JPH0616410B2 - Scanning tunneling microscope for transmission electron microscope - Google Patents

Scanning tunneling microscope for transmission electron microscope

Info

Publication number
JPH0616410B2
JPH0616410B2 JP31720387A JP31720387A JPH0616410B2 JP H0616410 B2 JPH0616410 B2 JP H0616410B2 JP 31720387 A JP31720387 A JP 31720387A JP 31720387 A JP31720387 A JP 31720387A JP H0616410 B2 JPH0616410 B2 JP H0616410B2
Authority
JP
Japan
Prior art keywords
sample
microscope
stm
scanning
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31720387A
Other languages
Japanese (ja)
Other versions
JPH01159954A (en
Inventor
公郎 大井
嘉晏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP31720387A priority Critical patent/JPH0616410B2/en
Publication of JPH01159954A publication Critical patent/JPH01159954A/en
Publication of JPH0616410B2 publication Critical patent/JPH0616410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走査トンネル顕微鏡に係わり、特に透過型電子
顕微鏡に組み込むようにした走査トンネル顕微鏡に関す
るものである。
TECHNICAL FIELD The present invention relates to a scanning tunneling microscope, and more particularly to a scanning tunneling microscope incorporated into a transmission electron microscope.

〔従来の技術〕[Conventional technology]

一般に、探針先端の原子と試料の原子の電子雲とが重な
り合う1nm程度まで探針を試料に近づけ、この状態で
探針と試料との間に電圧をかけると電流が流れる。この
電流はトンネル電流と呼ばれ、電圧が数mVのとき、1
〜10nA程度である。このトンネル電流の大きさは、
試料と探針との間の距離により変化し、トンネル電流の
大きさを測定することにより試料と探針との間の距離を
超精密測定することができ、探針位置が既知であれば試
料の表面形状を原子レベルで求めることができる。また
トンネル電流が一定になるように探針位置を制御すば探
針位置軌跡により同様に試料の表面形状を測定すること
ができる。
In general, when the probe is brought close to the sample to about 1 nm where the atom at the tip of the probe and the electron cloud of the sample atom overlap, and a voltage is applied between the probe and the sample in this state, a current flows. This current is called the tunnel current, and when the voltage is several mV, 1
It is about 10 nA. The magnitude of this tunnel current is
It changes depending on the distance between the sample and the probe, and the distance between the sample and the probe can be measured ultra-precision by measuring the magnitude of the tunnel current. The surface shape of can be obtained at the atomic level. Further, if the probe position is controlled so that the tunnel current is constant, the surface shape of the sample can be similarly measured by the probe position locus.

このような原理に基づく走査型トンネル顕微鏡(Scann
ing Tunnel ling Microscope、略してSTM)は、
大気中、液体中、真空中などどのような状態ででも使用
できるため、近年、各方面で開発が行われている。
A scanning tunneling microscope (Scann) based on this principle
ing Tunnel ling Microscope (STM for short) is
Since it can be used in any state such as air, liquid, or vacuum, it has been developed in various fields in recent years.

このうようなSTMを走査形電子顕微鏡(SEM)の中
に組み込み、二次電子像とSTM像を得ることを目的に
したものの報告がある。
There is a report of the purpose of incorporating such an STM in a scanning electron microscope (SEM) to obtain a secondary electron image and an STM image.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

ところで、STMで像を観察したり評価しようとする
と、STM単体では試料のどの位置を観察しているか分
からないという問題がある。そこで、SEMとSTMを
組み合わせ、SEMで視野探しを行わせるようにするこ
とが考えられる。
By the way, when an image is observed or evaluated by the STM, there is a problem that the STM alone does not know which position of the sample is observed. Therefore, it is conceivable to combine the SEM and the STM so that the SEM can search the visual field.

SEMでの観察は、凹凸の変化の大きい試料には非常に
有効であるが、凹凸の小さい試料では二次電子の発生度
合の違いが小さく、そのため観察が難しい。このため、
STMに必要な平らな面を探すことにはあまり向いてい
ない。
The observation with the SEM is very effective for a sample with a large change in the unevenness, but the sample with a small unevenness has a small difference in the degree of generation of secondary electrons, which makes the observation difficult. For this reason,
Not very good at finding the flat surface needed for STM.

またSEMによる観察では、高分解能像を得るために
は、ビームを絞らねばならず、試料ダメージ、コンタミ
ネーションが問題となり、表面状態を変えてしまう可能
性が大、この点もSTMには不向きである。
Further, in SEM observation, the beam must be narrowed down to obtain a high-resolution image, and sample damage and contamination pose a problem, and there is a great possibility that the surface condition will be changed, which is also not suitable for STM. is there.

一方、透過型電子顕微鏡(TEM)においてもSTM像
を得ることが望まれていた。しかしながら、TEMはS
EMより分解能が高いため、対物レンズポールピースの
ギャップが狭く、STM走査部が入らないことや、試料
と針を近づける手段、試料の良い視野に針を移動させる
手段、試料にベーク、蒸着等の加工を施した時、針に蒸
気や金属が付着するのを防止する手段等がなく、またS
TM走査部の剛性を上げて耐振性を良くする方法がない
ためにTEMにSTMを組み込むことはできなかった。
On the other hand, it has been desired to obtain an STM image even with a transmission electron microscope (TEM). However, TEM is S
Since the resolution is higher than that of EM, the gap of the objective lens pole piece is narrow and the STM scanning part does not enter, the means for bringing the sample and the needle closer, the means for moving the needle to a good visual field of the sample, the sample bake, vapor deposition, etc. When processed, there is no means to prevent vapor or metal from adhering to the needle.
It was not possible to incorporate the STM into the TEM because there is no method for increasing the rigidity of the TM scanning unit to improve the vibration resistance.

本発明は上記問題点を解決するためのもので、TEMに
STMを組み込み、試料の電子顕微鏡による観察とトン
ネル現像を利用した超精密測定とを可能にした透過型電
子顕微鏡用走査トンネル顕微鏡を提供することを目的と
する。
The present invention is to solve the above-mentioned problems, and provides a scanning tunnel microscope for a transmission electron microscope which incorporates an STM in a TEM and enables observation of a sample by an electron microscope and ultra-precision measurement using tunnel development. The purpose is to do.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の透過型電子顕微鏡用走査トンネル顕
微鏡は、試料表面が光軸に直角になるように試料を保持
した試料ホルダー中に、探針を備えた走査トンネル顕微
鏡走査機構を配置した透過型電子顕微鏡用走査トンネル
顕微鏡であって、試料に電子線を照射して透過像を得る
と共に、走査トンネル顕微鏡により試料表面の観察を行
うようにしたことを特徴とする。
Therefore, the scanning tunneling microscope for a transmission electron microscope of the present invention is a transmission tunneling microscope in which a scanning tunnel microscope scanning mechanism having a probe is arranged in a sample holder that holds a sample so that the surface of the sample is perpendicular to the optical axis. A scanning tunneling microscope for an electron microscope, characterized in that a sample is irradiated with an electron beam to obtain a transmission image, and the surface of the sample is observed by the scanning tunneling microscope.

〔作用〕[Action]

本発明の透過型電子顕微鏡用走査トンネル顕微鏡は、透
過電子顕微鏡法により透過像を得、これを利用して視野
探しを行い、さらに走査トンネル顕微鏡により試料表面
の超精密観察を行うものであり、また探針の透過像、即
ち試料像上の探針の影により探針位置を知ることができ
る。
The scanning tunneling microscope for a transmission electron microscope of the present invention obtains a transmission image by a transmission electron microscopy method, uses this to search for a visual field, and further performs ultra-precision observation of a sample surface with a scanning tunneling microscope. Further, the position of the probe can be known from the transmission image of the probe, that is, the shadow of the probe on the sample image.

〔実施例〕〔Example〕

以下、実施例を図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

第1図は電子顕微鏡用走査トンネル顕微鏡により透過像
を得る場合の本発明の実施例を示す図で1はホルダー、
2は試料、3は試料固定台、4はSTM走査部、5はS
TM針、6は対物レンズ(OL)ポールピース、7は光
軸、8、9は固定用ネジである。
FIG. 1 is a view showing an embodiment of the present invention when a transmission image is obtained by a scanning tunneling microscope for an electron microscope. 1 is a holder,
2 is a sample, 3 is a sample fixing base, 4 is an STM scanning unit, 5 is S
TM needle, 6 is an objective lens (OL) pole piece, 7 is an optical axis, and 8 and 9 are fixing screws.

ホルダー1(詳細は後述する)は、図示しないサイドエ
ントリゴニオメータにより移動させられて試料2を所定
位置にセットするようになっている。このホルダー1内
には、試料2が試料固定台3にネジ8、9により図示の
ように取りつけられ、またピエゾ素子からなるSTM走
査部4が収納され、STM針5が図示のように角度をも
って試料1に対向して設けられている。このSTM走査
部4は、約1.6mm×3mm×5mm程度のもので、ホルダ
ー1内に十分収納可能なように構成されている。
The holder 1 (details will be described later) is moved by a side entry goniometer (not shown) to set the sample 2 at a predetermined position. In the holder 1, the sample 2 is attached to the sample fixing base 3 with screws 8 and 9 as shown in the figure, the STM scanning section 4 made of a piezo element is housed, and the STM needle 5 is angled as shown in the figure. It is provided so as to face the sample 1. The STM scanning unit 4 has a size of about 1.6 mm × 3 mm × 5 mm and is configured to be sufficiently housed in the holder 1.

このような構成において、電子線が試料面に直角に照射
され、その透過像が図示しない感光面状に結像され、こ
の透過像により試料を観察することができる。この透過
像では試料表面の微小な凹凸まで観察できない。そこ
で、この凹凸の程度は試料STM走査部4を駆動してS
TM走査針5により超精密に測定される。この場合、前
述したようにSTMの分解能は原子レベルであるので、
STM針の許容される振動の振幅0.1Å以下である
が、本発明においては試料と針とが1つのホルダー内に
固定されているため耐振上極めて有利となる。
In such a configuration, an electron beam is applied to the sample surface at a right angle, a transmission image thereof is formed on a photosensitive surface (not shown), and the sample can be observed by the transmission image. In this transmission image, even minute irregularities on the sample surface cannot be observed. Therefore, the degree of this unevenness is determined by driving the sample STM scanning unit 4 to S
Ultra-precision measurement is performed by the TM scanning needle 5. In this case, since the resolution of STM is at the atomic level as described above,
Although the allowable amplitude of vibration of the STM needle is 0.1 Å or less, in the present invention, the sample and the needle are fixed in one holder, which is extremely advantageous in terms of vibration resistance.

また、STM針で試料面上を走査する場合、どの位置で
観察しているのか分からないという問題があるが、試料
と共に探針の透過像を得るようにすれば、探針の影が試
料像上に観察されるので、容易に観察位置を知ることが
できる。
Further, when scanning the sample surface with the STM needle, there is a problem that it is not known at which position the observation is performed. However, if a transmission image of the probe is obtained together with the sample, the shadow of the probe will cause Since it is observed above, the observation position can be easily known.

第2図は本発明におけるホルダーの一実施例を示す図
で、同図(イ)は試料観察状態を示す図、同図(ロ)は
STM走査部を試料から離した状態を示す図で、第1図
と同一番号は同一内容を示している。なお、1A、1B
は窓、11はアーム、12は球、13、14、15はO
リング溝、16はバー、17は内筒、18はダイアル、
19はロック部材、20はネジ、21はネジ、22はノ
ブ、23は導線、24はハーメチックシール部、25は
くさび、26はピエゾ素子、27はピン、28はネジ、
29はバネ、30は導線収納空間、31は貫通孔であ
る。
FIG. 2 is a diagram showing an embodiment of the holder according to the present invention, FIG. 2 (a) is a diagram showing a sample observation state, and FIG. 2 (b) is a diagram showing a state in which the STM scanning unit is separated from the sample. The same numbers as those in FIG. 1 indicate the same contents. 1A and 1B
Is a window, 11 is an arm, 12 is a sphere, 13, 14 and 15 are O
Ring groove, 16 bar, 17 inner cylinder, 18 dial,
19 is a lock member, 20 is a screw, 21 is a screw, 22 is a knob, 23 is a conductor wire, 24 is a hermetically sealed portion, 25 is a wedge, 26 is a piezo element, 27 is a pin, 28 is a screw,
Reference numeral 29 is a spring, 30 is a conducting wire storage space, and 31 is a through hole.

本発明のホルダー構成は、ホルダー1の中に、X、Y、
Z3軸の試料移動機構を設け、そこにSTM走査部4、
針5を設けたものである。
The holder configuration of the present invention is such that X, Y,
A Z3 axis sample moving mechanism is provided, and the STM scanning unit 4,
The needle 5 is provided.

ホルダー1内には、試料固定台3が固定され、また内筒
17がホルダー軸方向に摺動可能なように内面に接して
設けられている。試料2は、その面がホルダー1の中心
軸に一致するように試料固定台3に固定され、これに対
向して針5がSTM走査部4の先端に取り付けられ、S
TM走査部4はアーム11に固定されている。内筒17
の先端部には真空シール用のOリング溝13を設けたテ
ーパ部が設けられ、アーム11と一体の球12を気密状
態を保持して回動自在に受けるようになっている。そし
て球12にはバー16が一体に設けられ、その先端はフ
リーで、バネ28により上方へ付勢されると共に、ネジ
21で下方へ押下げられるようになっている。しがたっ
て、ネジ21を回してバー16の自由端を上下に動かす
ことにより、球12を支点としてアーム11を動かすこ
とができ、針5を試料に近づけたり離したりすることが
できる。また紙面に垂直にネジ21と同様のネジ(図示
せず)が設けてあり、このネジを操作することにより針
5を試料面に沿って移動でき、視野探しを行うことがで
きる。
A sample fixing base 3 is fixed in the holder 1, and an inner cylinder 17 is provided in contact with the inner surface so as to be slidable in the holder axial direction. The sample 2 is fixed to the sample fixing base 3 such that the surface thereof coincides with the central axis of the holder 1, and the needle 5 is attached to the tip of the STM scanning unit 4 so as to face the sample fixing base 3.
The TM scanning unit 4 is fixed to the arm 11. Inner cylinder 17
A taper portion provided with an O-ring groove 13 for vacuum sealing is provided at a tip end of the ball so as to rotatably receive the ball 12 integrated with the arm 11 in an airtight state. A bar 16 is integrally provided on the ball 12, and its tip is free, and is urged upward by a spring 28 and pushed down by a screw 21. Therefore, by rotating the screw 21 to move the free end of the bar 16 up and down, the arm 11 can be moved around the sphere 12 as a fulcrum, and the needle 5 can be moved closer to or farther from the sample. Further, a screw (not shown) similar to the screw 21 is provided perpendicular to the paper surface, and by operating this screw, the needle 5 can be moved along the surface of the sample, and the field of view can be searched.

これらアーム11、球12、バー16は、ホルダー1の
中心軸から外れた偏心位置(図では上側)に設けられ、
その下方に導線23の収納空間30を形成するようにし
ている。また内筒17とホルダー1との間は真空シール
用のOリング溝14が形成され、これとOリング溝13
とにより試料側を真空に保持し、また、STM走査部駆
動用及びトンネル電流取り出し用の導線23の為のハー
メチックシール部24が形成されている。また内筒17
は、ダイアル18のネジ部と噛み合うネジ20を有し、
ダイアル18を回すと内筒17はピン27により回転で
きないため、軸方向に移動する。この移動により試料の
軸方向の視野探しを行うことができる。また内筒17の
内面にはテーパ状先端部が球12の所まで伸びると共
に、ネジ21が貫通する貫通孔31が設けられたロック
部材19が設けられ、また後端部には、ノブ22が取付
けられるネジ28が設けられ、ロック部材の後端と接し
ている。そして、ノブ22を回し、ロック部材19を押
すことにより、ロック部材先端のテーパが球12を押圧
して固定し、アーム11を動き難くして剛性を上げられ
るようになっている。
The arm 11, the ball 12, and the bar 16 are provided at an eccentric position (upper side in the drawing) deviated from the central axis of the holder 1,
A storage space 30 for the conducting wire 23 is formed below it. Further, an O-ring groove 14 for vacuum sealing is formed between the inner cylinder 17 and the holder 1, and this and the O-ring groove 13 are formed.
The sample side is held in vacuum by and the hermetic seal part 24 for the STM scanning part driving and tunnel current extracting conductor 23 is formed. Also, the inner cylinder 17
Has a screw 20 that meshes with the threaded portion of the dial 18,
When the dial 18 is turned, the inner cylinder 17 cannot be rotated by the pin 27, and therefore moves in the axial direction. By this movement, the visual field in the axial direction of the sample can be searched. Further, a lock member 19 having a tapered tip end portion extending to the ball 12 and a through hole 31 through which a screw 21 penetrates is provided on the inner surface of the inner cylinder 17, and a knob 22 is provided at the rear end portion. A screw 28 is provided for attachment and contacts the rear end of the locking member. Then, by rotating the knob 22 and pushing the lock member 19, the taper at the tip of the lock member pushes and fixes the ball 12, thereby making the arm 11 hard to move and increasing the rigidity.

また内筒17のホルダー1との接触面の一部にテーパを
持った溝が設けられ、この溝にはくさび25と、くさび
を押す積層型のピエゾ素子26が設けられ、ピエゾ素子
26を駆動して伸ばすことによりくさび25を押し、内
筒17とホルダー1との間に圧入させることにより内筒
17をロックして剛性を上げる構造となっている。
Further, a groove having a taper is provided in a part of the contact surface of the inner cylinder 17 with the holder 1. In this groove, a wedge 25 and a laminated piezo element 26 for pushing the wedge are provided, and the piezo element 26 is driven. Then, the wedge 25 is pushed by being extended, and the inner cylinder 17 is locked by being press-fitted between the inner cylinder 17 and the holder 1 to increase the rigidity.

このような構成において、図示しないサイドエントリゴ
ニオメータにホルダー1を挿入し、ホルダーを移動させ
ることにより試料移動を行って視野探しを行い、TEM
法により試料面を観察する。こうして得られた透過像の
中でさらにSTMにより観察したい領域を設定し、ダイ
アル18で軸方向移動、ネジ21で試料との接近、ネジ
21と同様の図示しない紙面に直交するネジで試料面に
沿った方向の針の移動を行う。試料移動を行う場合、T
EM法で試料と針の像を観察すれば、試料像上の針の影
から観察位置を容易に知ることができる。こうして、針
のセットを行った後、ノブ22を回してロック部材19
を押して球12、アーム11を固定し、さらにピエゾ素
子26を駆動して内筒17を固定することにより全体と
して剛性を上げてSTM走査の耐振性を良くしてSTM
法による超精密測定を行う。
In such a configuration, the holder 1 is inserted into a side-entry goniometer (not shown), and the holder is moved to move the sample to search the field of view.
Observe the sample surface by the method. In the transmission image thus obtained, an area to be further observed by the STM is set, and the dial 18 is used to move in the axial direction, the screw 21 approaches the sample, and the screw 21 similar to the screw 21 is attached to the sample surface at a right angle to the paper surface (not shown). Perform needle movement along the direction. When moving the sample, T
If the images of the sample and the needle are observed by the EM method, the observation position can be easily known from the shadow of the needle on the sample image. In this way, after setting the needle, turn the knob 22 to rotate the lock member 19
Press to fix the sphere 12 and the arm 11, and further drive the piezo element 26 to fix the inner cylinder 17, thereby increasing the rigidity as a whole and improving the vibration resistance of the STM scan to improve the STM.
Ultra-precision measurement by the method.

なお、ホルダー1内での試料の加工を行う場合には、ネ
ジ21を介して針5を試料2から離し、周囲に当らなく
なる状態にしてダイアル18を回すことにより内筒17
を引き込んで第2図(ロに示す状態とし、この状態で試
料のベーク、蒸着等を行えば、針が試料面から離れてい
るので金属や蒸気が針に付着する等の悪影響を防止する
ことができる。
When the sample is processed in the holder 1, the needle 5 is separated from the sample 2 via the screw 21, and the dial 18 is rotated so that the needle 5 does not touch the surroundings.
Fig. 2 (b), and if the sample is baked or vapor-deposited in this state, the needle is away from the sample surface, so that adverse effects such as metal or vapor adhering to the needle should be prevented. You can

なお、上記実施例では針の移動、ロック等をネジによる
駆動力を使用して行う例について説明したが、てこの原
理を使用したり、またピエゾ素子を用いて行う等、駆動
機構はどのような手段を使用してもよい。
In the above embodiment, an example in which the needle movement, locking, and the like is performed by using the driving force of the screw has been described, but what is the driving mechanism such as using the lever principle or using the piezo element? Any means may be used.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、試料表面が光軸に直角に
なるように試料を保持した試料ホルダー中に、走査トン
ネル顕微鏡走査機構を配置することにより、透過電子顕
微鏡法により試料像を観察して視野探しを行って後、さ
らに走査トンネル顕微鏡により超精密に試料面の観察を
行うことができ、また探針をTEM法で観察して試料像
上の針の影の位置から、容易に探針位置を知ることがで
きる。
As described above, according to the present invention, by arranging the scanning tunneling microscope scanning mechanism in the sample holder that holds the sample so that the sample surface is perpendicular to the optical axis, the sample image is observed by transmission electron microscopy. After conducting a field of view search, the sample surface can be observed with a scanning tunneling microscope, and the probe can be observed by the TEM method to easily observe the position of the shadow of the needle on the sample image. You can know the probe position.

【図面の簡単な説明】[Brief description of drawings]

第1図は電子顕微鏡用走査トンネル顕微鏡により透過像
を得る場合の本発明の実施例を示す図、第2図は本発明
におけるホルダーの一実施例を示す図で、同図(イ)は
試料観察状態を示す図、同図(ロ)はSTM走査部を試
料から離した状態を示す図である。 1……ホルダー、2……試料、3……試料固定台、4…
…STM走査部、5……STM針、6……対物レンズ
(OL)ポールピース、7……光軸、11……アーム、
12……球、16……バー、17……内筒、18……ダ
イアル、19……ロック部材、22……ノブ、23……
導線、28……ネジ。
FIG. 1 is a view showing an embodiment of the present invention when a transmission image is obtained by a scanning tunneling microscope for an electron microscope, FIG. 2 is a view showing an embodiment of a holder in the present invention, and FIG. The figure showing the observation state, and the figure (b) is a figure showing the state in which the STM scanning unit is separated from the sample. 1 ... Holder, 2 ... Sample, 3 ... Sample holder, 4 ...
... STM scanning part, 5 ... STM needle, 6 ... Objective lens (OL) pole piece, 7 ... optical axis, 11 ... arm,
12 ... Ball, 16 ... Bar, 17 ... Inner cylinder, 18 ... Dial, 19 ... Lock member, 22 ... Knob, 23 ...
Conductor, 28 ... screw.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料表面が光軸に直角になるように試料を
保持した試料ホルダー中に、探針を備えた走査トンネル
顕微鏡走査機構を配置した透過型電子顕微鏡用走査トン
ネル顕微鏡であって、試料に電子線を照射して透過像を
得ると共に、走査トンネル顕微鏡により試料表面の観察
を行うようにしたことを特徴とする透過型電子顕微鏡用
走査トンネル顕微鏡。
1. A scanning tunnel microscope for a transmission electron microscope, wherein a scanning tunnel microscope equipped with a probe is arranged in a sample holder that holds the sample so that the surface of the sample is perpendicular to the optical axis. A scanning tunnel microscope for a transmission electron microscope, characterized in that a sample is irradiated with an electron beam to obtain a transmission image and the surface of the sample is observed by a scanning tunnel microscope.
【請求項2】試料像上の探針の影により探針位置を求め
る特許請求の範囲第1項記載の透過型電子顕微鏡用走査
トンネル顕微鏡。
2. A scanning tunneling microscope for a transmission electron microscope according to claim 1, wherein the probe position is determined by the shadow of the probe on the sample image.
JP31720387A 1987-12-15 1987-12-15 Scanning tunneling microscope for transmission electron microscope Expired - Fee Related JPH0616410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31720387A JPH0616410B2 (en) 1987-12-15 1987-12-15 Scanning tunneling microscope for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31720387A JPH0616410B2 (en) 1987-12-15 1987-12-15 Scanning tunneling microscope for transmission electron microscope

Publications (2)

Publication Number Publication Date
JPH01159954A JPH01159954A (en) 1989-06-22
JPH0616410B2 true JPH0616410B2 (en) 1994-03-02

Family

ID=18085612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31720387A Expired - Fee Related JPH0616410B2 (en) 1987-12-15 1987-12-15 Scanning tunneling microscope for transmission electron microscope

Country Status (1)

Country Link
JP (1) JPH0616410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005499U (en) * 1994-06-22 1994-12-20 サンモール電子株式会社 Luminous safety vest

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2691460B2 (en) * 1989-12-05 1997-12-17 キヤノン株式会社 Tunnel current detector
JP2711311B2 (en) * 1989-12-15 1998-02-10 光技術研究開発株式会社 Scanning tunneling microscope
JP2549746B2 (en) * 1990-05-08 1996-10-30 株式会社日立製作所 Scanning tunnel microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005499U (en) * 1994-06-22 1994-12-20 サンモール電子株式会社 Luminous safety vest

Also Published As

Publication number Publication date
JPH01159954A (en) 1989-06-22

Similar Documents

Publication Publication Date Title
US4874945A (en) Electron microscope equipped with scanning tunneling microscope
EP0421355B1 (en) Scanning tunneling microscope
US7566884B2 (en) Specimen holder for electron microscope
JP2516292B2 (en) Atomic force microscope
US4868396A (en) Cell and substrate for electrochemical STM studies
JPH0687003B2 (en) Scanning electron microscope with scanning tunneling microscope
EP0441311B1 (en) Surface microscope apparatus
WO2002042742A1 (en) Cantilever for vertical scanning microscope and probe for vertical scan microscope using it
Guckenberger et al. A scanning tunneling microscope (STM) for biological applications: design and performance
Grube et al. Stability, resolution, and tip–tip imaging by a dual-probe scanning tunneling microscope
US6156216A (en) Method for making nitride cantilevers devices
US6194813B1 (en) Extended-range xyz linear piezo-mechanical scanner for scanning-probe and surface force applications
JPH0616410B2 (en) Scanning tunneling microscope for transmission electron microscope
JPH01253602A (en) Coarse adjustment mechanism of scanning type tunnel microscope
Kuwabara et al. Reflection electron microscope imaging of an operating scanning tunneling microscope
US6405584B1 (en) Probe for scanning probe microscopy and related methods
EP0461393A1 (en) Scanning tunnel microscope
JP3023686B2 (en) Tip microscope
JPH0624110B2 (en) Scanning tunneling microscope for reflection electron microscope
JPH0690006B2 (en) Transmission electron microscope with scanning tunneling microscope
JPH06103163B2 (en) Transmission electron microscope with scanning tunneling microscope
Yablon et al. Cross-platform integration of AFM with SEM: Offering the best of both worlds
JPH0658754A (en) Measuring method for probe shape
JP2000155085A (en) Interatomic force microscope prober and interatomic force microscope
Erlandsson et al. A scanning force microscope designed for applied surface studies

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees