
複数の試料から焼入硬化深度−保磁力の検量線を作成す
る。そして、熱処理硬化品の保磁力を測定し、この測定
された保磁力と前記検量線とから焼入深度を測定するも
のである。
The measurement method disclosed in this conventional example creates a calibration curve of quench hardening depth-coercive force from a plurality of samples having different quench hardening depths using a linear relationship between the quench hardened layer depth and the coercive force. . Then, the coercive force of the heat-cured product is measured, and the quenching depth is measured from the measured coercive force and the calibration curve.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、実現の問題として量産品と同一の溶解
品の焼入硬化層深さの違う熱処理硬化品を多数用意し、
且つ各々の硬化品について保磁力を測定して検量線を作
成することは多大な苦労を伴う。しかも、熱処理硬化品
の化学組成が異なるとこれに伴い焼入性も変動し、この
結果保磁力と焼入深さとの関係も異なり、検量線も変動
する。この結果、成分組成が異なる熱処理硬化品毎に、
熱処理硬化層深さが異なる熱処理硬化品を準備し、保磁
力と硬化層深さとの間の膨大な量の検量線を予め作成し
なくてはならいという課題があった。
However, as a matter of realization, we prepared a large number of heat-hardened products with different quench hardened layer depths of the same melted products as mass-produced products,
In addition, it is very difficult to measure the coercive force of each cured product and create a calibration curve. In addition, when the chemical composition of the heat-cured product is different, the quenchability varies with the chemical composition. As a result, the relationship between the coercive force and the quench depth also varies, and the calibration curve also varies. As a result, for each heat-treated cured product with a different component composition,
There is a problem that an enormous amount of calibration curve between the coercive force and the hardened layer depth must be prepared in advance by preparing heat-hardened products having different heat-hardened layer depths.

そこで、この発明は、このような膨大量の検量線を予
め作成しなくても、一つの検量線を予め作成しておけ
ば、熱処理硬化層深さの測定が可能な方法を提供するこ
とを目的とするものである。
Therefore, the present invention provides a method capable of measuring the depth of the heat-treated hardened layer by preparing one calibration curve in advance without preparing such a huge amount of calibration curve in advance. It is the purpose.

〔課題を解決するための手段〕[Means for solving the problem]

この発明は、上記目的を達成して前記課題を解決する
ために、合金鋼又は炭素鋼からなる熱処理硬化品の保磁
力を測定し、その保磁力から熱処理硬化層深さを求める
熱処理硬化層深さの測定方法において、理想臨界直径が
1.7以上の熱処理硬化品について保磁力と熱処理硬化層
深さとの検量線を予め作成し、次いで結晶粒度番号が6
以上であり、且つ、理想臨界直径が1.7以上の測定対象
となる熱処理硬化品の中から選択された良品熱処理硬化
品の保磁力と熱処理硬化層深さとを測定し、該保磁力と
熱処理硬化層深さの測定値から前記検量線の熱処理硬化
層深さ0点の保磁力を補正した補正検量線を作成し、該
補正検量線に基づき前記測定対象となる熱処理硬化品の
熱処理硬化層深さを求めることを特徴とするものであ
る。
In order to achieve the above object and solve the above-mentioned problems, the present invention measures the coercive force of a heat-treated hardened product made of alloy steel or carbon steel, and determines the heat-treated hardened layer depth from the coercive force. In the method of measuring the ideal critical diameter
Calibration curves of the coercive force and the heat treatment hardened layer depth were prepared in advance for heat-treated hardened products of 1.7 or more.
The coercive force and the heat treatment hardened layer depth of the non-defective heat-treated hardened product selected from the heat-treated hardened products to be measured whose ideal critical diameter is 1.7 or more are measured, and the coercive force and the heat-treated hardened layer are measured. A correction calibration curve is prepared by correcting the coercive force of the heat treatment hardened layer of the calibration curve at a depth of 0 from the measured value of the depth, and the heat treatment hardened layer depth of the heat treated cured product to be measured based on the corrected calibration curve Is obtained.

〔作用〕[Action]

本発明者が鋭意検討したところ、理想臨界直径が1.7
以上の熱処理硬化品について保磁力と熱処理硬化層深さ
との検量線を予め作成し、次いで結晶粒度番号が6以上
であり、且つ、理想臨界直径が1.7以上の測定対象とな
る熱処理硬化品の中から選択した良品熱処理硬化品の保
磁力と熱処理硬化層深さとを測定し、該保磁力と熱処理
硬化層量深さの測定値から前記検量線の熱処理硬化層量
深さ0点の保磁力を補正した補正検量線を作成すること
により、該補正検量線に基づき前記測定対象となる熱処
理硬化品の熱処理硬化層深さを測定することができるこ
とを見出した。以下、詳説する。
The present inventors have conducted intensive studies and found that the ideal critical diameter is 1.7
Calibration curves of the coercive force and the depth of the heat-treated hardened layer are prepared in advance for the heat-treated hardened products described above, and then, among the heat-treated hardened products to be measured having a crystal grain size number of 6 or more and an ideal critical diameter of 1.7 or more. The coercive force and the heat treatment hardened layer depth of the non-defective heat-treated cured product selected from the above are measured, and the coercive force at the heat treatment hardened layer amount depth 0 point of the calibration curve is determined from the measured values of the coercive force and the heat treated hardened layer depth. By creating a corrected calibration curve, it has been found that the depth of the heat-treated hardened layer of the heat-cured product to be measured can be measured based on the corrected calibration curve. The details are described below.

炭素鋼又は合金鋼の焼入性が悪いと、これに伴って保
磁力と硬化層深さとの相関関係も悪いことは従来から知
られているころである。この理由は、次の通りである。
It has been known that when the hardenability of carbon steel or alloy steel is poor, the correlation between the coercive force and the hardened layer depth is also poor. The reason is as follows.

焼入性が悪いと硬さが入りにくくなる。この硬さはア
ルテンサイトによりものである。このアルテンサイト、
保磁力が大きく硬い性質を有する。従って、熱処理硬化
品の硬化層の保磁力との関係は測定対象中のマルテンサ
イトの体積比に影響される。焼入性が悪いと測定品体積
中のマルテンサイト体積比が少なくなり、保磁力が小さ
くなる傾向がある。このままは、JIS規格の構造用炭素
鋼や合金鋼から作成した量産品の焼入硬化層深さを保磁
力で測定する場合、測定品の焼入性、即ち化学成分が異
なる熱処理硬化品の全てついて予め検量線を作成してお
かなくてはならない。
Poor hardenability makes it difficult for hardness to enter. This hardness is due to altensite. This Altensite,
Coercive force is large and hard. Therefore, the relationship with the coercive force of the cured layer of the heat-cured product is affected by the volume ratio of martensite in the measurement object. If the hardenability is poor, the martensite volume ratio in the measured product volume tends to decrease, and the coercive force tends to decrease. As it is, when measuring the quench hardened layer depth of mass-produced products made from JIS standard structural carbon steel or alloy steel with coercive force, the hardenability of the measured products, that is, all the heat treated hardened products with different chemical components It is necessary to prepare a calibration curve in advance.

そこで、本発明者は、焼入性の変化が熱処理硬化品の
保磁力−硬化層深さの関係にいかなる影響を及ぼすかに
ついて鋭意検討した結果本発明に到達したものである。
Then, the present inventor has arrived at the present invention as a result of intensive studies on how the change in hardenability affects the relationship between the coercive force and the depth of the hardened layer of the heat-treated cured product.

先ず、本発明者は、構造用炭素鋼や合金鋼の焼入性を
定量的に表現する方法として、公知のDi値(理想臨界直
径)用いた。このDi値は、理想的急冷速度で冷却した場
合、鋼材丸棒の深部までマルテンサイト50%組織になる
丸棒の理想直径(インチ)をいい、理論値のため実験で
は直接求められないが、次のようにして求めることがで
きる。
First, the present inventors used a known Di value (ideal critical diameter) as a method for quantitatively expressing the hardenability of structural carbon steel and alloy steel. This Di value is the ideal diameter (inch) of a round bar that becomes a 50% martensite structure to the deep part of a steel round bar when cooled at an ideal quenching rate. It can be obtained as follows.

Di値は、化学成分と結晶粒度によって決まり、その計
算式は結晶粒度が7の場合、下記の(1)の式のように
なる。
The Di value is determined by the chemical component and the crystal grain size, and the calculation formula thereof is as shown in the following equation (1) when the crystal grain size is 7.

Di=D0・fSi・fMn・fNi・fCr・fMo ……(1) ここで、D0・fSi……は、含有元素濃度(重量%)に
よって定まる焼入性倍数であり、次の第1表のような値
となる。
Di = D 0 · fSi · fMn · fNi · fCr · fMo ...... (1) where, D 0 · FSI ...... is a hardenability multiples determined by containing element concentration (wt%), the first of the following The values are as shown in the table.

そこで、このDi値が異なる結晶粒度が6以上の構造用
炭素鋼であるJIS−S35C,45C,53Cの化学成分規格の上現
値と下限の鉄鋼材料(後記する第1表参照)から外輪溝
の焼入硬化層深さが異なるハブユニットを作成し、焼入
硬化層深さ(mm)と保磁力〔AT(アンペアターン)〕と
の関係について調べた。この結果を第1図に示す。第1
図から分かるように各炭素鋼の化学組成の上限と下限で
の硬化層深さと保磁力との関係が大きく異なることが分
かる。
Therefore, the outer ring groove is determined from the upper and lower values of the steel composition of the JIS-S35C, 45C, 53C, which are structural carbon steels having different Di values and having a crystal grain size of 6 or more (see Table 1 below). Hub units having different quench hardened layer depths were prepared, and the relationship between the quench hardened layer depth (mm) and the coercive force [AT (ampere turn)] was examined. The result is shown in FIG. First
As can be seen from the figure, the relationship between the hardened layer depth and the coercive force at the upper and lower limits of the chemical composition of each carbon steel is significantly different.

そして、Di値が異なると、焼の入り方が異なり、第2
図に示すように、高周波焼入部の表面から深さ方向の硬
さの変化は、同じS53CであってもDi値が1.4と2.5のそれ
ぞれで異なる。これより焼入性が悪いと(Di値が1.5以
上では特に)硬さが入り難しいことが分かる。この結
果、マルテンサイト体積比が異なり、保磁力と硬化層深
さとの関係もDi値の変化によって影響を受けることにな
る。
If the Di value is different, the way of burning is different,
As shown in the figure, the change in hardness in the depth direction from the surface of the induction hardened portion is different for the same S53C when the Di value is 1.4 and 2.5, respectively. From this, it can be seen that if the hardenability is poor (especially when the Di value is 1.5 or more), the hardness is hard to enter. As a result, the martensite volume ratio differs, and the relationship between the coercive force and the hardened layer depth is also affected by the change in the Di value.

本発明者はこのような状況のもと、Di値の変化が保磁
力と硬化層深さとの検量先に与える影響について検討し
た。
Under such circumstances, the present inventors have studied the influence of the change in the Di value on the calibration destination of the coercive force and the hardened layer depth.

一般に焼入層深さ−保磁力の間には、次の(2)の式
に示すような関係がある。
Generally, there is a relationship between the quenched layer depth and the coercive force as shown in the following equation (2).

y=Ax+B ……(2) ここで、x:焼入硬化層深さ(mm,以下同じ),y:保磁力
(AT,以下同じ),A:検量線の傾き(変化率),B:検量線
のy切片、を示す。
y = Ax + B (2) where x: depth of quenched hardened layer (mm, the same applies hereinafter), y: coercive force (AT, the same applies hereinafter), A: slope of calibration curve (rate of change), B: The y-intercept of the calibration curve is shown.

保磁力は、焼入硬化層深さの他に測定物の形状や間
隔、ヨークの形状や測定時のヨークと測定物の接触状況
等でも変化する相対値ではあるが、通常の測定ではこれ
らの要因は一定にできるので焼入硬化層深さへの影響を
無視することができる。そこで、JIS−S53Cの規格内で
各成分の含有量を変え、前記Di値と前記(2)式のA及
びBとの関係について鋭意検討した。このうち焼入深さ
−保磁力の検量線の傾きであるAと前記Di値との関係に
ていて第3図に示すような関係を得た。第3図から分か
るように、傾きAの値はDi値が1.7以上でほぼ一定とな
る。そして、y切片BとDi値については第4図のような
関係を得、Di値が同様に1.7以上でBの変化率は大きく
低下することが分かった。
The coercive force is a relative value that varies depending on the shape and interval of the measured object, the shape of the yoke, and the contact state between the yoke and the measured object at the time of measurement, in addition to the depth of the quenched hardened layer. Since the factors can be kept constant, the influence on the quench hardened layer depth can be neglected. Therefore, the content of each component was changed within the standards of JIS-S53C, and the relationship between the Di value and A and B in the above formula (2) was studied diligently. Of these, the relationship between A, which is the slope of the calibration curve of the quenching depth-the coercive force, and the Di value was obtained as shown in FIG. As can be seen from FIG. 3, the value of the slope A is substantially constant when the Di value is 1.7 or more. Then, a relationship as shown in FIG. 4 was obtained for the y-intercept B and the Di value, and it was found that the rate of change of B greatly decreased when the Di value was 1.7 or more.

従って、構造用炭素鋼や合金鋼の焼入特性値であるDi
値が1.7以上であれば、Aの値はほぼ一定であり、Bの
値が多少変化するのみなので、Di値が1.7以上の熱処理
硬化品を用いて硬化層深さ−保磁力の検量線を予め作成
しておけば、この検量線に基づいて熱処理硬化品の保磁
力から熱処理硬化層深さを求めることができる。なお、
測定開始時に焼入硬化層深さ(x1)の分かっているDi値
が1.7以上である測定品の良品について保磁力(y1)を
測定し、その焼入硬化層深さ(x1),保磁力(y1)に基
にy切片Bを補正(B=y1−Ax1)し、この補正後の検
量線(y=Ax+B1)に基づいて測定品の保磁力から硬化
層深さをさらに精度良く求めることができる(B1は補正
後のy切片)。また、測定最後に測定品の良品の保磁力
を測定しBの補正を行っても良い。従って、これらによ
り、各Di値の測定品について焼入硬化層深さの異なる熱
処理硬化品を用意し、保磁力を各々の測定した膨大な量
の検量を作成する必要はなく、一つの検量線を用意し、
これにより、あるいはこれを測定前に測定品の良品で補
正するだけで当該測定品について、保磁力から焼入硬化
層深さを精度良く求めることができる。
Therefore, the quenching characteristic value of structural carbon steel and alloy steel
If the value is 1.7 or more, the value of A is almost constant, and the value of B only slightly changes. Therefore, using a heat-cured product having a Di value of 1.7 or more, the calibration curve of the hardened layer depth-coercive force is obtained. If created beforehand, the depth of the heat-treated hardened layer can be determined from the coercive force of the heat-treated cured product based on this calibration curve. In addition,
At the start of the measurement, the coercive force (y 1 ) is measured for a non-defective product having a known quenched hard layer depth (x 1 ) of which Di value is 1.7 or more, and the quenched hard layer depth (x 1 ) , The intercept B is corrected based on the coercive force (y 1 ) (B = y 1 −Ax 1 ), and based on the corrected calibration curve (y = Ax + B 1 ), the hardened layer depth is determined from the coercive force of the measured product. can be further accurately determined is (y sections after B 1 represents corrected). At the end of the measurement, the coercive force of a non-defective product may be measured to correct B. Therefore, it is not necessary to prepare heat treatment hardened products having different quenching hardened layer depths for each measured value of Di value, and to prepare an enormous amount of calibrations for each coercive force. Prepare
Thereby, or by simply correcting this with a non-defective product before measurement, the quenched hardened layer depth of the measured product can be accurately determined from the coercive force.

ところで、検量線を作成する際の熱処理硬化品の結晶
粒の大きさは、粒度番号で6以上の必要がある。結晶粒
が大きくなると焼入性が向上するが焼入後の金属組織が
不安定なる傾向にあり、安定した保磁力の測定を行うた
めには、測定品の焼入組織は安定な金属組織であること
が必要である。そのため、結晶粒度が結晶粒度番号で6
以上であることが必要とした。尚、化学成分だけから計
算した場合、Di値が同じても結晶粒度が違うために金属
組織(マルテンサイト,トールスタイト,フェライト)
の分布が異なり、硬さ分布,保磁力の値が違う事例があ
った。
By the way, the size of the crystal grains of the heat-cured product at the time of preparing the calibration curve needs to be 6 or more in particle size number. When the crystal grains are large, the hardenability is improved, but the metal structure after quenching tends to be unstable.In order to measure the stable coercive force, the hardened structure of the measured product must have a stable metal structure. It is necessary to be. Therefore, the crystal grain size is 6
It was necessary to be above. When calculated only from chemical components, the metal structure (martensite, tolstite, ferrite) is different because the grain size is different even if the Di value is the same.
In some cases, the hardness distribution and the coercive force value were different.

以上のように予め検量線を作成する際は、Di値が1.7
以上で且つ結晶粒度番号が6以上の熱処理硬化品を使用
する必要があり、精度良く焼入硬化層深さを測定する場
合には、測定対象品もDi値が1.7以上で且つ結晶粒度番
号が6以上の熱処理硬化品であることが望ましい。
When a calibration curve is created in advance as described above, the Di value must be 1.7
It is necessary to use a heat-hardened product having a crystal grain size number of 6 or more, and when accurately measuring the quench hardened layer depth, the product to be measured also has a Di value of 1.7 or more and a crystal grain size number of It is desirable that the product is a heat-treated cured product of 6 or more.

〔実施例〕〔Example〕

次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.

次の第2表に示す組成の構造用炭素鋼JIS−S35C,S45
C,S53Cを溶製し、各々の鋼における化学成分規格の上限
値と下限値の材料を用いてハブユニットを施削加工し
た。次いで、このハブユニットの外輪溝部に高周波焼入
を行った。この高周波焼入に際しては、深焼用のMG式
(電動発電式)を利用し電流の周波数を1〜10kHzの範
囲で変更することにより焼入硬化層深さを変化させた。
Structural carbon steel JIS-S35C, S45 having the composition shown in Table 2 below
C and S53C were melted, and the hub unit was machined using the upper and lower limit materials of the chemical composition standard for each steel. Next, induction hardening was performed on the outer ring groove of the hub unit. In the induction hardening, the depth of the hardened hardened layer was changed by changing the frequency of the electric current in the range of 1 to 10 kHz using an MG type (motor-driven type) for deep hardening.

そして、後述の熱処理硬化層深度測定装置を使用して
硬化層深さ−保磁力との検量線を作成した。尚、各溶製
材の結晶粒は、結晶粒度番号で7になるように調製し
た。
Then, using a heat treatment hardened layer depth measuring device described later, a calibration curve of hardened layer depth-coercive force was created. In addition, the crystal grain of each ingot was prepared so as to have a crystal grain number of 7.

次に、本実施例に使用される熱処理硬化層深度測定装
置について説明する。
Next, a heat treatment hardened layer depth measuring device used in the present embodiment will be described.

第5図は、この装置を用いてハブユニット外輪溝の保
磁力を測定している状態を示す、装置の一部断面図、第
6図は、第5図におけるVI−VI断面図を示すものであ
る。
FIG. 5 is a partial cross-sectional view of the device, showing a state in which the coercive force of the hub unit outer ring groove is measured using this device. FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. It is.

図中、1はハブユニットの示し、2は非焼入部、3は
ハブユニット1の外輪溝部に高周波焼入が施されて形成
された焼入硬化層3を示す。
In the drawing, reference numeral 1 denotes a hub unit, 2 denotes a non-quenched portion, and 3 denotes a quench hardened layer 3 formed by subjecting an outer ring groove of the hub unit 1 to induction hardening.

この焼入硬化層深度測定装置は、それぞれの先端部が
外輪溝を当接する一対の突出片20を有する磁気鉄心4が
設けられ、そして、この磁気鉄心4はスペーサ5を介し
てハブユニット内に挿入されており、さらに、この磁気
鉄心には、これを磁化するための励磁用コイル6が巻回
されている。
This quenching hardened layer depth measuring device is provided with a magnetic core 4 having a pair of protruding pieces 20 each of which abuts an outer ring groove, and the magnetic core 4 is inserted into a hub unit via a spacer 5. The magnetic core is wound with an exciting coil 6 for magnetizing the core.

ヨーク13内の前記コイル6には、当該コイル6に正又
は負の直流電流を供給するための可変直流源9及び電流
計8が接続されている。
A variable DC source 9 for supplying a positive or negative DC current to the coil 6 and an ammeter 8 are connected to the coil 6 in the yoke 13.

また、前記磁気鉄心にはホール素子7が設けられ、こ
のホール素子7には、当該ホール素子を励磁するための
可変直流電源11及び電流計10が接続されている。尚、12
は、ホール素子出力電圧測定用電圧計である。
Further, a Hall element 7 is provided on the magnetic iron core, and the Hall element 7 is connected to a variable DC power supply 11 and an ammeter 10 for exciting the Hall element. In addition, 12
Is a Hall element output voltage measuring voltmeter.

次に、この装置を使用したハブユニット外輪溝の焼入
硬化層の保磁力を測定する際の動作について説明する。
Next, an operation of measuring the coercive force of the hardened layer of the outer ring groove of the hub unit using this device will be described.

以下のような構成において、励磁コイル6に電流を加
えるとその励磁力によって磁気鉄心4及び被測定物であ
るハブユニットの外輪溝の焼入硬化層中に磁束14を生じ
させる。この時起磁力はそれにより被測定物が飽和しは
じめるか、又は飽和する程度に選択する。次に励磁コイ
ル6の電流が負の値による電源9の電流値を降下させつ
つホール素子7の出力を監視する。ホール素子の励磁電
流を電流計1を監視しながら一定にしておけば、ホール
素子の出力はそれが置かれた場所における磁束密度をほ
ぼ比例し、またその感度は励磁電流を大きくすれば大と
なる、従って、ホール素子の出力零になる時の励磁電流
を電流計8で読み取れば、磁気ヒステリシス曲線の保磁
力の値に比例した起磁力の値を求めることができる。こ
の起磁力から焼入硬化層の保磁力を求めることができ
る。尚、検量線作成の際、顕微鏡によりマルテンサイト
が存在する深さをもって、焼入硬化層深さとした。
In the following configuration, when a current is applied to the exciting coil 6, the exciting force generates a magnetic flux 14 in the quench hardened layer of the magnetic iron core 4 and the outer ring groove of the hub unit as the object to be measured. At this time, the magnetomotive force is selected so that the measured object starts to saturate or saturates. Next, the output of the Hall element 7 is monitored while the current of the exciting coil 6 decreases the current value of the power supply 9 due to the negative value. If the exciting current of the Hall element is kept constant while monitoring the ammeter 1, the output of the Hall element is almost proportional to the magnetic flux density at the place where the Hall element is placed, and the sensitivity is large if the exciting current is increased. Therefore, if the exciting current when the output of the Hall element becomes zero is read by the ammeter 8, the value of the magnetomotive force proportional to the value of the coercive force of the magnetic hysteresis curve can be obtained. From this magnetomotive force, the coercive force of the quench-hardened layer can be determined. In preparing the calibration curve, the depth at which martensite was present under a microscope was taken as the quench hardened layer depth.

この測定装置により、前記第1表の各材料の上限と下
限(Di値の最大と最小)で作成したハブユニットの外輪
焼入硬化層の保磁力を測定し、保磁力と硬化層深さとの
検量線を作成したところ前記第1図のような特性を得
た。
With this measuring device, the coercive force of the outer ring quench hardened layer of the hub unit prepared at the upper and lower limits (maximum and minimum Di values) of each material in Table 1 was measured, and the coercive force and hardened layer depth were measured. When a calibration curve was prepared, characteristics as shown in FIG. 1 were obtained.

この第1図の特性から分かるように、材料の化学成分
の上限と下限(前記Di値の最大と最小)では、同じ焼入
層深さでも保磁力が大きく変わる。この結果、それぞれ
の検量線を使用しなければ焼入硬化層深さの測定が難し
いことになる。
As can be seen from the characteristics shown in FIG. 1, the coercive force greatly changes at the same quenched layer depth at the upper and lower limits of the chemical composition of the material (the maximum and minimum values of the Di value). As a result, it is difficult to measure the quench hardened layer depth without using the respective calibration curves.

そこで、S53Cの化学成分組成をDi値が1.69〜1.99のも
のについて保磁力−硬化層深さの検量線を作成したとこ
ろ、第7図のような特性を得た。尚、第7図において、
はDi値が1.95の時の検量線、はDi値が1.80の時の検
量線、はDi値が1.75の時の検量線、はDi値が1.69の
時の検量線である。
Therefore, when a calibration curve of coercive force-hardened layer depth was prepared for the chemical component composition of S53C having a Di value of 1.69 to 1.99, characteristics as shown in FIG. 7 were obtained. In FIG. 7,
Is a calibration curve when the Di value is 1.95, is a calibration curve when the Di value is 1.80, is a calibration curve when the Di value is 1.75, and is a calibration curve when the Di value is 1.69.

この第7図の特性から理解されるように、Di値が1.7
以上の鋼においては、保磁力−焼入硬化層深さの検量線
の変化率(傾き)がほぼ同じであり、この直線の切片の
値が僅かに異なる程度である。従って、各Di値の測定品
について焼入硬化層深さの異なる熱処理硬化品を用意
し、保磁力を各々の測定した膨大な量を作成する必要は
なく、一つの検量線を用意に、これにより、あるいはこ
れを測定前に測定品の良品でy切片の補正をするだけで
保磁力から焼入硬化層深さを精度良く測定することがで
きることが予想される。
As understood from the characteristics of FIG. 7, the Di value is 1.7
In the above steels, the change rate (gradient) of the calibration curve of the coercive force-quenching hardened layer depth is almost the same, and the values of the intercepts of this straight line are slightly different. Therefore, it is not necessary to prepare heat treatment hardened products with different quench hardened layer depths for each Di value measurement product, and create a huge amount of measured coercive force for each. It is expected that the depth of the quenched hardened layer can be accurately measured from the coercive force only by correcting the y-intercept with a non-defective product before measurement.

そこで、予め作成してある検量線を補正して求めた焼
入硬化層深さと、実際の焼入硬化層深さとの違いを調べ
るため以下の実験を試みた。
Therefore, the following experiment was conducted in order to examine the difference between the quench hardened layer depth obtained by correcting the calibration curve created in advance and the actual quench hardened layer depth.

先ず、Di値が1.7のS53C鋼でハブユニットを複数作成
し、外輪溝の焼入硬化層深さが異なるように前記高周波
焼入を行った。そして、これらの複数のハブユニットを
利用した、保磁力−焼入硬化層深さとの間の第1の検量
線を作成した。
First, a plurality of hub units were made of S53C steel having a Di value of 1.7, and the induction hardening was performed so that the hardened layer depth of the outer ring grooves was different. Then, a first calibration curve between the coercive force and the quench hardened layer depth was created using the plurality of hub units.

y=A1・x+B1 ……第1の検量線 ここで、yの保磁力、xは焼入硬化層深さ、A1は検量
線の傾き(変化率)、B1は検量線のy切片。
y = A 1 · x + B 1 ... First calibration curve Here, y is the coercive force, x is the depth of the quenched hardened layer, A 1 is the slope (change rate) of the calibration curve, and B 1 is y of the calibration curve. Section.

一方、Di値が2.0のS53C鋼を用いて複数のハブユニッ
トを形成し、外輪溝の焼入硬化層深さが異なるように高
周波焼入を行った。
On the other hand, a plurality of hub units were formed using S53C steel having a Di value of 2.0, and induction hardening was performed so that the hardened layer depth of the outer ring groove was different.

そして、保磁力と焼入硬化層深さの次の第2の検量線
を作成した。
Then, the following second calibration curve of the coercive force and the quench hardened layer depth was created.

y=A2・x+B2 ……第2の検量線 ここで、A2は前記A1同様、検量線の傾き(変化率)、
B2は前記B1同様、検量線のy切片。
y = A 2 × x + B 2 ... Second calibration curve Here, A 2 is the slope (change rate) of the calibration curve as in the case of A 1 ,
Y intercept of B 2 is the B 1 Similarly, a calibration curve.

次いで、測定対象のハブユニットの良品(保磁力及び
焼入硬化層深さは既知)の保磁力y1及び焼入硬化層深さ
x1を前記第1の検量線に代入して、B1の補正を行う。補
正後のBSTは、 BST=y1−A1・x1による求めることができる。従っ
て、補正後の検量線は、次のように表現される。
Next, the coercive force y 1 and the quench hardened layer depth of a good product (the coercive force and the quench hardened layer depth are known) of the hub unit to be measured.
by substituting x 1 to the first calibration curve to correct the B 1. B ST corrected can be determined by B ST = y 1 -A 1 · x 1. Therefore, the corrected calibration curve is expressed as follows.

y=A1・x+BST ……補正後の検量線 そこで、測定対象の複数のハブユニットについて、前
記第2の検量線のもと保磁力から焼入層深さを求め、同
様ハブユニットについて、前記補正後の検量線のもと保
磁力から焼入層深さ求め、前者の焼入層深さと後者の焼
入層深さとを対比した。この結果、いずれのハブユニッ
トについても±0.2mmの高精度で焼入深さを測定するこ
とができた。
y = A 1 · x + B ST Calibration curve after correction Then, for a plurality of hub units to be measured, the quenched layer depth was obtained from the coercive force based on the second calibration curve. The quenched layer depth was determined from the coercive force based on the corrected calibration curve, and the quenched layer depth of the former was compared with the quenched layer depth of the latter. As a result, the quenching depth of each of the hub units could be measured with high accuracy of ± 0.2 mm.

次に結晶粒度が保磁力に与える影響について検討し
た。
Next, the influence of the crystal grain size on the coercive force was examined.

第8図は、S53CのDi値=1.8の場合について結晶粒度
が3,6,7に調製されたハブユニット各々20個を、焼入深
さ2.5mm(目標値)に高周波焼入し、各々のものについ
て溝部の保磁力値バラツキを調査した結果を示したもの
である。
FIG. 8 shows that in the case where the Di value of S53C = 1.8, 20 hub units each having a grain size of 3, 6, 7 were induction hardened to a quenching depth of 2.5 mm (target value), 3 shows the results of an investigation of the variation in the coercive force value of the groove portion with respect to FIG.

第8図の結果によれば、結晶粒度が6以上のものにつ
いて保磁力の上・下限のバラツキ範囲が1AT以内と安定
していることが確認された。
According to the results of FIG. 8, it was confirmed that the variation range of the upper and lower coercive forces was stable within 1 AT for those having a crystal grain size of 6 or more.

この理由は、急速加熱,冷却になるほど拡散時間が短
くなるが、結晶粒が小さい程,金属組織(マルテンサイ
ト,トールスタイト,フェライト)の濃度分布が均一に
なりやすく、結晶粒度番号6以上のものでは、焼入組織
の保磁力値も安定するからである。
The reason for this is that the diffusion time becomes shorter as heating and cooling become faster, but as the crystal grains become smaller, the concentration distribution of the metal structure (martensite, tolstite, ferrite) tends to become more uniform, and the crystal grain size is 6 or more. Then, the coercive force value of the quenched structure is also stabilized.

以上本実施例では構造用炭素鋼から作成したハブユニ
ットについて本発明を適用した場合について説明した
が、それに限らず、その他の合金鋼、特に高炭素クロム
軸受鋼,浸炭軸受用鋼,高温軸用高速度鋼,転がり軸受
用ステンレス鋼,打ち抜き保持器用鋼,もみ抜き保持器
用構造用炭素鋼を使用した作成した熱処理硬化品に本発
明を適用することを可能である。
In this embodiment, the case where the present invention is applied to a hub unit made of structural carbon steel has been described. However, the present invention is not limited to this, and other alloy steels, particularly high carbon chromium bearing steel, carburized bearing steel, and high-temperature shaft The present invention can be applied to heat-treated and hardened products made using high-speed steel, stainless steel for rolling bearings, steel for punched cages, and structural carbon steel for machined cages.

そして、熱処理としては、高周波焼入に限らず、火炎
焼入の他、ズブ焼、浸炭焼入、浸炭窒化焼入等を使用す
ることができることは勿論である。
The heat treatment is not limited to induction quenching, but may include flame quenching, subbing quenching, carburizing quenching, carbonitriding quenching, and the like.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係わる熱処理硬化深さの
測定方法によれば、結晶粒度番号が6以上であり、且
つ、理想臨界直径が1.7以上の所定の熱処理硬化品につ
いて保磁力と熱処理硬化層深さとの検量線を予め作成
し、この検量線から測定対象となる熱処理硬化品の熱処
理硬化層深さを求めているため、膨大な量の検量線を予
め作成することなく熱処理硬化層深さを測定することが
できる、という効果を達成することができる。また、前
記検量線に測定対象となる良品熱処理硬化品に合わせて
補正した補正検量線を作成し、この補正検量線に基づき
熱処理硬化品の熱処理硬化層深さを求めることにより、
熱処理硬化層深さをさらに精度良く測定することができ
る。
As described above, according to the method for measuring the heat treatment hardening depth according to the present invention, the coercive force and the heat treatment hardening layer are obtained for a predetermined heat treatment hardening product having a crystal grain size number of 6 or more and an ideal critical diameter of 1.7 or more. Since a calibration curve with depth is created in advance, and the depth of the heat-treated hardened layer of the heat-treated cured product to be measured is determined from this calibration curve, the depth of the heat-treated hardened layer can be determined without creating a huge amount of calibration curve in advance. Can be measured. Further, by creating a corrected calibration curve corrected in accordance with the non-defective heat-treated cured product to be measured in the calibration curve, by obtaining the heat treatment hardened layer depth of the heat-treated cured product based on the corrected calibration curve,
The heat treatment hardened layer depth can be measured more accurately.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、焼入硬化層深さと保磁力との検量線、第2図
は、表面下深さと硬さとの関係を示す特性図、第3図
は、Di値と保磁力−焼入硬化層深さの検量線における傾
き(変化率)との関係を示す特性図、第4図は、この検
量線におけるy切片とDi値との関係を示す特性図、第5
図は、焼入硬化層深度測定装置の一部断面図構成図、第
6図は、第5図のVI−VI断面図、第7図は、焼入硬化層
深さと保磁力との検量線、第8図は保磁力と結晶粒度番
号との関係を示す特性図を示す。 図中、1はハブユニット、3は焼入層、4は磁気鉄心、
6は励磁用コイル、7はホール素子、を示す。
FIG. 1 is a calibration curve between the quench hardened layer depth and the coercive force, FIG. 2 is a characteristic diagram showing the relationship between the subsurface depth and the hardness, and FIG. 3 is the Di value and the coercive force-quenching hardening. FIG. 4 is a characteristic diagram showing the relationship between the inclination (change rate) in the calibration curve of the layer depth, FIG. 4 is a characteristic diagram showing the relationship between the y-intercept and the Di value in this calibration curve, and FIG.
The figure is a partial cross-sectional view of a quench hardened layer depth measuring device, FIG. 6 is a VI-VI cross-sectional view of FIG. 5, and FIG. 7 is a calibration curve of quench hardened layer depth and coercive force. FIG. 8 is a characteristic diagram showing the relationship between the coercive force and the grain size number. In the figure, 1 is a hub unit, 3 is a hardened layer, 4 is a magnetic core,
Reference numeral 6 denotes an exciting coil, and reference numeral 7 denotes a Hall element.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】合金鋼又は炭素鋼からなる熱処理硬化品の
保磁力を測定し、この保磁力から熱処理硬化層深さを求
める熱処理硬化層深さの測定方法において、理想臨界直
径が1.7以上の熱処理硬化品について保磁力と熱処理硬
化層深さとの検量線を予め作成し、次いで結晶粒度番号
が6以上であり、且つ、理想臨界直径1.7以上の測定対
象となる熱処理硬化品の中から選択された良品熱処理硬
化品の保磁力と熱処理硬化層深さとを測定し、該保磁力
と熱処理硬化層深さの測定値から前記検量線の熱処理硬
化層深さ0点の保磁力を補正した補正検量線を作成し、
該補正検量線に基づき前記測定対象となる熱処理硬化品
の熱処理硬化層深さを求めることを特徴とする熱処理硬
化層深さの測定方法。
1. A method for measuring the coercive force of a heat treated hardened product made of an alloy steel or a carbon steel, and determining the heat treated hardened layer depth from the coercive force, wherein the ideal critical diameter is 1.7 or more. Calibration curves of the coercive force and the depth of the heat-treated hardened layer are created in advance for the heat-treated hardened product, and then the crystal grain size number is 6 or more, and selected from the heat-treated hardened products to be measured with an ideal critical diameter of 1.7 or more. The corrected calibration obtained by measuring the coercive force and the depth of the heat-treated hardened layer of the non-defective heat-treated cured product, and correcting the coercive force of the heat-treated hardened layer at the zero point of the calibration curve from the measured values of the coercive force and the depth of the heat-treated hardened layer. Create a line,
A method for measuring the depth of a heat-treated hardened layer, wherein the depth of the heat-treated hardened layer of the heat-treated hardened product to be measured is obtained based on the corrected calibration curve.
JP16801690A 1990-06-26 1990-06-26 Measurement method of heat treatment hardened layer depth Expired - Lifetime JP2936657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16801690A JP2936657B2 (en) 1990-06-26 1990-06-26 Measurement method of heat treatment hardened layer depth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16801690A JP2936657B2 (en) 1990-06-26 1990-06-26 Measurement method of heat treatment hardened layer depth

Publications (2)

Publication Number Publication Date
JPH0455753A JPH0455753A (en) 1992-02-24
JP2936657B2 true JP2936657B2 (en) 1999-08-23

Family

ID=15860246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16801690A Expired - Lifetime JP2936657B2 (en) 1990-06-26 1990-06-26 Measurement method of heat treatment hardened layer depth

Country Status (1)

Country Link
JP (1) JP2936657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506798A (en) * 2011-10-25 2012-06-20 马鞍山方圆回转支承股份有限公司 Portable quenching depth nondestructive testing device for slewing bearing raceway

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622458B2 (en) * 1997-08-28 2005-02-23 日本精工株式会社 Rolling bearing unit for wheel support
JP4591989B2 (en) * 2001-08-08 2010-12-01 財団法人電力中央研究所 Coating thickness inspection method
JP4811276B2 (en) * 2007-01-10 2011-11-09 トヨタ自動車株式会社 Quenching depth measuring device and quenching depth measuring method
CN115094200B (en) * 2022-06-29 2023-11-07 徐工集团工程机械股份有限公司道路机械分公司 Large-diameter roller hardening depth calculation method suitable for multiple working conditions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506798A (en) * 2011-10-25 2012-06-20 马鞍山方圆回转支承股份有限公司 Portable quenching depth nondestructive testing device for slewing bearing raceway

Also Published As

Publication number Publication date
JPH0455753A (en) 1992-02-24

Similar Documents

Publication Publication Date Title
EP0013063B1 (en) Method of treating the surfaces of high carbon steel bodies
Blaow et al. Effect of hardness and composition gradients on Barkhausen emission in case hardened steel
Moorthy et al. Evaluation of tempering induced changes in the hardness profile of case-carburised EN36 steel using magnetic Barkhausen noise analysis
Moorthy et al. Magnetic Barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised En36 steel
Zhang et al. Magnetic characterization of surface-hardened steel
Sherman et al. Characterization of the carbon and retained austenite distributions in martensitic medium carbon, high silicon steel
Kobayashi et al. Evaluation of case depth in induction-hardened steels: Magnetic hysteresis measurements and hardness-depth profiling by differential permeability analysis
Vaidyanathan et al. Evaluation of induction hardened case depth through microstructural characterisation using magnetic Barkhausen emission technique
Moorthy Important factors influencing the magnetic Barkhausen noise profile
JP2936657B2 (en) Measurement method of heat treatment hardened layer depth
Send et al. Non-destructive case depth determination by means of low-frequency Barkhausen noise measurements
Magner et al. A historical review of retained austenite and its measurement by X-ray diffraction
JPH0466863A (en) Residual stress measuring method by steel working
Wei et al. Effects of Ion implantation conditions on the tribology of ferrous surfaces
Fricke et al. Control of Heat Treatment of Case-Hardening Steel 18CrNiMo7-6 by Determining the Penetration Depth of Eddy Currents
EP0033403A1 (en) Method of treating the surfaces of high carbon steel bodies and bodies of high carbon steel
JPH05331615A (en) Rolling bearing parts made of nonmagnetic steel
JP2611819B2 (en) Tempering treatment method of rotating shaft for magnetostrictive torque sensor
Artetxe et al. A new technique to obtain an equivalent indirect hysteresis loop from the distortion of the voltage measured in the excitation coil
De Campos et al. Magnetic Barkhausen noise in quenched carburized steels
Alvarenga et al. Quantitative determination of carbon concentration profiles by GD‐OES for the study of decarburization in low‐carbon steels
Shanaurin et al. SM-401 magnetic structuroscope
Bernard Methods of Measuring Case Depth in Steels
Abdulkareem et al. Effect of retained austenite on the micro-structure and mechanical properties of AI-SI4340 high strength low alloy steel (HSLA steel) using magnetic saturation measurement and X-ray diffraction methods
Keil et al. Evaluation of Carbon Control in Carburized Parts