JP2935344B2 - Equipment for testing temperature characteristics of optical semiconductor elements - Google Patents
Equipment for testing temperature characteristics of optical semiconductor elementsInfo
- Publication number
- JP2935344B2 JP2935344B2 JP8102619A JP10261996A JP2935344B2 JP 2935344 B2 JP2935344 B2 JP 2935344B2 JP 8102619 A JP8102619 A JP 8102619A JP 10261996 A JP10261996 A JP 10261996A JP 2935344 B2 JP2935344 B2 JP 2935344B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- optical semiconductor
- light
- optical
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光半導体の温度特
性試験装置に関し、特に、広い温度範囲にわたって精密
な温度制御が可能な光半導体素子の温度特性試験装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for testing the temperature characteristics of an optical semiconductor, and more particularly to an apparatus for testing the temperature characteristics of an optical semiconductor element capable of performing precise temperature control over a wide temperature range.
【0002】[0002]
【従来の技術】従来、この種の光半導体の温度特性試験
装置は、たとえば特開昭63−247676号公報に示
されるように、レーザダイオードのような光半導体素子
の温度特性試験を行い、製品の良・不良の選別を目的と
している。2. Description of the Related Art Conventionally, an optical semiconductor temperature characteristic test apparatus of this type performs a temperature characteristic test of an optical semiconductor element such as a laser diode as disclosed in Japanese Patent Application Laid-Open No. 63-247676. The purpose is to sort out good and bad.
【0003】図6,図7は、従来の光半導体の温度特性
試験装置の一例を説明するための図である。FIGS. 6 and 7 are diagrams for explaining an example of a conventional optical semiconductor temperature characteristic testing apparatus.
【0004】平面状の均熱ブロック101には上部と下
部に水平方向に貫通された冷媒通過手段102が設けら
れ、冷媒通過手段102は連結管102aで連結され、
均熱ブロック101の裏面に加熱ヒータ103が設けら
れ、さらに挿着孔104が均熱ブロック101を貫通し
て複数個設けられ、挿着孔104に設けられた受光素子
105を有するプリント基板106が背部の加熱ヒータ
103側に設けられている。また、均熱ブロック101
の表面には内径を異にする各種挿着孔107を有する補
助均熱ブロック108が取り付けられ、補助均熱ブロッ
ク108の挿着孔107にプリント基板109に設けら
れたレーザダイオード等の光半導体素子110が挿着さ
れる。A flat heat equalizing block 101 is provided with refrigerant passing means 102 penetrated in the upper and lower parts in a horizontal direction, and the refrigerant passing means 102 is connected by a connecting pipe 102a.
A heater 103 is provided on the back surface of the heat equalizing block 101, and a plurality of insertion holes 104 are provided through the heat equalizing block 101, and a printed board 106 having a light receiving element 105 provided in the insertion hole 104 is provided. It is provided on the back side of the heater 103 side. In addition, the heat equalizing block 101
An auxiliary heat equalizing block 108 having various insertion holes 107 having different inner diameters is attached to the surface of the optical semiconductor device such as a laser diode provided on a printed circuit board 109 in the insertion hole 107 of the auxiliary heat equalization block 108. 110 is inserted.
【0005】均熱ブロック101、補助均熱ブロック1
08の挿着孔104,107に受光素子105および光
半導体素子110を位置させ、冷媒通過手段102に冷
媒を流し、加熱ヒータ103の加熱を制御手段(図示せ
ず)で行い、均熱ブロック101を所定温度とする。そ
して、光半導体素子101を発光させ、受光素子105
の出力を測定して光半導体素子101の温度特性を測定
する。冷媒を供給する冷凍機は大型になるため、冷媒の
温度を変えるのには時間がかかる。そのため本試験装置
では冷媒の温度は試験温度に依らず一定に保たれ、温度
制御は加熱ヒータ103で行われる。[0005] Heat equalizing block 101, auxiliary heat equalizing block 1
08, the light receiving element 105 and the optical semiconductor element 110 are positioned in the insertion holes 104 and 107, the refrigerant is passed through the refrigerant passing means 102, and the heater 103 is heated by the control means (not shown). Is a predetermined temperature. Then, the optical semiconductor element 101 emits light, and the light receiving element 105
Is measured, and the temperature characteristic of the optical semiconductor element 101 is measured. Since the size of the refrigerator for supplying the refrigerant becomes large, it takes time to change the temperature of the refrigerant. Therefore, in this test apparatus, the temperature of the refrigerant is kept constant regardless of the test temperature, and the temperature control is performed by the heater 103.
【0006】[0006]
【発明が解決しようとする課題】第1の問題点は、常温
から温度を変化させたときの温度精度が悪いことであ
る。また、上述の従来例に更にペルチェ素子による温度
制御を加えて、温度精度を向上させることも考えられる
が、その場合、ペルチェ素子の寿命が短いため、装置の
保守を頻繁に行う必要があるため、ランニングコストが
増大する。The first problem is that the temperature accuracy when the temperature is changed from room temperature is poor. In addition, it is conceivable to improve the temperature accuracy by further adding a temperature control using a Peltier element to the above-described conventional example, but in that case, since the life of the Peltier element is short, it is necessary to frequently maintain the apparatus. And running costs increase.
【0007】その理由は、均熱ブロックを常温雰囲気中
に設置して温度制御しているためである。試験温度が高
温または低温の場合、均熱ブロックと大気の間の伝熱と
均熱ブロック内の熱抵抗により、均熱ブロック内の温度
が均一でなくなるため、光半導体素子の精密な温度制御
が困難である。また、ペルチェ素子を用いる場合、均熱
ブロック内の温度の不均一さによる熱歪みでのペルチェ
素子の劣化・破損の可能性もある。均熱ブロックからの
放熱を防ぐには均熱ブロックと大気との断熱を厳密に行
えばよいが、これは均熱ブロックの製造コストの増大に
つながる。[0007] The reason is that the temperature control is performed by installing the soaking block in a normal temperature atmosphere. When the test temperature is high or low, the temperature inside the heat equalizing block becomes non-uniform due to the heat transfer between the heat equalizing block and the atmosphere and the thermal resistance inside the heat equalizing block. Have difficulty. When a Peltier element is used, there is a possibility that the Peltier element may be deteriorated or damaged due to thermal distortion due to non-uniform temperature in the heat equalizing block. In order to prevent heat radiation from the soaking block, it is necessary to strictly insulate the soaking block from the atmosphere, but this increases the manufacturing cost of the soaking block.
【0008】第2の問題点は、測定用の受光素子も試験
温度に加熱・冷却されるため、測定の際には受光素子の
温度特性を考慮して補正しなくてはならないことであ
る。このような補正は装置を複雑化するばかりでなく、
測定精度の低下の原因にもなる。The second problem is that since the light receiving element for measurement is also heated and cooled to the test temperature, it must be corrected in consideration of the temperature characteristics of the light receiving element during measurement. Such corrections not only complicate the equipment, but also
This may cause a decrease in measurement accuracy.
【0009】その理由は、受光素子は均熱ブロックの挿
着孔に入っているため、光半導体素子と同様に試験温度
にさらされるためである。The reason is that the light receiving element is exposed to the test temperature similarly to the optical semiconductor element because the light receiving element is in the insertion hole of the heat equalizing block.
【0010】第3の問題点は、試験を行う光半導体素子
がレーザダイオードの場合、レーザダイオードのファー
・フィールド・パターン(FFP)を測定できないこと
である。また、試験を行う光半導体素子が受光素子の場
合、上述の従来例の受光素子の代わりにレーザダイオー
ドのような発光素子を置くことにより実現可能だが、こ
の場合、受光面の感度分布は測定できない。A third problem is that when the optical semiconductor device to be tested is a laser diode, the far field pattern (FFP) of the laser diode cannot be measured. Further, when the optical semiconductor element to be tested is a light receiving element, it can be realized by placing a light emitting element such as a laser diode instead of the light receiving element of the above-described conventional example, but in this case, the sensitivity distribution of the light receiving surface cannot be measured. .
【0011】その理由は、発光素子と受光素子が均熱ブ
ロックあるいは補助均熱ブロックに固定されているため
である。レーザダイオードのFFPの測定や、受光素子
の受光面感度分布の測定には、発光素子と受光素子の相
対位置を変えて、レーザ強度または受光感度の2次元的
な分布を測定する必要がある。The reason is that the light emitting element and the light receiving element are fixed to the heat equalizing block or the auxiliary heat equalizing block. In order to measure the FFP of a laser diode or to measure the light receiving surface sensitivity distribution of a light receiving element, it is necessary to change the relative position of the light emitting element and the light receiving element and measure the two-dimensional distribution of laser intensity or light receiving sensitivity.
【0012】第4の問題点は、試験温度が低温の場合、
挿着孔内が結露して光半導体素子および受光素子の窓に
霜が付着して正確な測定ができないことである。A fourth problem is that when the test temperature is low,
Dew in the insertion hole causes frost to adhere to the windows of the optical semiconductor element and the light receiving element, preventing accurate measurement.
【0013】その理由は、光半導体素子は常温雰囲気中
で挿着されるため、挿着孔内の空気の露点は低温試験温
度より高いので、これが冷媒により試験温度まで冷却さ
れることにより、内部の空気に含まれる水蒸気が霜にな
ってしまうためである。The reason is that, since the optical semiconductor element is inserted in a normal temperature atmosphere, the dew point of air in the insertion hole is higher than the low-temperature test temperature. This is because the water vapor contained in the air becomes frost.
【0014】[0014]
【課題を解決するための手段】本発明の目的は、設定温
度精度が高く、また、光半導体素子の様々な特性の測定
精度の高い温度特性試験装置を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a temperature characteristic test apparatus having a high set temperature accuracy and a high measurement accuracy for various characteristics of an optical semiconductor device.
【0015】本発明の他の目的は、FFPの測定や受光
感度分布の測定など様々な測定を高温・低温の環境下で
も実現する温度特性試験装置を提供することにある。It is another object of the present invention to provide a temperature characteristic test apparatus which realizes various measurements such as FFP measurement and light-receiving sensitivity distribution even in high-temperature and low-temperature environments.
【0016】そのため、 (1)本発明の光半導体素子の温度特性試験装置は、被
検査物である光半導体素子を試験温度に保つ温度調整手
段と、前記光半導体素子の光−電気的特性を測定する測
定手段とを有する温度特性試験装置において、前記光半
導体素子が発光素子であり、前記温度調節手段が、前記
発光素子を搭載する均熱治具と、前記均熱治具に接し前
記均熱治具および前記発光素子の温度制御を行うペルチ
ェ素子と、前記均熱治具および前記ペルチェ素子を収納
可能で前記発光素子の光軸上に透過窓を有する温度チャ
ンバと、前記温度チャンバ内に温度制御された空気を供
給する空調機とを含み、前記測定手段が、前記温度チャ
ンバの外に置かれたフーリエ変換レンズと、該フーリエ
変換レンズによって形成される前記発光素子の発光の遠
視野パターンを撮像する撮像装置と、前記フーリエ変換
レンズの位置を調整し前記遠視野パターンが形成される
位置を調節する光軸合わせ機構とを含み、前記温度チャ
ンバを開閉する開閉機構とを含んで構成される。 (2)本発明の光半導体素子の温度特性試験装置は、被
検査物である光半導体素子を試験温度に保つ温度調整手
段と、前記光半導体素子の光−電気的特性を測定する測
定手段とを有する温度特性試験装置において、前記光半
導体素子が受光素子であり、前記温度調節手段が前記受
光素子を搭載する均熱治具と、前記均熱治具に接し前記
均熱治具および前記受光素子の温度制御を行うペルチェ
素子と、前記均熱治具および前記ペルチェ素子を収納可
能で前記光半導体素子の光軸上に透過窓を有する温度チ
ャンバと、前記温度チャンバ内に温度制御された空気を
供給する空調機とを含み、前記測定手段が、前記温度チ
ャンバの外に置かれた前記受光素子の受光面を照射する
光を発する基準光源と、該基準光源の発する光を導く光
ファイバと、該光ファイバの出射光から前記受光素子の
受光面に集光スポットを形成するレンズと、前記レンズ
の位置を調節し前記集光スポットを前記受光素子の受光
面上で2次元に走査させる光軸合わせ機構とを含み、前
記温度チャンバを開閉する開閉機構とを含んで構成され
る。 (3)本発明の光半導体素子の温度特性試験装置は、上
記(1)または(2)の温度チャンバの透過窓近傍に試
験温度より低い露点の気体を供給する乾燥空気供 給装置
を有することを特徴とする。 (4)本発明の光半導体素子の温度特性試験装置は、上
記(1)または(2)の温度チャンバと前記フーリエ変
換レンズまたは前記集光スポットを形成するレンズを気
密室に入れ、前記気密室内を試験温度より低い露点の気
体で充満させたことを特徴とする。[0016] Therefore, (1) Temperature characteristic test apparatus for an optical semiconductor device of the present invention, the
Temperature adjustment means to keep the optical semiconductor device to be inspected at the test temperature
And a step for measuring opto-electrical characteristics of the optical semiconductor device.
A temperature characteristic testing apparatus having
The conductor element is a light emitting element, and the temperature adjusting means is
And soaking jig for mounting the light emitting element, it can be stored a Peltier element for controlling the temperature of the soaking jig and the light-emitting element in contact with the soaking jig, the soaking jig and the Peltier element temperature tea <br/> down bar having a transmission window on the optical axis of the light emitting element, wherein and a air conditioner for supplying temperature controlled air to the temperature inside the chamber, wherein the measuring means, the temperature chamber An external Fourier transform lens and the Fourier
The light emission distance of the light emitting element formed by the conversion lens
An imaging device for imaging a field pattern, and adjusting the position of the Fourier transform lens to form the far field pattern
And a optical axis alignment Organization for adjusting the position, configured to include a closing mechanism that opens and closes the temperature chamber. (2) Temperature characteristic test apparatus for an optical semiconductor device of the present invention, the
Temperature adjustment means to keep the optical semiconductor device to be inspected at the test temperature
And a step for measuring opto-electrical characteristics of the optical semiconductor device.
A temperature characteristic testing apparatus having
The conductor element is a light receiving element, and the temperature adjusting means is the light receiving element.
A heat equalizing jig for mounting an optical element, and
Peltier for controlling the temperature of the soaking jig and the light receiving element
The element, the heat equalizing jig and the Peltier element can be stored.
A temperature chip having a transmission window on the optical axis of the optical semiconductor element.
Chamber and temperature-controlled air in the temperature chamber.
A supply air conditioner, and the measuring means
Illuminates the light receiving surface of the light receiving element placed outside the chamber
A reference light source that emits light and light that guides light emitted by the reference light source
Fiber, the light receiving element
A lens for forming a condensed spot on a light receiving surface, and the lens
And adjust the position of
Optical axis alignment mechanism for scanning two-dimensionally on the surface
An opening and closing mechanism for opening and closing the temperature chamber.
You. (3) Temperature characteristic test apparatus for an optical semiconductor device of the present invention, the upper
Test near the transmission window of the temperature chamber described in (1) or (2).
Dry air supply apparatus for supplying a gas of lower test temperature dew point
It is characterized by having . (4) Temperature characteristic test apparatus for an optical semiconductor device of the present invention, the upper
The temperature chamber of (1) or (2) and the Fourier transformation
Care about the interchangeable lens or the lens forming the focused spot.
Place in a closed room, and place a gas with a dew point lower than the test temperature in the closed room.
It is characterized by being filled with the body .
【0017】光半導体素子の近傍を温度チャンバで囲
い、温度チャンバ内の雰囲気を試験温度に制御するのに
加え、さらに光半導体素子を搭載した均熱治具をペルチ
ェ素子で精密に制御する。このため、ペルチェ素子に負
担をかけることなく高精度な温度制御を実現できる。The vicinity of the optical semiconductor element is surrounded by a temperature chamber, and in addition to controlling the atmosphere in the temperature chamber to the test temperature, a heat equalizing jig on which the optical semiconductor element is mounted is precisely controlled by a Peltier element. Therefore, highly accurate temperature control can be realized without imposing a load on the Peltier element.
【0018】温度特性試験を行う光半導体素子以外はす
べて、温度チャンバの外の常温雰囲気中に置かれるた
め、測定器類の温度特性に依らず高精度な測定が可能で
ある。また、光パワーメータまたは基準光源と接続され
る光ファイバと光半導体素子との光軸を合わせる機構も
常温雰囲気中に置かれるため、精密な光軸合わせ機構が
容易に実現できる。All of the components other than the optical semiconductor device to be subjected to the temperature characteristic test are placed in a normal temperature atmosphere outside the temperature chamber, so that highly accurate measurement can be performed regardless of the temperature characteristics of measuring instruments. In addition, since a mechanism for aligning the optical axis of the optical semiconductor element with the optical fiber connected to the optical power meter or the reference light source is also placed in a room temperature atmosphere, a precise optical axis alignment mechanism can be easily realized.
【0019】[0019]
【発明の実施の形態】次に、本発明の第1の実施の形態
について図面を参照して詳細に説明する。Next, a first embodiment of the present invention will be described in detail with reference to the drawings.
【0020】図1は、本発明の第1の実施の形態を説明
するための図である。FIG. 1 is a diagram for explaining a first embodiment of the present invention.
【0021】本第1の実施の形態の光半導体素子の温度
特性試験装置は、レーザダイオード等の発光素子である
光半導体素子1を搭載する熱伝導性の良い材料で作られ
た均熱治具2と、均熱治具2に接して設置され均熱治具
2の温度制御を行うペルチェ素子3と、ペルチェ素子3
を制御する温度制御装置4と、均熱治具2とペルチェ素
子3を収納する温度チャンバ5と、温度チャンバ5に試
験温度に制御された空気を供給する空調機6とを含んで
構成される。均熱治具2には温度センサ(図示せず)が
設置されており、温度制御装置4および空調機6は温度
センサ7で計測された温度をフィードバックして均熱治
具2の温度制御を行う。The apparatus for testing temperature characteristics of an optical semiconductor device according to the first embodiment is a soaking jig made of a material having good thermal conductivity for mounting an optical semiconductor device 1 which is a light emitting device such as a laser diode. 2, a Peltier element 3 installed in contact with the heat equalizing jig 2 and controlling the temperature of the heat equalizing jig 2, and a Peltier element 3
, A temperature chamber 5 accommodating the heat equalizing jig 2 and the Peltier element 3, and an air conditioner 6 for supplying air controlled at a test temperature to the temperature chamber 5. . A temperature sensor (not shown) is installed in the soaking jig 2, and the temperature control device 4 and the air conditioner 6 feed back the temperature measured by the temperature sensor 7 to control the temperature of the soaking jig 2. Do.
【0022】温度チャンバ5は光半導体素子1を搭載し
た均熱治具2とペルチェ素子3とが収納できるだけの最
低限の容積とし、空調機6で制御すべき空気の量はでき
る限り少なくしておく。また、光半導体素子1の光軸方
向にある温度チャンバ5の壁には、光半導体素子1の光
の波長を透過する透過窓7を設け、光半導体素子1から
放射される光を温度チャンバ5の外部に取り出す。温度
チャンバ5の外に取り出された光はレンズ8によって集
光され光ファイバ9に導入される。このとき光ファイバ
9に光半導体素子1か出力された光を効率よく導入する
ために、レンズ8および光ファイバ9はXYZ軸で構成
された光軸合わせ機構10に搭載され、常に光ファイバ
9に導入される光強度が最大となるように光軸合わせが
行われる。光ファイバ9の出射端は光パワーメータ・光
スペクトラムアナライザなどの光測定器11に接続さ
れ、光ファイバで伝送される光のパワー、波長などが測
定される。The temperature chamber 5 has a minimum volume capable of accommodating the heat equalizing jig 2 on which the optical semiconductor element 1 is mounted and the Peltier element 3, and the amount of air to be controlled by the air conditioner 6 is minimized. deep. Further, on the wall of the temperature chamber 5 in the optical axis direction of the optical semiconductor element 1, a transmission window 7 for transmitting the wavelength of the light of the optical semiconductor element 1 is provided. Take out outside. Light taken out of the temperature chamber 5 is condensed by a lens 8 and introduced into an optical fiber 9. At this time, in order to efficiently introduce the light output from the optical semiconductor element 1 into the optical fiber 9, the lens 8 and the optical fiber 9 are mounted on an optical axis alignment mechanism 10 composed of XYZ axes. Optical axis alignment is performed so that the intensity of the introduced light is maximized. The output end of the optical fiber 9 is connected to an optical measuring device 11 such as an optical power meter or an optical spectrum analyzer, and measures the power, wavelength, and the like of light transmitted through the optical fiber.
【0023】温度チャンバ5に設けられている透過窓7
は光半導体素子1の光の透過率に優れた石英などのガラ
ス材料を用い、出射された光を微小スポットに絞り込む
ために、両面を精密に平行平面となるように光学研磨を
施しておく。Transmission window 7 provided in temperature chamber 5
Is made of a glass material such as quartz excellent in light transmittance of the optical semiconductor element 1, and is optically polished so that both surfaces are precisely parallel planes in order to narrow out the emitted light to minute spots.
【0024】また、表面および裏面での反射による減衰
を防ぐために、光半導体素子1の光の波長に合った反射
防止コーティングを施しておく。また、光半導体素子1
から出射された光を透過窓7を介してレンズ8で集光す
る必要があるので、レンズ8は透過窓7のガラス厚補正
されたものでなくてはならない。具体的には、光半導体
素子1から出射される広がりをもった光を平行光にする
前側のレンズ8aにはガラス厚補正対物レンズ G P
lan Apo20×((株)ミツトヨ社製)などのレ
ンズが使用でき、前側のレンズ8aによってコリメート
された光を微小スポットに集光する後側のレンズ8bに
は通常の明視野用対物レンズまたはLD用非球面モール
ドガラスレンズ(HOYA(株)社製)が使用できる。
レンズを選択する際には、光半導体素子1の広がり角お
よび光ファイバ9の開口数(NA)と同等なNAを有す
るレンズを選択することが好ましい。In order to prevent attenuation due to reflection on the front and back surfaces, an anti-reflection coating suitable for the wavelength of light of the optical semiconductor device 1 is applied. Also, the optical semiconductor device 1
It is necessary to condense the light emitted from through the transmission window 7 with the lens 8, so that the lens 8 must have the transmission window 7 whose glass thickness has been corrected. Specifically, the front lens 8a that converts the spread light emitted from the optical semiconductor element 1 into parallel light is provided on the glass thickness correction objective lens GP.
A lens such as lan Apo20 × (manufactured by Mitutoyo Corporation) or the like can be used, and a normal bright-field objective lens or LD is provided on the rear lens 8b for condensing the light collimated by the front lens 8a into a minute spot. Aspherical molded glass lens (manufactured by HOYA CORPORATION) can be used.
When selecting a lens, it is preferable to select a lens having a divergence angle of the optical semiconductor element 1 and an NA equal to the numerical aperture (NA) of the optical fiber 9.
【0025】温度チャンバ5はシリンダなどによって駆
動される開閉機構12に上下に動かすことができ、試験
を行う光半導体素子1の交換およびメインテナンスなど
を行う。そのため、空調機6から温度チャンバ5へはフ
レキシブルなダクト13を通して温度制御された空気が
送られる。The temperature chamber 5 can be moved up and down by an opening / closing mechanism 12 driven by a cylinder or the like, and exchange and maintenance of the optical semiconductor element 1 to be tested are performed. Therefore, air whose temperature is controlled is sent from the air conditioner 6 to the temperature chamber 5 through the flexible duct 13.
【0026】温度チャンバ5内は低温にもなるので、透
過窓7の結露による透過率の劣化を防ぐため、透過窓7
の近傍に試験温度以下の露点の乾燥空気を供給するノズ
ル14を設ける。Since the temperature inside the temperature chamber 5 becomes low, the transmission window 7 is prevented from deteriorating in transmittance due to dew condensation on the transmission window 7.
Is provided in the vicinity of the nozzle 14 for supplying dry air having a dew point equal to or lower than the test temperature.
【0027】次に、図1の温度特性試験装置の動作につ
いて、図を参照して説明する。Next, the operation of the temperature characteristic test apparatus of FIG. 1 will be described with reference to the drawings.
【0028】試験を行う光半導体素子1は予め均熱治具
2に搭載しておく。温度チャンバ5を開閉機構12で開
け、ベルチェ素子3上に均熱治具2をセットする。この
とき、温度制御装置4、空調機6ともに停止状態で、温
度チャンバ5内は常温である。均熱治具2をセットした
後、温度チャンバ5を閉め、空調機6で温度チャンバ5
内に試験温度に制御された空気を送るとともに、温度制
御装置4でペルチェ素子3を駆動して、均熱治具2が試
験温度となるように制御する。試験温度が常温より低い
場合は、温度チャンバ5の透過窓7が結露しないように
ノズル14から乾燥空気を流しておく。たとえば試験温
度が−40℃の場合は、透過窓7に供給する乾燥空気の
露点は−50〜60℃のものを用意する。The optical semiconductor device 1 to be tested is previously mounted on the heat equalizing jig 2. The temperature chamber 5 is opened by the opening / closing mechanism 12, and the heat equalizing jig 2 is set on the Peltier element 3. At this time, the temperature control device 4 and the air conditioner 6 are both stopped, and the temperature chamber 5 is at room temperature. After setting the soaking jig 2, the temperature chamber 5 is closed, and the temperature chamber 5 is
The temperature controlled device 4 drives the Peltier element 3 to control the temperature of the heat equalizing jig 2 to the test temperature. When the test temperature is lower than the normal temperature, dry air is flowed from the nozzle 14 so that the transmission window 7 of the temperature chamber 5 does not dew. For example, when the test temperature is −40 ° C., the dew point of the dry air supplied to the transmission window 7 should be −50 to 60 ° C.
【0029】均熱治具2には光半導体素子1を挿入する
ソケットが設けられており、このソケットは光半導体素
子1の駆動回路と電気的に接続されている。そこで、均
熱治具2を温度チャンバ5内にセットした後、光半導体
素子1に駆動電流を流し、光半導体素子1を発光させ
る。The heat equalizing jig 2 is provided with a socket into which the optical semiconductor element 1 is inserted, and this socket is electrically connected to a drive circuit of the optical semiconductor element 1. Therefore, after setting the heat equalizing jig 2 in the temperature chamber 5, a drive current is applied to the optical semiconductor element 1 to cause the optical semiconductor element 1 to emit light.
【0030】均熱治具2が試験温度に到達したところ
で、光半導体素子1から出射される光を光ファイバ9に
導入するために、レンズ8の位置を光軸合わせ機構10
で微調整し、光ファイバ9に入る光強度が最大となるよ
うにする。光ファイバ9で伝送される光強度が最大とな
ったところで、光測定器11で光強度・波長などの測定
を行う。When the temperature equalizing jig 2 reaches the test temperature, the position of the lens 8 is adjusted by the optical axis aligning mechanism 10 to introduce the light emitted from the optical semiconductor element 1 into the optical fiber 9.
And fine adjustment is performed so that the light intensity entering the optical fiber 9 is maximized. When the light intensity transmitted through the optical fiber 9 becomes maximum, the light measuring device 11 measures the light intensity and wavelength.
【0031】測定が完了したら、空調機6およびペルチ
ェ素子3で均熱治具2を結露しないように次第に常温に
戻し、均熱治具2が常温に戻ったところで、温度チャン
バ5を開閉機構12で開け、測定の完了した光半導体素
子1を均熱治具2ごと取り出す。When the measurement is completed, the air conditioner 6 and the Peltier element 3 gradually return the temperature of the heat equalizing jig 2 to room temperature so as not to cause dew condensation. And take out the optical semiconductor element 1 for which measurement has been completed together with the heat equalizing jig 2.
【0032】図2は、本第1の実施の形態における光半
導体素子1のFFP測定の様子を説明するための図であ
る。FIG. 2 is a diagram for explaining a state of the FFP measurement of the optical semiconductor device 1 according to the first embodiment.
【0033】図1に示したレンズ8および光ファイバ9
の代わりに、光半導体素子1の光軸上にフーリエ変換レ
ンズ15と光半導体素子1が出射する光に対して感度を
有する撮像装置16を設置してある。ここで、撮像装置
16の撮像面17はフーリエ変換レンズ15のフーリエ
変換面となるように置かれている。このようにして光半
導体素子1を発光させたとき、フーリエ変換レンズ15
のフーリエ変換面には光半導体素子1のFFPが投影さ
れるため、撮像装置16によってこのFFPを2次元的
な画像としてとらえ、撮像装置16から出力されるFF
Pのビデオ信号は画像記録装置18に記録される。The lens 8 and the optical fiber 9 shown in FIG.
Instead, a Fourier transform lens 15 and an imaging device 16 having sensitivity to light emitted from the optical semiconductor element 1 are provided on the optical axis of the optical semiconductor element 1. Here, the imaging surface 17 of the imaging device 16 is placed so as to be a Fourier transform surface of the Fourier transform lens 15. When the optical semiconductor element 1 emits light in this way, the Fourier transform lens 15
Since the FFP of the optical semiconductor element 1 is projected on the Fourier transform surface of the optical device 1, the imaging device 16 captures the FFP as a two-dimensional image, and outputs the FF output from the imaging device 16.
The P video signal is recorded in the image recording device 18.
【0034】次に、本第1の実施の形態の効果について
説明する。Next, effects of the first embodiment will be described.
【0035】本第1の実施の形態では、試験温度にさら
されるのは温度チャンバ5内に置かれる被検査物である
光半導体素子1とそれを搭載する均熱治具2とペルチェ
素子3のみであり、レンズ8や光軸合わせ機構10や光
測定器11や撮像装置16などの測定系・機構系はすべ
て温度チャンバ5外の常温雰囲気中に置かれるため、様
々な温度環境下における光半導体素子1の光出力,波
長,発光パターンなどを高精度に測定することができ
る。In the first embodiment, only the optical semiconductor element 1 to be inspected placed in the temperature chamber 5 and the heat equalizing jig 2 and the Peltier element 3 mounted thereon are exposed to the test temperature. Since all the measurement and mechanical systems such as the lens 8, the optical axis alignment mechanism 10, the optical measuring device 11, and the imaging device 16 are placed in a normal temperature atmosphere outside the temperature chamber 5, the optical semiconductors in various temperature environments The light output, wavelength, light emission pattern and the like of the element 1 can be measured with high accuracy.
【0036】次に、本発明の第2の実施の形態について
図面を参照して詳細に説明する。Next, a second embodiment of the present invention will be described in detail with reference to the drawings.
【0037】図3は、本発明の第2の実施の形態を説明
するための図である。FIG. 3 is a diagram for explaining a second embodiment of the present invention.
【0038】図3に示す光半導体素子の温度特性試験装
置は、図1に示したレーザダイオードなどの発光素子で
ある光半導体素子1の代わりに、フォトダイオードなど
の受光素子20の温度特性試験を行うものであり、基準
光源21から出力される光が光ファイバ9を通り、レン
ズ8によって受光素子20の受光面上に集光される。均
熱治具2は受光素子20を挿入するソケットを有し、こ
のソケットを介し受光素子20にバイアス電圧をかけた
り、受光素子20を流れる電流値を電流計で測定する。The optical semiconductor device temperature characteristic test apparatus shown in FIG. 3 performs a temperature characteristic test of a light receiving element 20 such as a photodiode instead of the optical semiconductor element 1 which is a light emitting element such as a laser diode shown in FIG. The light output from the reference light source 21 passes through the optical fiber 9 and is condensed on the light receiving surface of the light receiving element 20 by the lens 8. The heat equalizing jig 2 has a socket into which the light receiving element 20 is inserted. A bias voltage is applied to the light receiving element 20 via the socket, and a current value flowing through the light receiving element 20 is measured by an ammeter.
【0039】図4は、レンズ8によって集光されたスポ
ットの位置と受光素子20を流れる電流値の関係を示す
グラフである。FIG. 4 is a graph showing the relationship between the position of the spot focused by the lens 8 and the value of the current flowing through the light receiving element 20.
【0040】受光素子20の場合、受光面は数10〜数
100μmの大きさがあるため、受光素子20を流れる
電流値が最大となるスポットの位置も受光面と同程度の
範囲がある。そこで、光軸合わせ機構10で受光素子2
0とレンズ8の位置合わせを行う際には、受光素子20
の電流値の最大値からある一定の割合(図4では20
%)だけ電流値が低下するエッジの位置を検出し、その
両側のエッジの中間の位置にスポット位置を合わせるよ
うにする。このように光軸合わせを行うことにより、レ
ンズ8で集光されるスポットを受光素子20の受光面の
中心に正確に位置合わせすることができる。また、光軸
合わせ機構10によりスポットを2次元的に走査させる
ことにより、受光素子20の受光面内の感度分布も測定
することができる。In the case of the light receiving element 20, since the light receiving surface has a size of several tens to several hundreds of μm, the position of the spot where the value of the current flowing through the light receiving element 20 is maximum has a range similar to that of the light receiving surface. Therefore, the light receiving element 2 is
0 and the lens 8 are aligned when the light receiving element 20
From the maximum value of the current value of FIG.
%), The position of the edge where the current value decreases is detected, and the spot position is adjusted to the middle position between the edges on both sides thereof. By performing the optical axis alignment in this manner, the spot focused by the lens 8 can be accurately aligned with the center of the light receiving surface of the light receiving element 20. By scanning the spot two-dimensionally by the optical axis alignment mechanism 10, the sensitivity distribution in the light receiving surface of the light receiving element 20 can also be measured.
【0041】本第2の実施の形態は、第1の実施の形態
で示した発光素子である光半導体素子1の温度試験だけ
でなく、受光素子20の温度試験も実現できることを示
している。第2の実施の形態における受光素子20の温
度試験においても、レンズ8や光軸合わせ機構10や基
準光源11などはすべて温度チャンバ5外の常温雰囲気
中に置くことができるので、受光面内の感度分布を含め
た各種の測定が様々な温度環境下で高精度に行うことが
できる。The second embodiment shows that not only the temperature test of the optical semiconductor element 1 as the light emitting element shown in the first embodiment but also the temperature test of the light receiving element 20 can be realized. Also in the temperature test of the light receiving element 20 in the second embodiment, since the lens 8, the optical axis alignment mechanism 10, the reference light source 11, and the like can all be placed in the normal temperature atmosphere outside the temperature chamber 5, Various measurements including the sensitivity distribution can be performed with high accuracy under various temperature environments.
【0042】次に、本発明の第3の実施の形態について
図面を用いて詳細に説明する。Next, a third embodiment of the present invention will be described in detail with reference to the drawings.
【0043】図5は、本発明の第3の実施の形態を説明
するための図である。FIG. 5 is a diagram for explaining a third embodiment of the present invention.
【0044】本第3の実施の形態の光半導体素子の温度
特性試験装置は、図1に示した乾燥空気を透過窓7近傍
に供給するノズル14を設ける代わりに、温度チャンバ
5を含む装置全体を気密室22で覆い、気密室22内に
乾燥空気を供給する配管系23を設け、気密室22内の
雰囲気を乾燥空気に置換して温度特性試験を行う。図1
に示すようにノズル14で透過窓7近傍に乾燥空気を供
給する場合、低温試験終了後温度チャンバ5を開けるの
に、光半導体素子1の結露を防ぐため、光半導体素子1
が常温に戻ってから温度チャンバ5を開ける必要があっ
た。しかし、図5に示した第3の実施の形態では装置全
体を気密室22に入れ、気密室22内の露点を下げてい
るため、光半導体素子1が冷えている間に温度チャンバ
5を開けても結露することはないので、光半導体素子1
が常温に戻るのを待つ必要がないため、装置のインデッ
クスが向上するという効果がある。The temperature characteristic testing apparatus for an optical semiconductor device according to the third embodiment includes a temperature chamber 5 instead of the nozzle 14 for supplying dry air near the transmission window 7 shown in FIG. Is covered with an airtight chamber 22, a piping system 23 for supplying dry air into the airtight chamber 22 is provided, and the atmosphere in the airtight chamber 22 is replaced with dry air to perform a temperature characteristic test. FIG.
When the dry air is supplied to the vicinity of the transmission window 7 through the nozzle 14 as shown in FIG.
It was necessary to open the temperature chamber 5 after returning to room temperature. However, in the third embodiment shown in FIG. 5, the entire apparatus is placed in the hermetic chamber 22 and the dew point in the hermetic chamber 22 is lowered, so that the temperature chamber 5 is opened while the optical semiconductor element 1 is cold. Even if the dew does not form, the optical semiconductor element 1
There is no need to wait for the temperature to return to room temperature, so that the index of the apparatus is improved.
【0045】[0045]
【発明の効果】第1の効果は、光半導体素子の精密な温
度制御が可能であるということである。The first effect is that precise temperature control of the optical semiconductor device can be performed.
【0046】その理由は、光半導体素子を搭載する均熱
治具の温度をペルチェ素子で精密に制御するだけでな
く、均熱治具の周囲の雰囲気を空調機によって試験温度
に近づけることにより、均熱治具内の温度勾配を減少さ
せ均熱治具内の温度の均一性を向上させることができる
ためである。The reason is that not only the temperature of the heat equalizing jig on which the optical semiconductor element is mounted is precisely controlled by the Peltier element, but also the atmosphere around the heat equalizing jig is brought close to the test temperature by an air conditioner. This is because the temperature gradient in the heat equalizing jig can be reduced and the temperature uniformity in the heat equalizing jig can be improved.
【0047】第2の効果は、常温だけでなく高温・低温
の環境下においても、様々な特性試験を高精度に行うこ
とができるということである。また、レーザダイオード
のFFPの測定や、受光素子の面内感度分布など様々な
特性試験も行える。The second effect is that various characteristic tests can be performed with high accuracy not only at room temperature but also at high and low temperatures. In addition, various characteristic tests such as measurement of FFP of a laser diode and in-plane sensitivity distribution of a light receiving element can be performed.
【0048】その理由は、様々な試験温度下にさらされ
るのは温度チャンバ内の光半導体素子、均熱治具および
ペルチェ素子のみであり、その他のレンズ、光軸合わせ
機構、光測定器および基準光源等の測定系・機構系は常
温雰囲気中にあるため、精密な光軸合わせや温度特性に
左右されない精密な測定が実現できるためである。ま
た、低温での試験の際にも、温度チャンバの透過窓近傍
の露点を乾燥空気により下げることにより、透過窓の結
露を防ぐことができる。The reason is that only the optical semiconductor element, the heat equalizing jig and the Peltier element in the temperature chamber are exposed to various test temperatures, and other lenses, optical axis alignment mechanisms, optical measuring instruments and reference This is because the measurement system / mechanism system such as the light source is in an ambient temperature atmosphere, so that precise optical axis alignment and precise measurement independent of temperature characteristics can be realized. Further, even at the time of a test at a low temperature, the dew point in the vicinity of the transmission window of the temperature chamber is lowered by dry air, thereby preventing dew condensation on the transmission window.
【図1】本発明の光半導体素子の温度特性試験装置の第
1の実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of an optical semiconductor element temperature characteristic test apparatus of the present invention.
【図2】図1の第1の実施の形態における光半導体素子
のFFP測定の様子を説明するための図である。FIG. 2 is a diagram for explaining a state of FFP measurement of the optical semiconductor device according to the first embodiment of FIG.
【図3】本発明の光半導体素子の温度特性試験装置の第
2の実施の形態を示す構成図である。FIG. 3 is a configuration diagram showing a second embodiment of the temperature characteristic testing apparatus for an optical semiconductor element of the present invention.
【図4】本実施の形態のスポット位置と受光素子を流れ
る電流値の関係を示すグラフである。FIG. 4 is a graph showing a relationship between a spot position and a current value flowing through a light receiving element according to the present embodiment.
【図5】本発明の光半導体素子の温度特性試験装置の第
3の実施の形態を示す構成図である。FIG. 5 is a configuration diagram showing a third embodiment of the temperature characteristic testing device for an optical semiconductor element of the present invention.
【図6】従来の光半導体素子の温度特性試験装置の一例
を示す平面図である。FIG. 6 is a plan view showing an example of a conventional optical semiconductor element temperature characteristic test apparatus.
【図7】図6に示す光半導体素子の温度特性試験装置の
断面図である。7 is a cross-sectional view of the optical semiconductor device temperature characteristic test apparatus shown in FIG. 6;
1 光半導体素子 2 均熱治具 3 ペルチェ素子 4 温度制御装置 5 温度チャンバ 6 空調機 7 透過窓 8 レンズ 8a 前側のレンズ 8b 後側のレンズ 9 光ファイバ 10 光軸合わせ機構 11 光測定器 12 開閉機構 13 ダクト 14 ノズル 15 フーリエ変換レンズ 16 撮像装置 17 撮像面 18 画像記録装置 20 受光素子 21 基準光源 22 気密室 23 配管系 101 均熱ブロック 102 冷媒通過手段 103 加熱ヒータ 104,107 挿着孔 105 受光素子 106,109 プリント基板 108 補助均熱ブロック 110 光半導体素子 DESCRIPTION OF SYMBOLS 1 Optical semiconductor element 2 Heat equalizing jig 3 Peltier element 4 Temperature controller 5 Temperature chamber 6 Air conditioner 7 Transmission window 8 Lens 8a Front lens 8b Rear lens 9 Optical fiber 10 Optical axis alignment mechanism 11 Optical measuring instrument 12 Opening / closing Mechanism 13 Duct 14 Nozzle 15 Fourier transform lens 16 Imaging device 17 Imaging surface 18 Image recording device 20 Light receiving element 21 Reference light source 22 Airtight room 23 Piping system 101 Heat equalizing block 102 Refrigerant passing means 103 Heater 104, 107 Insertion hole 105 Light receiving Device 106, 109 Printed circuit board 108 Auxiliary heat equalizing block 110 Optical semiconductor device
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01R 31/26 H01L 21/66 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G01R 31/26 H01L 21/66
Claims (4)
に保つ温度調整手段と、前記光半導体素子の光−電気的
特性を測定する測定手段とを有する温度特性試験装置に
おいて、前記光半導体素子が発光素子であり、前記温度
調節手段が、前記発光素子を搭載する均熱治具と、前記
均熱治具に接し前記均熱治具および前記発光素子の温度
制御を行うペルチェ素子と、前記均熱治具および前記ペ
ルチェ素子を収納可能で前記発光素子の光軸上に透過窓
を有する温度チャンバと、前記温度チャンバ内に温度制
御された空気を供給する空調機とを含み、前記測定手段
が、前記温度チャンバの外に置かれたフーリエ変換レン
ズと、該フーリエ変換レンズによって形成される前記発
光素子の発光の遠視野パターンを撮像する撮像装置と、
前記フーリエ変換レンズの位置を調整し前記遠視野パタ
ーンが形成される位置を調節する光軸合わせ機構とを含
み、前記温度チャンバを開閉する開閉機構とを含むこと
を特徴とする光半導体素子の温度特性試験装置。1. A temperature characteristic testing apparatus comprising: a temperature adjusting means for maintaining an optical semiconductor device to be inspected at a test temperature; and a measuring means for measuring optical-electrical characteristics of the optical semiconductor device. The element is a light emitting element, and the temperature
Adjusting means for mounting the light emitting element, a heat equalizing jig, a Peltier element in contact with the heat equalizing jig and controlling the temperature of the heat equalizing jig and the light emitting element, the heat equalizing jig and the Peltier element the includes a temperature chamber having a transparent window on an optical axis of possible light emitting element housing, and a temperature-controlled air supply air conditioner in the temperature chamber, the measuring means
The onset but a Fourier transform lens <br/>'s placed outside the temperature chamber, which is formed by the Fourier transform lens
An imaging device for imaging a far-field pattern of light emission of the optical element;
The position of the Fourier transform lens is adjusted and the far-field pattern is adjusted.
Including the optical axis alignment mechanism for adjusting the position over down is formed
And a switching mechanism for opening and closing the temperature chamber.
に保つ温度調整手段と、前記光半導体素子の光−電気的
特性を測定する測定手段とを有する温度特性試験装置に
おいて、前記光半導体素子が受光素子であり、前記温度
調節手段が前記受光素子を搭載する均熱治具と、前記均
熱治具に接し前記均熱治具および前記受光素子の温度制
御を行うペルチェ素子と、前記均熱治具および前記ペル
チェ素子を収納可能で前記光半導体素子の光軸上に透過
窓を有する温度チャンバと、前記温度チャンバ内に温度
制御された空気を供給する空調機とを含み、前記測定手
段が、前記温度チャンバの外に置かれた前記受光素子の
受光面を照射する光を発する基準光源と、該基準光源の
発する光を導く光ファイバと、該光ファイバの出射光か
ら前記受光素子の受光面に集光スポットを形成するレン
ズと、前記レンズの位置を調節し前記集光スポットを前
記受光素子の受光面上で2次元に走査させる光軸合わせ
機構とを含み、前記温度チャンバを開閉する開閉機構と
を含むことを特徴とする光半導体素子の温度特性試験装
置。2. A temperature characteristic testing apparatus, comprising: a temperature adjusting means for keeping an optical semiconductor device to be inspected at a test temperature; and a measuring means for measuring optical-electrical characteristics of the optical semiconductor device. The element is a light receiving element, and the temperature
Adjusting means for mounting the light receiving element, a Peltier element in contact with the heat equalizing jig and controlling the temperature of the heat equalizing jig and the light receiving element, and the heat equalizing jig and the Peltier element. temperature chamber having a retractable transparent windows on the optical axis of said optical semiconductor element, and a for supplying air conditioner temperature controlled air to the temperature inside the chamber, the measuring hand
A step, a reference light source for emitting light for irradiating a light-receiving surface of the light-receiving element placed outside the temperature chamber, an optical fiber for guiding light emitted from the reference light source, and a light-receiving element from light emitted from the optical fiber. a lens for forming a focused spot on the light receiving surface of the focusing spot by adjusting the position of said lens comprises an optical axis alignment mechanism for two-dimensionally scanned on the light receiving surface of the light receiving element, the temperature chamber An apparatus for testing the temperature characteristics of an optical semiconductor device, comprising: an opening / closing mechanism for opening and closing.
度より低い露点の気体を供給する乾燥空気供給装置を有
することを特徴とする請求項1または2項記載の光半導
体素子の温度特性試験装置。3. A temperature characteristic test apparatus for an optical semiconductor device according to claim 1 or 2 Claims characterized by having a dry air-supplying apparatus for supplying a gas of lower dew point than the test temperature transmission window near the temperature chamber .
ンズまたは前記集光スポットを形成するレンズを気密室
に入れ、前記気密室内を試験温度より低い露点の気体で
充満させたことを特徴とする請求項1または2項記載の
光半導体素子の温度特性試験装置。4. The temperature chamber and the Fourier transform laser.
3. The temperature characteristic of the optical semiconductor device according to claim 1, wherein the lens or the lens forming the condensing spot is placed in an airtight chamber, and the airtight chamber is filled with a gas having a dew point lower than a test temperature. Testing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8102619A JP2935344B2 (en) | 1996-04-24 | 1996-04-24 | Equipment for testing temperature characteristics of optical semiconductor elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8102619A JP2935344B2 (en) | 1996-04-24 | 1996-04-24 | Equipment for testing temperature characteristics of optical semiconductor elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09288143A JPH09288143A (en) | 1997-11-04 |
JP2935344B2 true JP2935344B2 (en) | 1999-08-16 |
Family
ID=14332273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8102619A Expired - Lifetime JP2935344B2 (en) | 1996-04-24 | 1996-04-24 | Equipment for testing temperature characteristics of optical semiconductor elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2935344B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4991899A (en) * | 1998-07-14 | 2000-02-07 | Schlumberger Technologies, Inc. | Apparatus, method and system of liquid-based, wide range, fast response temperature cycling control of electronic devices |
JP4797275B2 (en) * | 2001-05-07 | 2011-10-19 | 日本電気株式会社 | Electronic component heating / cooling system |
KR100651031B1 (en) * | 2005-07-08 | 2006-11-29 | 장민준 | Integrating sphere having means for temperature control |
JP4871852B2 (en) * | 2007-12-05 | 2012-02-08 | シャープ株式会社 | Burn-in equipment |
JP5502776B2 (en) * | 2011-02-14 | 2014-05-28 | エスペック株式会社 | Solar panel test apparatus, test method, control apparatus, and program |
JP6654096B2 (en) * | 2016-04-29 | 2020-02-26 | 日本電子材料株式会社 | Probe card |
JP6955989B2 (en) * | 2017-12-13 | 2021-10-27 | 東京エレクトロン株式会社 | Inspection equipment |
-
1996
- 1996-04-24 JP JP8102619A patent/JP2935344B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09288143A (en) | 1997-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11526001B2 (en) | Laser systems and optical devices for manipulating laser beams | |
TWI252914B (en) | Semiconductor array tester | |
JP4226593B2 (en) | Infrared pyrometer calibration system for heat treatment system | |
KR100523786B1 (en) | Pyrometer calibration using multiple light sources | |
US20160028210A1 (en) | Compact, thermally stable multi-laser engine | |
KR100661794B1 (en) | Infrared thermal image microscope with blackbody source | |
JP2935344B2 (en) | Equipment for testing temperature characteristics of optical semiconductor elements | |
JP6441435B1 (en) | Prober apparatus and wafer chuck | |
WO2014035505A2 (en) | Laser power sensor | |
JP7270073B2 (en) | Calibration chucks for optical probe systems, optical probe systems including calibration chucks, and methods of using optical probe systems | |
US6765676B1 (en) | Simultaneous compensation of source and detector drift in optical systems | |
US8064058B2 (en) | Light distribution measurement system | |
US11099061B2 (en) | Measurement device for light-emitting device and method for measuring light-emitting device | |
JP2004521500A (en) | Wavelength stabilized laser light source | |
CN105115698B (en) | For the integrated test system of films on cavity surfaces of semiconductor lasers failure analysis | |
US11808938B2 (en) | Apparatus for measuring optical characteristics of a test optical element under low-temperature environment | |
TW201334016A (en) | Method and system for identifying defects on substrate | |
US20080061814A1 (en) | Electronic Component Test System | |
CN220085039U (en) | Wen Ciguang Kerr check out test set of height | |
JP2003156655A (en) | System and method for coupling light passing through waveguide in planar optical device | |
CN215574643U (en) | Portable luminousness testing arrangement of spectrum | |
CN111121633B (en) | Multichannel spectrum confocal measurement system and measurement method thereof | |
CN216386020U (en) | Temperature measuring device | |
JP2002195879A (en) | Isothermal control type laser calorimeter | |
TW201530102A (en) | Optical measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990506 |