JP2936529B2 - Optical STM device - Google Patents

Optical STM device

Info

Publication number
JP2936529B2
JP2936529B2 JP10010394A JP10010394A JP2936529B2 JP 2936529 B2 JP2936529 B2 JP 2936529B2 JP 10010394 A JP10010394 A JP 10010394A JP 10010394 A JP10010394 A JP 10010394A JP 2936529 B2 JP2936529 B2 JP 2936529B2
Authority
JP
Japan
Prior art keywords
probe
optical
optical fiber
stm
elbow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10010394A
Other languages
Japanese (ja)
Other versions
JPH07306213A (en
Inventor
達 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10010394A priority Critical patent/JP2936529B2/en
Priority to US08/359,193 priority patent/US5559330A/en
Publication of JPH07306213A publication Critical patent/JPH07306213A/en
Application granted granted Critical
Publication of JP2936529B2 publication Critical patent/JP2936529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、材料内あるいは材料内
埋設構造の極めて微小な領域に電子を注入し、この注入
した電子により生じた発光を検出し、その光の強度ある
いはスペクトル等を測定したり、あるいは検出位置に応
じた発光の空間分布像を測定することにより、当該材料
あるいは当該構造の極微小領域の特性を、高精度・高分
解能で観測可能とする光STM装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for injecting electrons into a very small region of a material or a structure embedded in a material, detecting light emission caused by the injected electrons, and measuring the intensity or spectrum of the light. The present invention relates to an optical STM device that enables observing the characteristics of a very small region of the material or the structure with high accuracy and high resolution by measuring the spatial distribution image of the light emission according to the detection position.

【0002】[0002]

【従来の技術】従来、この種の装置では、観測光を収集
する機構として探針とは独立して設置したレンズあるい
は反射鏡等のような光学素子が用いられてきた。これら
の光学素子は容易に短針と全く別個に設置できるため、
これらの光学素子が探針の電気的特性や駆動機能に影響
を与えることはなかった。
2. Description of the Related Art Heretofore, in this type of apparatus, an optical element such as a lens or a reflecting mirror installed independently of a probe has been used as a mechanism for collecting observation light. Because these optical elements can be easily installed completely separate from the short hand,
These optical elements did not affect the electrical characteristics and driving function of the probe.

【0003】しかし、光STM(Structual
Test Modelの略)装置の高性能化に伴い、集
光効率を改善するため、それ自体が光を収集する機能と
トンネル電流の供給機能とを合わせ持つ探針(以下、
「集光STM探針」と呼ぶ)が開発された。
However, optical STM (Structured)
With the advancement of the performance of the Test Model device, in order to improve the light collection efficiency, a probe (hereinafter, referred to as a probe) having both a function of collecting light and a function of supplying a tunnel current.
A "collective STM probe" has been developed.

【0004】この集光STM探針では、光ファイバを高
集光効率となるように形状加工し、さらに安定なトンネ
ル電流を流せるように、表面に導電加工してある。集光
STM探針には、この探針から分光器等へ光を導くため
の伝送用光ファイバが必要である。
In this light-collecting STM probe, the optical fiber is shaped so as to have a high light-collecting efficiency, and the surface is conductively processed so that a stable tunnel current can flow. The focusing STM probe requires a transmission optical fiber for guiding light from the probe to a spectroscope or the like.

【0005】また、光STM装置では、発光強度を強め
たり試料の種々の特性を明瞭に測定するために、試料を
極低温に冷却することがある。そして、試料を冷却する
と、試料表面が付着物で汚染されるので、試料及び探針
等の一切を極高真空内に保持することが必要となる。
[0005] In the optical STM apparatus, the sample may be cooled to an extremely low temperature in order to increase the emission intensity or to clearly measure various characteristics of the sample. When the sample is cooled, the surface of the sample is contaminated with extraneous matter. Therefore, it is necessary to keep all of the sample, the probe, and the like in an extremely high vacuum.

【0006】冷却手段や真空排気手段を付加することに
より、探針の周囲の環境空間条件は、狭い密封構造にな
ってきている。従って、保守の作業性を考慮して光ファ
イバは直線状に誘導挿入していた。ところで、STMで
は試料交換あるいは試料上の測定位置の変更や探針の交
換作業に伴い、探針を2次元的に前後あるいは左右に大
きく移動させる必要がある。
[0006] By adding cooling means and vacuum evacuation means, the environmental space conditions around the probe have become narrower and tighter. Therefore, the optical fiber has been guided and inserted linearly in consideration of maintenance workability. By the way, in the STM, it is necessary to largely move the probe two-dimensionally back and forth or right and left in accordance with a change of the sample, a change of the measurement position on the sample, and a change of the probe.

【0007】この時、光ファイバが直線状に接続されて
いると、光ファイバが曲げ状態でかなりの弾力を持つの
で、探針の移動に伴って探針及び探針駆動機構(主にピ
エゾ素子等を利用する)にかかる光ファイバの曲げ応力
が大きく変化するため、正確な探針駆動が不可能とな
る。そこで、従来の装置においては、探針移動機能を放
棄し、探針を固定して試料を移動することにより、この
問題を回避していた。
At this time, if the optical fiber is connected in a straight line, the optical fiber has a considerable elasticity in a bent state, so that the probe and the probe driving mechanism (mainly a piezo element) , Etc.), the bending stress of the optical fiber greatly changes, so that accurate probe driving becomes impossible. Therefore, in the conventional apparatus, this problem has been avoided by abandoning the probe moving function and moving the sample while fixing the probe.

【0008】[0008]

【発明が解決しようとする課題】ところが、従来の試料
を移動する方式においては、下記のような問題点が明ら
かとなる。すなわち、測定位置の調整は試料を載置する
試料ステージの移動により行うので、試料ステージには
粗調整から微調整に至る種々のレベルの位置調整機構が
必要となり、構造が大型化・複雑化してしまうという問
題点である。
However, in the conventional method of moving a sample, the following problems become apparent. That is, since the measurement position is adjusted by moving the sample stage on which the sample is mounted, the sample stage requires various levels of position adjustment mechanisms from coarse adjustment to fine adjustment, and the structure becomes large and complicated. This is a problem.

【0009】測定に必要な真空度を達成するための構造
や、試料の冷却を考慮するとこのような試料ステージの
採用は困難といわざるを得ない。従って、長距離の探針
往復直線移動を可能とし、しかも探針に応力がかかりに
くいファイバの設置仕様が強く求められていた。
Considering the structure for achieving the degree of vacuum required for measurement and the cooling of the sample, it must be said that the use of such a sample stage is difficult. Accordingly, there has been a strong demand for a fiber installation specification which enables long-distance linear reciprocation of the probe and hardly applies stress to the probe.

【0010】また、一般に絶縁体と考えられている光フ
ァイバは、ある程度の導電性を持つことが実験的に明ら
かにされ、この光ファイバを通して流れるリーク電流
は、トンネル電流測定に無視できない程度の影響を与え
ることがわかった。従って、光ファイバを通して流れる
リーク電流を完全に除去する手段が新たに必要となっ
た。
Further, it has been experimentally revealed that an optical fiber generally considered to be an insulator has a certain degree of conductivity, and a leak current flowing through this optical fiber has an insignificant effect on tunnel current measurement. Found to give. Therefore, a means for completely removing the leak current flowing through the optical fiber is required.

【0011】これは、従来の金属製のSTM探針では不
要なことで、光の検出とトンネル電流の供給の両方の機
能を有する光STM装置特有の問題である。そして、極
高真空中にこれらを設置した場合、外部からファイバを
最終的な設置位置へ直接固定することが困難であるの
で、装置外部から最終設置位置まで正確に誘導する手段
も必要となる。
This is unnecessary in the conventional metal STM probe, and is a problem peculiar to an optical STM device having both functions of detecting light and supplying a tunnel current. When these are installed in an extremely high vacuum, it is difficult to directly fix the fiber to the final installation position from the outside. Therefore, means for accurately guiding the fiber from the outside of the apparatus to the final installation position is also required.

【0012】本発明者は、上記のように従来技術の光S
TM装置で用いられている光ファイバ実装手段では、探
針及び探針駆動機構に過大な機械的応力が発生し、この
応力が探針移動に伴って大きく変化するため、正確な探
針移動ができないという問題点を見出した。
As described above, the inventor of the present invention has made the prior art light S
In the optical fiber mounting means used in the TM device, excessive mechanical stress is generated in the probe and the probe driving mechanism, and this stress changes greatly with the movement of the probe. I found a problem that I couldn't do it.

【0013】ここにおいて、本発明が解決せんとする主
要な技術的課題は次に列挙する通りである。本発明の第
1の目的は、高精度の探針駆動を損なうことなく、探針
の長距離往復直線移動を可能とする光STM装置を提供
せんとするものである。
The main technical problems to be solved by the present invention are as listed below. A first object of the present invention is to provide an optical STM device that enables long-distance linear reciprocal movement of a probe without impairing high-precision probe driving.

【0014】本発明の第2の目的は、ファイバを流れる
リーク電流を極力排除することが可能な光STM装置を
提供せんとするものである。
A second object of the present invention is to provide an optical STM device capable of eliminating leak current flowing through a fiber as much as possible.

【0015】本発明の第3の目的は、移動する探針に応
力がかかりにくい光STM装置を提供せんとするもので
ある。
[0015] A third object of the present invention is to provide an optical STM apparatus in which stress is not easily applied to a moving probe.

【0016】本発明の第4の目的は、光ファイバを装置
外部から最終設置位置まで正確に誘導する手段を有する
光STM装置を提供せんとするものである。
A fourth object of the present invention is to provide an optical STM device having means for accurately guiding an optical fiber from the outside of the device to a final installation position.

【0017】本発明の第5の目的は、密封冷却雰囲気内
で観測可能な光STM装置を提供せんとするものであ
る。
A fifth object of the present invention is to provide an optical STM device that can be observed in a sealed cooling atmosphere.

【0018】本発明の第6の目的は、密封真空雰囲気内
で観測可能な光STM装置を提供せんとするものであ
る。
[0018] A sixth object of the present invention is to provide an optical STM device that can be observed in a sealed vacuum atmosphere.

【0019】本発明の他の目的は、明細書及び図面、特
に特許請求の範囲の記載から自ずと明らかになるであろ
う。
Other objects of the present invention will become apparent from the description and drawings, particularly from the appended claims.

【0020】[0020]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手段及び手法を採用
することにより達成される。即ち、本発明の第1の特徴
は、内部の試料ステージ上に載置する試料からの観測光
を針先端で集光する光透過性と導電性を有する探針を内
架した密封測定室の室外から測定機器と接続した光ファ
イバの自由先端を室内に誘導挿通して前記探針の針基端
に前記観測光を受搬自在に心合せ臨接する光STM装置
において、前記探針を移動自在に探針駆動機構に取り付
けるとともに、前記光ファイバの中間部を所定曲率半径
領域内に弾性湾曲変形する一方、基端部側を固定保持し
かつ前記先端部を軸方向可動自在に保持してなる光ST
M装置である。
The object of the present invention can be attained by adopting the following novel features and methods of the present invention. That is, a first feature of the present invention is that a sealed measuring chamber in which a light-transmitting and conductive probe for collecting observation light from a sample placed on an internal sample stage at the tip of the needle is installed. In an optical STM device in which the free end of an optical fiber connected to a measuring device is guided and inserted into a room from outside, and the observation light is receivably centered on the base end of the probe, the probe is movable. While the intermediate portion of the optical fiber is elastically bent and deformed within a predetermined radius of curvature region, while the base end portion is fixedly held and the tip end portion is held movably in the axial direction. Light ST
M device.

【0021】本発明の第2の特徴は、前記第1の特徴に
おける光ファイバが、中間部の湾曲変形度に合わせたエ
ルボ管軸心に沿って内通保持してなる光STM装置であ
る。
A second aspect of the present invention is an optical STM apparatus in which the optical fiber according to the first aspect is internally held along an elbow tube axis centered on the degree of bending deformation of the intermediate portion.

【0022】本発明第3の特徴は、前記第2の特徴にお
ける光ファイバは、エルボ管外端のファイバ取り出し口
に内嵌した固定アンカースペーサの軸心に基端部側を貫
着保持して引出してなる光STM装置である。
According to a third aspect of the present invention, in the optical fiber according to the second aspect, the base end side of the optical fiber is fixedly held at the axis of the fixed anchor spacer fitted in the fiber outlet at the outer end of the elbow tube. This is an optical STM device drawn out.

【0023】本発明第4の特徴は、前記第2又は第3の
特徴における光ファイバが、先端部をエルボ管内端に摺
動自在に内嵌した円錐凸形可動アンカースペーサの軸心
に貫着保持してなる光STM装置である。
A fourth feature of the present invention is the optical fiber according to the second or third feature, wherein the optical fiber sticks to the axis of a conical convex movable anchor spacer having a distal end slidably fitted in the inner end of the elbow tube. This is an optical STM device held.

【0024】本発明の第5の特徴は、前記第2,第3又
は第4の特徴におけるエルボ管が、探針の移動と一体的
な円錐凸形可動アンカースペーサの軸方向摺動に伴うフ
ァイバの弾性ひずみ変形による接触を生じない内径を有
してなる光STM装置である。
According to a fifth feature of the present invention, the elbow tube according to the second, third or fourth feature is characterized in that the elbow tube is provided with a fiber associated with the axial sliding of the conical convex movable anchor spacer integrated with the movement of the probe. An optical STM device having an inner diameter that does not cause contact due to elastic strain deformation.

【0025】本発明の第6の特徴は、前記第4又は第5
の特徴における探針駆動機構が、エルボ管の内端に摺動
自在に内嵌して円錐凸形可動アンカースペーサと雌雄嵌
合する円錐凹形心出し受座を突設してなる光STM装置
である。
The sixth feature of the present invention is the fourth or fifth aspect.
An optical STM device in which the probe driving mechanism according to the above feature is characterized in that a conical concave centering seat that is slidably fitted inside the inner end of the elbow tube and mates with the conical convex movable anchor spacer is male and female. It is.

【0026】本発明の第7の特徴は、前記第1,第2,
第3,第4,第5又は第6の特徴における探針駆動機構
が、ピエゾ素子である光STM装置である。
A seventh feature of the present invention is that the first, second, and
The probe driving mechanism according to the third, fourth, fifth or sixth feature is an optical STM device which is a piezo element.

【0027】本発明の第8の特徴は、前記第4,第5,
第6又は第7の特徴における円錐凸形可動アンカースペ
ーサと円錐凹形心出し受座が、電気的絶縁材料で形成さ
れてなる光STM装置である。
An eighth feature of the present invention is that the fourth, fifth, and fifth aspects of the present invention are described below.
An optical STM device in which the conical convex movable anchor spacer and the conical concave centering seat in the sixth or seventh aspect are formed of an electrically insulating material.

【0028】本発明の第9の特徴は、前記第1,第2,
第3,第4,第5,第6,第7又は第8の特徴における
密封測定室が、冷却手段を内設してなる光STM装置で
ある。
A ninth feature of the present invention is that the first, second, and
The sealed measurement chamber according to the third, fourth, fifth, sixth, seventh, or eighth feature is an optical STM device including a cooling unit therein.

【0029】本発明の第10の特徴は、前記第1,第
2,第3,第4,第5,第6,第7,第8又は第9の特
徴における密封測定室が、真空排気手段と室内を連通し
てなる光STM装置である。
According to a tenth feature of the present invention, the sealed measurement chamber in the first, second, third, fourth, fifth, sixth, seventh, eighth or ninth feature is characterized by that An optical STM device that communicates with the room.

【0030】[0030]

【作用】本発明は、前記のような新規の手段を講じるの
で、探針移動機構により光ファイバが変形しても、応力
がかかりにくく、そのため正確な探針の長距離往復直線
移動を行うことができる。また、雌雄嵌合する可動アン
カースペーサと心出し受座を電気的絶縁材料で構成する
ことにより、光ファイバを通じたリーク電流を極力排除
することが可能となる。
According to the present invention, since the above-mentioned novel means is employed, even if the optical fiber is deformed by the probe moving mechanism, stress is not easily applied, and therefore, accurate long-distance linear reciprocal movement of the probe can be achieved. Can be. In addition, by forming the movable anchor spacer and the centering seat for male and female fitting with an electrically insulating material, it is possible to minimize leakage current through the optical fiber.

【0031】探針の移動により発生する光ファイバ内の
応力を中間部を所要曲率に湾曲することにより探針の移
動方向と一致する垂直応力と当該移動方向とは直交する
剪断応力に分散し縦弾性と横弾性を発現させ容易にファ
イバの弾性変形を促し探針や探針移動機構への悪影響を
極力回避出来る。
The stress in the optical fiber generated by the movement of the probe is dispersed into a vertical stress which coincides with the moving direction of the probe and a shear stress which is orthogonal to the moving direction by bending the intermediate portion to a required curvature. By exhibiting elasticity and lateral elasticity, elastic deformation of the fiber can be easily promoted, and adverse effects on the probe and the probe moving mechanism can be avoided as much as possible.

【0032】[0032]

【実施例】以下、本発明の実施例を図面につき説明す
る。図1は本実施例の構造を説明する縦断面説明図であ
る。図中、Aは本実施例の光STM装置、Bは密封測定
室、1は探針、2はピエゾ素子等を利用した探針駆動機
構、3は試料ステージ3a上の試料、4は冷却手段、5
は真空容器である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory longitudinal sectional view for explaining the structure of this embodiment. In the figure, A is the optical STM device of this embodiment, B is a sealed measuring chamber, 1 is a probe, 2 is a probe driving mechanism using a piezo element or the like, 3 is a sample on the sample stage 3a, 4 is a cooling means. , 5
Is a vacuum container.

【0033】6は光伝送用光ファイバ、7はエルボ管、
8aは光伝送用光ファイバ6先端を軸心に貫着しエルボ
管7内端に摺動自在に内嵌した円錐台状の円錐凸形可動
アンカースペーサ、8bはエルボ管7外端のファイバ取
り出し口7aに内嵌し、軸心に光伝送用光ファイバ6を
貫着して引出す固定アンカースペーサ、9は探針駆動機
構2に突設しエルボ管7に摺動自在に内嵌するとともに
円錐凸形可動アンカースペーサ8aに雌雄嵌合する擂り
鉢状の円錐凹形心出し受座、10,11は嵌脱自在な封
緘部材、12は真空封止手段である。
6 is an optical fiber for optical transmission, 7 is an elbow tube,
Reference numeral 8a denotes a frustoconical conical convex movable anchor spacer in which the tip of the optical fiber 6 for optical transmission penetrates the axis and is slidably fitted in the inner end of the elbow tube 7; A fixed anchor spacer 9 which is fitted in the mouth 7a and which is drawn through the optical transmission optical fiber 6 at the axis thereof is protruded from the probe driving mechanism 2 and is slidably fitted in the elbow tube 7 and is conical. The mortar-shaped conical concave centering seats 10 and 11 are male and female fitted to the convex movable anchor spacer 8a.

【0034】探針1の基端1a部は探針駆動機構2に固
定され、針先端1bを試料ステージ3a上の試料3と当
接自在に対向して設置してある。探針1,探針駆動機構
2及び試料3は、密封測定室Bに内張りした冷却手段4
に囲まれ、測定時の所定の低温まで冷却可能となってい
る。
The proximal end 1a of the probe 1 is fixed to the probe drive mechanism 2, and the distal end 1b of the probe 1 is installed so as to freely contact the sample 3 on the sample stage 3a. The probe 1, the probe drive mechanism 2 and the sample 3 are provided with a cooling means 4 lined in a sealed measurement chamber B.
And can be cooled to a predetermined low temperature at the time of measurement.

【0035】これら探針1,探針駆動機構2,試料3及
び冷却手段4は表面汚染を防止するため、密封測定室B
内に連通する図示しない真空排気手段の真空排気装置に
より全て超真空に保たれた真空容器5内に納められてい
る。探針駆動機構2の周囲は、冷却効率の向上と試料表
面汚染の低減のため、余剰の空間は非常に狭く、ほぼ密
封状態となっている。
The probe 1, the probe drive mechanism 2, the sample 3, and the cooling means 4 are used to prevent contamination of the surface.
All are housed in a vacuum vessel 5 kept in ultra-vacuum by a vacuum exhaust device (not shown) of vacuum exhaust means communicating with the inside. The surplus space around the probe driving mechanism 2 is very narrow and substantially sealed to improve cooling efficiency and reduce sample surface contamination.

【0036】探針1の基端1aには、光伝送用ファイバ
6の先端が心合せ臨接されており、光伝送用光ファイバ
6を通して真空容器5の外に設置された光分光器等の図
示しない光処理手段まで光を導いている。光伝送用光フ
ァイバ6の先端には、重量があり軸対称形の円錐凸形可
動アンカースペーサ8aの軸心に貫着保持してある。す
なわち、光伝送用光ファイバ6中間部が大きな曲率半径
で曲げてあるのが、本実施例の特徴である。
The distal end 1a of the probe 1 has the distal end of the optical transmission fiber 6 aligned with and in contact with the base 1a. The light is guided to light processing means (not shown). At the distal end of the optical fiber 6 for light transmission, a heavy, axially symmetric, conical-convex movable anchor spacer 8a is fixedly attached to the axis thereof. That is, the feature of the present embodiment is that the intermediate portion of the optical fiber for optical transmission 6 is bent with a large radius of curvature.

【0037】その本実施例の特徴である、曲率半径の目
安について以下に述べる。曲率が小さすぎると、光ファ
イバ6の両端付近の保持部分で光ファイバ6に大きな剪
断力が加わり、光ファイバ6の破断や探針駆動機構2の
歪み等の悪影響が生じる。
The characteristic of the present embodiment, that is, the standard of the radius of curvature will be described below. If the curvature is too small, a large shearing force is applied to the optical fiber 6 at the holding portions near both ends of the optical fiber 6, and adverse effects such as breakage of the optical fiber 6 and distortion of the probe driving mechanism 2 occur.

【0038】一方、曲率半径が大きすぎる(光ファイバ
6の形状がほぼ直線状態である)と、探針1の軸方向移
動に伴う光ファイバ6の機械的垂直応力の変化量が大き
くなり、所望の効果が得られない。従って、光STM装
置Aで必要な探針1の上下往復直線移動距離の範囲内で
光ファイバ6の保持両端にかかる剪断力がほぼ一定にな
るように、光ファイバ6の曲率半径を定める。このよう
な曲率半径では縦弾性と横弾性に分散変形され剪断力絶
対値は小さい。
On the other hand, if the radius of curvature is too large (the shape of the optical fiber 6 is substantially linear), the amount of change in the mechanical normal stress of the optical fiber 6 accompanying the axial movement of the probe 1 becomes large, which is undesirable. Effect cannot be obtained. Therefore, the radius of curvature of the optical fiber 6 is determined so that the shearing force applied to both ends of the holding of the optical fiber 6 is substantially constant within the range of the vertical reciprocating movement of the probe 1 required in the optical STM apparatus A. At such a radius of curvature, the material is dispersed and deformed into longitudinal elasticity and lateral elasticity, and the absolute value of the shearing force is small.

【0039】通常、400μm径の光ファイバ6では、
この曲率半径は10〜20cm程度である。このよう
に、所望の効果が発揮される光ファイバ6の曲率半径は
厳密でなく、ある程度広い許容範囲があることが、本実
施例の実用上の利点である。このような曲げ状態では、
光ファイバ6全体が円弧になることはなく、上記曲率の
中間円弧部6aに連なる先端部と基端部に直線部6bが
できる。
Usually, in the optical fiber 6 having a diameter of 400 μm,
This radius of curvature is about 10 to 20 cm. Thus, the practical advantage of the present embodiment is that the radius of curvature of the optical fiber 6 at which the desired effect is exhibited is not strict, and there is a certain wide tolerance. In such a bent state,
The entire optical fiber 6 does not form a circular arc, and a linear portion 6b is formed at the distal end and the proximal end connected to the intermediate circular arc portion 6a having the above-mentioned curvature.

【0040】この直線部6bの長さが円弧部6aの半径
程度以上存在する状態で使用すればよい。ただし、直線
部6bが長すぎると、光ファイバ6のたわみや揺れが大
きくなって、不要な機械的振動が増大することになるの
で、不必要に長くすることは避ける。万が一、長い直線
部6bが必要な場合には、支持部材を設置する。
The straight portion 6b may be used in a state where the length of the straight portion 6b is about the radius of the circular arc portion 6a or more. However, if the straight portion 6b is too long, the bending and swinging of the optical fiber 6 will increase, and unnecessary mechanical vibration will increase. If a long straight portion 6b is needed, a support member is installed.

【0041】光ファイバ6の実装時に直接手で作業が出
来る場合には、上記湾曲した光ファイバ6を設置するこ
とは比較的容易であるが、光STM装置Aでは光ファイ
バ6を導入すべき空間の周囲が冷却手段4や真空容器5
等で取り囲まれているため、弾性湾曲変形した光ファイ
バ6の保持は極めて困難である。
When the optical fiber 6 can be directly hand-operated at the time of mounting, it is relatively easy to install the above-mentioned curved optical fiber 6, but in the optical STM apparatus A, the space in which the optical fiber 6 is to be introduced. Around the cooling means 4 and the vacuum vessel 5
Therefore, it is extremely difficult to hold the optical fiber 6 that has been elastically bent and deformed.

【0042】そこで、光ファイバ6を通す案内用のエル
ボ管7を設ける。このエルボ管7は、光ファイバ6の湾
曲に沿って曲げてあり、その内径が中に挿入した光ファ
イバ6が探針1移動時の弾性変形においても、内壁に接
触しない程度の直径を有している。このエルボ管7を、
光ファイバ6先端が探針1基端1aと心合せ臨接する位
置から冷却手段4を内張りした密封測定室B内上方を通
り封緘部材10,11を貫通して真空容器5の外部まで
延びて配置してある。
Therefore, an elbow pipe 7 for guiding the optical fiber 6 is provided. The elbow tube 7 is bent along the curvature of the optical fiber 6 and has such a diameter that the inner diameter of the optical fiber 6 does not contact the inner wall even when the inserted optical fiber 6 is elastically deformed when the probe 1 moves. ing. This elbow tube 7
From the position where the tip of the optical fiber 6 is aligned with and in contact with the base end 1a of the probe 1, it passes through the upper part of the sealed measuring chamber B with the cooling means 4 and penetrates the sealing members 10 and 11 and extends to the outside of the vacuum vessel 5. I have.

【0043】なお、図1に図示するよう、エルボ管7外
端に真空を保持するための真空封止手段12を取り付け
ることは当然である。エルボ管7の内端には、光ファイ
バ6先端部を貫着した円錐凸形可動アンカースペーサ8
aに雌雄嵌合する擂り鉢形状の治具たる円錐凹形心出し
受座9が摺動自在に内嵌配置してある。
As shown in FIG. 1, it is natural that vacuum sealing means 12 for holding a vacuum is attached to the outer end of the elbow tube 7. At the inner end of the elbow tube 7, a conical convex movable anchor spacer 8 penetrating the tip of the optical fiber 6 is provided.
A conical concave centering seat 9, which is a mortar-shaped jig that fits both males and females, is slidably fitted inside.

【0044】この円錐凹形心出し受座9により、光ファ
イバ6をエルボ管7の内端まで挿入したときに光ファイ
バ6先端の円錐凸形可動アンカースペーサ8aが嵌合
し、外部から手を加えることなく、光ファイバ6の中心
軸がエルボ管7の中心軸と自動的に一致させる心合せが
可能となる。
When the optical fiber 6 is inserted up to the inner end of the elbow tube 7, the conical convex movable anchor spacer 8 a at the tip of the optical fiber 6 is fitted by the conical concave centering seat 9, and the hand is held from the outside. Without the addition, it is possible to perform centering in which the center axis of the optical fiber 6 automatically matches the center axis of the elbow tube 7.

【0045】なお、当該円錐凸形可動アンカースペーサ
8aと円錐凹形心出し受座9を電気的絶縁材料で製作す
ることにより、光ファイバ6を経由するリーク電流を遮
断することが可能となる。電気的絶縁材料としては、真
空を汚さず、冷却による損傷等がなければ、セラミクス
等任意の材料を用いてよい。
By manufacturing the conical convex movable anchor spacer 8a and the conical concave centering seat 9 from an electrically insulating material, it is possible to cut off the leak current passing through the optical fiber 6. As the electrically insulating material, any material such as ceramics may be used as long as the material does not contaminate the vacuum and is not damaged by cooling.

【0046】また、可動アンカースペーサ8a及び心出
し受座9の形状については、図1に図示されたものに限
定されるものではなく、光ファイバ6先端の探針1基端
1aに対する心合せ臨接を保証する形状であれば、逆の
形状であったり、例えば心出し受座9側に複数の円錐穴
を設けて可動アンカースペーサ8a側に円錐突起を設け
て接合したり、心出し受座9側に十字や放射谷溝を設け
て可動アンカースペーサ8a側に十字や放射山を設けて
接合したりしても、特に問題はない。
Further, the shapes of the movable anchor spacer 8a and the centering seat 9 are not limited to those shown in FIG. 1, and the center of the tip of the optical fiber 6 with respect to the base 1a of the probe 1 is adjusted. If it is a shape that guarantees contact, the shape may be reversed, for example, a plurality of conical holes may be provided on the centering seat 9 side and conical protrusions may be provided on the movable anchor spacer 8a side for joining. Even if a cross or a radial groove is provided on the side 9 and a cross or a radial peak is provided on the movable anchor spacer 8a side, there is no particular problem.

【0047】なお、探針1へのトンネル電流及び探針駆
動機構2への駆動電流は図示しない配線を通すかエルボ
管7を導電性として通すかして供給するものとする。
Note that the tunnel current to the probe 1 and the drive current to the probe drive mechanism 2 are supplied through wires (not shown) or through the elbow tube 7 as conductive.

【0048】[0048]

【発明の効果】以上のように、本発明によれば、光伝送
用光ファイバを円弧状に曲げることにより、高精度の探
針駆動をそこなうことなく、しかも探針の長距離上下往
復直線移動を可能とする。
As described above, according to the present invention, by bending the optical fiber for optical transmission into an arc shape, it is possible to move the probe up and down linearly for a long distance without impairing high-precision probe drive. Is possible.

【0049】また、心合せ雌雄嵌合する可動アンカース
ペーサと心出し受座を電気的絶縁材料で構成することに
より、厳密な意味での絶縁材料ではない光光ファイバを
リークするリーク電流を排除することが可能とし、しか
も、冷却密封雰囲気や真空密封雰囲気内で観測できる等
優れた有用性、効用性を発揮する。
Further, since the movable anchor spacer and the centering seat which are fitted to each other are made of an electrically insulating material, a leak current leaking from the optical fiber which is not an insulating material in a strict sense is eliminated. In addition, it exhibits excellent usefulness and utility, such as being observable in a cooling sealed atmosphere or a vacuum sealed atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構造を説明する縦断面説明図
である。
FIG. 1 is an explanatory longitudinal sectional view illustrating the structure of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A…光STM装置 B…密封測定室 1…探針 1a…基端 1b…針先端 2…探針駆動機構 3…試料 3a…試料ステージ 4…冷却手段 5…真空容器 6…光伝送用光ファイバ 6a…円弧部 6b…直線部 7…エルボ管 8a…円錐凸形可動アンカースペーサ 8b…固定アンカースペーサ 9…円錐凹形心出し受座 10,11…封緘部材 12…真空封止手段 A: Optical STM device B: Sealed measurement chamber 1: Probe 1a: Base end 1b: Needle tip 2: Probe drive mechanism 3: Sample 3a: Sample stage 4: Cooling means 5: Vacuum container 6: Optical fiber for optical transmission 6a ... Arc part 6b ... Linear part 7 ... Elbow tube 8a ... Conical convex movable anchor spacer 8b ... Fixed anchor spacer 9 ... Conical concave centering seat 10,11 ... Sealing member 12 ... Vacuum sealing means

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部の試料ステージ上に載置する試料から
の観測光を針先端で集光する光透過性と導電性を有する
探針を内架した密封測定室の室外から測定機器と接続し
た光ファイバの自由先端を室内に誘導挿通して前記探針
の針基端に前記観測光を受搬自在に心合せ臨接する光S
TM装置において、 前記探針を移動自在に探針駆動機構に取り付けるととも
に、 前記光ファイバの中間部を所定曲率半径領域内に弾性湾
曲変形する一方、基端部側を固定保持しかつ前記先端部
を軸方向可動自在に保持すること、 を特徴とする光STM装置。
1. A sealed measuring chamber having a light-transmitting and conductive probe for collecting observation light from a sample placed on an internal sample stage at the tip of the needle, and connecting to a measuring instrument from outside. Light S which guides and penetrates the free end of the optical fiber thus inserted into the room and aligns and adjoins the observation light at the base end of the probe so as to be receivable.
In the TM device, the probe is movably attached to a probe drive mechanism, and the intermediate portion of the optical fiber is elastically bent and deformed within a predetermined radius of curvature region, while a base end portion is fixedly held and the distal end portion is fixed. An optical STM device, wherein the optical STM device is held movably in the axial direction.
【請求項2】光ファイバは、中間部の湾曲変形度に合わ
せたエルボ管軸心に沿って内通保持することを特徴とす
る請求項1記載の光STM装置。
2. The optical STM apparatus according to claim 1, wherein the optical fiber is internally held along an elbow tube axis centered on the degree of bending deformation of the intermediate portion.
【請求項3】光ファイバは、エルボ管外端のファイバ取
り出し口に内嵌した固定アンカースペーサの軸心に基端
部側を貫着保持して引出すことを特徴とする請求項2記
載の光STM装置。
3. The optical fiber according to claim 2, wherein the optical fiber is pulled out by holding and holding the base end side to the axis of the fixed anchor spacer fitted in the fiber outlet at the outer end of the elbow tube. STM device.
【請求項4】光ファイバは、先端部をエルボ管内端に摺
動自在に内嵌した円錐凸形可動アンカースペーサの軸心
に貫着保持することを特徴とする請求項2又は3記載の
光STM装置。
4. An optical fiber according to claim 2, wherein the optical fiber is fixedly fitted to the axis of a conical convex movable anchor spacer whose tip end is slidably fitted to the inner end of the elbow tube. STM device.
【請求項5】エルボ管は、探針の移動と一体的な円錐凸
形可動アンカースペーサの軸方向摺動に伴う光ファイバ
の弾性ひずみ変形による接触を生じない内径を有するこ
とを特徴とする請求項2,3又は4記載の光STM装
置。
5. The elbow tube according to claim 1, wherein the inner diameter of the elbow tube does not cause contact due to elastic strain deformation of the optical fiber caused by axial sliding of the conical convex movable anchor spacer integral with the movement of the probe. Item 5. The optical STM device according to item 2, 3 or 4.
【請求項6】探針駆動機構は、エルボ管の内端に摺動自
在に内嵌して円錐凸形可動アンカースペーサと雌雄嵌合
する円錐凹形心出し受座を突設することを特徴とする請
求項4又は5記載の光STM装置。
6. The probe driving mechanism is characterized in that a conical concave centering seat that is slidably fitted on the inner end of the elbow tube and mates with a conical convex movable anchor spacer is provided. The optical STM device according to claim 4 or 5, wherein
【請求項7】探針駆動機構は、ピエゾ素子であることを
特徴とする請求項1,2,3,4,5又は6記載の光S
TM装置。
7. The optical system according to claim 1, wherein the probe driving mechanism is a piezo element.
TM device.
【請求項8】円錐凸形可動アンカースペーサと円錐凹形
心出し受座は、電気的絶縁材料で形成されることを特徴
とする請求項4,5,6又は7記載の光STM装置。
8. The optical STM apparatus according to claim 4, wherein the conical convex movable anchor spacer and the conical concave centering seat are formed of an electrically insulating material.
【請求項9】密封測定室は、冷却手段を内設することを
特徴とする請求項1,2,3,4,5,6,7又は8記
載の光STM装置。
9. An optical STM apparatus according to claim 1, wherein said sealed measuring chamber is provided with cooling means therein.
【請求項10】密封測定室は、真空排気手段と室内を連
通することを特徴とする請求項1,2,3,4,5,
6,7,8又は9記載の光STM装置。
10. The sealed measurement chamber communicates with the vacuum exhaust means and the interior of the chamber.
10. The optical STM device according to 6, 7, 8 or 9.
JP10010394A 1993-12-20 1994-05-13 Optical STM device Expired - Lifetime JP2936529B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10010394A JP2936529B2 (en) 1994-05-13 1994-05-13 Optical STM device
US08/359,193 US5559330A (en) 1993-12-20 1994-12-19 Scanning tunneling microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10010394A JP2936529B2 (en) 1994-05-13 1994-05-13 Optical STM device

Publications (2)

Publication Number Publication Date
JPH07306213A JPH07306213A (en) 1995-11-21
JP2936529B2 true JP2936529B2 (en) 1999-08-23

Family

ID=14265060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10010394A Expired - Lifetime JP2936529B2 (en) 1993-12-20 1994-05-13 Optical STM device

Country Status (1)

Country Link
JP (1) JP2936529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550897B (en) * 2016-05-27 2020-12-23 Oxford Instruments Nanotechnology Tools Ltd Cryogenic cooling system
CN117451951B (en) * 2023-12-22 2024-03-19 微瑞精仪(厦门)科技有限公司 High-adaptability single-molecule measuring instrument

Also Published As

Publication number Publication date
JPH07306213A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
US5440920A (en) Scanning force microscope with beam tracking lens
US6928863B2 (en) Apparatus and method for isolating and measuring movement in a metrology apparatus
USRE37299E1 (en) Atomic force microscopy
EP0564088B1 (en) Scanning force microscope with integrated optics and cantilever mount and method for operating the same
EP0331148B1 (en) Microscope apparatus
US7884326B2 (en) Manipulator for rotating and translating a sample holder
US8143593B2 (en) Transmission electron microscope sample holder with optical features
EP0509856A1 (en) Scanning probe type microscope combined with an optical microscope
US20020174716A1 (en) Method for replacing a probe sensor assembly on a scanning probe microscope
KR20020032420A (en) Superfine indentation tester
JP2936529B2 (en) Optical STM device
JPH0540009A (en) Scanning tunneling microscope
WO1989009483A1 (en) A variable temperature scanning tunneling microscope
EP0142142A2 (en) Fiber optic microscope with adjustable tube assembly
US5256876A (en) Scanning tunnel microscope equipped with scanning electron microscope
CN101556236A (en) Cross transpose fully low pressure low temperature drift cold scanning probe microscope body
WO1995005000A1 (en) Probe microscopy
KR920005446B1 (en) Telescope apparatus
JP3260682B2 (en) Probe scanning device
Lee et al. Versatile low-temperature atomic force microscope with in situ piezomotor controls, charge-coupled device vision, and tip-gated transport measurement capability
CN220963232U (en) Scanning electron microscope structure
CN217278455U (en) Vacuum system for ultrahigh vacuum atomic force microscope
JPH0616410B2 (en) Scanning tunneling microscope for transmission electron microscope
CN117334549A (en) Multifunctional in-situ sample rod
CN117751290A (en) Metering probe with built-in angle and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20140611

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term