JP2934494B2 - Collectible spacecraft - Google Patents

Collectible spacecraft

Info

Publication number
JP2934494B2
JP2934494B2 JP2287470A JP28747090A JP2934494B2 JP 2934494 B2 JP2934494 B2 JP 2934494B2 JP 2287470 A JP2287470 A JP 2287470A JP 28747090 A JP28747090 A JP 28747090A JP 2934494 B2 JP2934494 B2 JP 2934494B2
Authority
JP
Japan
Prior art keywords
spacecraft
brake plate
atmospheric
capsule
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2287470A
Other languages
Japanese (ja)
Other versions
JPH04163300A (en
Inventor
光茂 小田
隆宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UCHU KAIHATSU JIGYODAN
Mitsubishi Heavy Industries Ltd
Original Assignee
UCHU KAIHATSU JIGYODAN
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UCHU KAIHATSU JIGYODAN, Mitsubishi Heavy Industries Ltd filed Critical UCHU KAIHATSU JIGYODAN
Priority to JP2287470A priority Critical patent/JP2934494B2/en
Publication of JPH04163300A publication Critical patent/JPH04163300A/en
Application granted granted Critical
Publication of JP2934494B2 publication Critical patent/JP2934494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空気制動力を利用した制動板を有する回収型
宇宙機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a recovery type spacecraft having a brake plate using an air braking force.

[従来の技術] 回収型宇宙機としては第5図に示すように各種のもの
が提案されている。
[Related Art] Various types of recoverable spacecraft have been proposed as shown in FIG.

しかし、アポロ型カブセルと鈍頭カブセル以外は実用
化されていない。
However, other than the Apollo-type capsule and the blunted capsule have not been put to practical use.

[発明が解決しようとする課題] (1)回収時の加速度等の環境条件をよくすること。[Problems to be Solved by the Invention] (1) To improve environmental conditions such as acceleration during recovery.

第5図で「厳しい」としているのは10〜15G程度であ
る。
In FIG. 5, "severe" is about 10 to 15G.

3〜5G程度までおとせれば有人用にも使用できる。 It can be used for manned use if it can be reduced to about 3-5G.

又、15Gに耐える構造設計と5Gに耐える構造設計はお
のずと異なる。
Also, the structural design that withstands 15G and the structural design that withstands 5G are naturally different.

この加速度(逆G)を緩和する方策は回収機(カプセ
ル)の重量に対する突入方向投影面積を大きくする方策
が最善である。
The best way to reduce the acceleration (inverse G) is to increase the projected area in the rush direction with respect to the weight of the recovery machine (capsule).

一般に高空にある物体を大気制動を利用して地上まで
おろす場合、高空にある物体の位置エネルギーを大気制
動により熱に変えてパラシュート等で減速できるスピー
ドまで減速する必要がある。
In general, when an object in a high altitude is lowered to the ground using atmospheric braking, it is necessary to convert the potential energy of the object in a high altitude into heat by atmospheric braking and to reduce the speed to a speed at which the object can be decelerated by a parachute or the like.

このことはトータルの減速量は一定であることを意味
する。
This means that the total deceleration amount is constant.

重量に対する投影面積が小さいと大気による抗力が小
さいため速く落下する。そのため大気密度の大きな比較
的低高度を高高速度で落下する時に主たる減速を行わね
ばならぬことを意味する。
If the projected area with respect to the weight is small, the falling by the air is small because the drag by the atmosphere is small. This means that the main deceleration must be performed when falling at relatively high altitudes with high atmospheric density at high and high speeds.

逆に投影面積が大きいとゆっくり落下し減速される時
間が長くなるため、時間当りの減速率は小さくてよい。
Conversely, if the projection area is large, the time for slowing down and deceleration becomes longer, so that the deceleration rate per time may be small.

アポロ型カプセルや鈍頭型カプセルは回収機の重量に
対する突入方向の投影面積の割合を大きくとれないの
で、回収時の大気による時間あたりの減速率、すなわち
逆加速度(逆G)を大きくする必要がある。
Apollo-type capsules and blunt-type capsules cannot increase the ratio of the projected area in the rush direction to the weight of the recovery machine, so it is necessary to increase the deceleration rate per hour by the atmosphere during recovery, that is, the reverse acceleration (reverse G). is there.

しかし逆Gが大きい場合には、それに耐える構造にす
る必要があり、コストがかかる。
However, if the inverse G is large, it is necessary to make the structure to withstand that, and the cost is high.

又、バイオ実験のように軌道上で行なう実験の場合、
試験装置を10〜15Gに耐えるように設計すること自身不
可能な場合もある。
Also, in the case of experiments performed in orbit such as bio experiments,
In some cases, it may not be possible to design the test equipment to withstand 10-15G.

(2)熱的な環境条件をよくすること。(2) To improve thermal environmental conditions.

大気圏再突入時のマッハ数は20〜30以上となるので、
表面は強い空力加熱をうける。
Since the Mach number at the time of re-entry into the atmosphere will be 20 to 30 or more,
The surface is subjected to strong aerodynamic heating.

通常の金属を使用して外表面を構成すると空力加熱の
ため2000℃以上となり溶融する。このためアブレティブ
冷却又は耐熱セラミックタイルをはる等の対策をとる。
When the outer surface is formed using ordinary metal, the temperature rises to 2000 ° C or higher due to aerodynamic heating and melts. Therefore, measures such as abrasive cooling or heat-resistant ceramic tiles are taken.

空力加熱緩和の対策はゆっくりふわふわと落下させれ
ばよく、対策は(1)項と同じである。
The countermeasure for aerodynamic heating mitigation may be to drop slowly and fluffy, and the countermeasure is the same as that of (1).

しかしアブレーティブ冷却材、セラミックタイルとも
一般に剛であるためバルート型カプセルのようにガス圧
力でふくらませるアイデアは実現性がない。
However, since both ablative coolant and ceramic tile are generally rigid, the idea of inflating with gas pressure as in the case of a balut capsule is not feasible.

また空力加熱が厳しい区域に展開型空気制動板をつけ
ることは高温大気にさらされることとなり技術的には難
しい。
In addition, it is technically difficult to install a deployable air brake plate in an area where aerodynamic heating is severe, because it is exposed to a high-temperature atmosphere.

本発明は前述の諸問題を解決した鈍頭型カプセルの逆
Gのレベルの低減に効果がある回収機を提供することを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a recovery machine which solves the above-mentioned problems and is effective in reducing the level of inverted G of a blunt capsule.

[課題を解決するための手段] 本発明に係る回収型宇宙機は、大気圏に再突入し、空
中、海上又は地上で回収しうる宇宙機において、アブレ
ーティブ冷却による温度境界層の下流領域に空気制動力
を増加させるための展開式の制御板を装着していること
を特徴とする。
[Means for Solving the Problems] A recovery type spacecraft according to the present invention is a spacecraft which reenters the atmosphere and can be recovered in the air, at sea, or on the ground. It is equipped with a deployable control plate for increasing power.

[作用] 温度境界層下流に装備された展開式制動板はカプセル
がロケットのフェアリング等に搭載された状態では収納
された状態にある。
[Operation] The deployable brake plate mounted downstream of the temperature boundary layer is in a housed state when the capsule is mounted on a fairing or the like of a rocket.

大気圏再突入前にこの制御板は展開し、突入方向の投
影面積を増大させ逆Gのレベルを展開しない状態に比較
し軽減化させる。
Before the re-entry into the atmosphere, this control plate is deployed to increase the projected area in the entry direction and reduce the level of the inverse G as compared to a state where it is not deployed.

[実施例] 本発明の実施例を第1図〜第4図に示す。Embodiment An embodiment of the present invention is shown in FIG. 1 to FIG.

第1図はアブレーティブ冷却下流位置展開型回収機の
実施例で展開型大気制動板を収納した状態を示す図であ
る。
FIG. 1 is a view showing a state in which a deployable atmospheric brake plate is accommodated in an embodiment of an ablative cooling downstream position deployable recovery machine.

この状態で第4図に示すようにロケット等に搭載され
る。
In this state, it is mounted on a rocket or the like as shown in FIG.

第1図において1は鈍頭型カブセルの外側構造部を示
し、2は展開式大気制動板(収納状態)を示す。
In FIG. 1, reference numeral 1 denotes an outer structure portion of a blunt type carbur cell, and reference numeral 2 denotes a deployable atmospheric braking plate (in a housed state).

第2図は大気圏再突入前の大気制動板を展開した状態
を示す図である。
FIG. 2 is a view showing a state in which the atmospheric brake plate has been deployed before reentering the atmosphere.

第2図において、 1は鈍頭型カプセルの外側構造部で表面にアブレーテ
ィブ冷却部を具備する。
In FIG. 2, reference numeral 1 denotes an outer structure of a blunt capsule having an ablative cooling section on its surface.

2は展開式大気制動板(展開状態)、 3は伸展式外縁保持機構、 4は大気制動板の本体に対する結合部である。 Reference numeral 2 denotes an expansion-type atmospheric braking plate (deployed state), 3 denotes an extension-type outer edge holding mechanism, and 4 denotes a connecting portion of the atmospheric braking plate to a main body.

第3図は本発明に係る実施例の断面図である。 FIG. 3 is a sectional view of an embodiment according to the present invention.

外側構造部1の表面にはアブレーティブ冷却部11を具
備し、大気制動板2はヒンジ21により回収機に支持さ
れ、アクチュエータ(例えばニューマティックアクチュ
エータ)22により、開閉される。
The surface of the outer structure 1 is provided with an ablative cooling unit 11, and the atmospheric brake plate 2 is supported by a recovery machine by a hinge 21 and is opened and closed by an actuator (for example, a pneumatic actuator) 22.

大気制動板2はアルミ又はチタンハニカムの板の表面
にアブレーティブ冷却剤を接着した構造にする。
The atmospheric braking plate 2 has a structure in which an ablative coolant is bonded to the surface of an aluminum or titanium honeycomb plate.

アブレーティブ冷却とは、熱分解の吸熱反応を利用す
る方式であり、比較的低温のガスを放出する。
Ablative cooling is a method that utilizes an endothermic reaction of thermal decomposition, and emits gas at a relatively low temperature.

従ってその下流は熱的に若干楽になる。概略的に言え
ば投影断面積/重量の比が同じであれば熱的にほぼ同程
度の熱的環境におかれると言える。
Therefore, the downstream portion is slightly eased thermally. Roughly speaking, if the ratio of projected cross-sectional area / weight is the same, it can be said that the thermal environment is substantially the same.

アブレーティブ冷却部の下流におかれた大気制動板
が、アブレーティブ冷却効果がなかった時にどの程度熱
的に厳しくなるかは、逆にアブレーティブ冷却部の設計
によって決まる。
The degree to which the atmospheric brake plate located downstream of the ablative cooling unit becomes thermally severe when there is no ablative cooling effect is determined by the design of the ablative cooling unit.

アブレーティブ冷却により、比較的低温の熱分解ガス
を多量に発生させるようにすれば熱的な厳しさを1/2以
下にすることも可能である。
If a large amount of relatively low-temperature pyrolysis gas is generated by ablative cooling, the thermal severity can be reduced to less than 1/2.

前述のように本発明に係る回収型宇宙機は、鈍頭型カ
プセルのアブレーティブ冷却による温度境界層下流に展
開式の空気制動板を設け、カプセル質量に対する突入方
向投影面積を拡大する。
As described above, in the recovery type spacecraft according to the present invention, the deployable air brake plate is provided downstream of the temperature boundary layer by ablative cooling of the blunt capsule, and the projected area in the rush direction with respect to the capsule mass is enlarged.

このことにより大気圏再突入時の逆Gの程度を緩和す
ることが可能になり、又、制動板を制御することに再突
入軌道を制御することも可能になる。
This makes it possible to reduce the degree of the reverse G at the time of re-entry into the atmosphere, and also to control the re-entry trajectory by controlling the brake plate.

この温度境界層下流の制動板は、第5図のかさ型カプ
セルのかさの部分と異なり、アブレーティブ冷却の冷却
方式が採用された温度境界層の下流に位置するため、そ
の熱防護も簡易な形式で可能になる。
Unlike the bulk portion of the bulk capsule in FIG. 5, the brake plate downstream of this temperature boundary layer is located downstream of the temperature boundary layer employing the cooling method of ablative cooling, so that its thermal protection is also simple. Is possible.

[発明の効果] 本発明は前述のように構成されているので以下に記載
するような効果を有する。
[Effects of the Invention] Since the present invention is configured as described above, it has the following effects.

(1)鈍頭型カプセル等の欠点である大気圏再突入時の
逆Gのレベルを軽減化した状態で回収可能になる。
(1) Recovering can be performed in a state where the level of reverse G at the time of re-entry into the atmosphere, which is a drawback of a blunt capsule, is reduced.

(2)大気制動板の取付位置が壁面冷却の温度境界層の
下流に位置するため、制動板の熱防護が容易になる。
(2) Since the mounting position of the atmospheric brake plate is located downstream of the temperature boundary layer for wall cooling, thermal protection of the brake plate is facilitated.

(3)制動板の展開角度を制御することにより、回収カ
プセルの大気における飛行経路の制御が可能になる。
(3) By controlling the deployment angle of the brake plate, the flight path of the collection capsule in the atmosphere can be controlled.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の展開型回収機の大気制動板を収納した
状態を示す図、 第2図は本発明の展開型回収機の大気制動板を展開した
状態を示す図、 第3図は本発明に係る実施例の断面図、 第4図は本発明に係る実施例をロケットフェアリング中
に搭載した状態を示す図、 第5図は従来の回収型宇宙機を示す図である。 (符号の説明) 1……鈍頭型カプセルの外側構造部 2……大気制動板 3……伸展式外縁保持機構 4……大気制動部の本体に対する結合部
FIG. 1 is a view showing a state in which an atmospheric brake plate of a deployable recovery machine of the present invention is housed, FIG. 2 is a view showing a state in which an atmospheric brake plate of the deployable recovery machine of the present invention is deployed, and FIG. FIG. 4 is a sectional view of an embodiment according to the present invention, FIG. 4 is a diagram showing a state in which the embodiment according to the present invention is mounted in a rocket fairing, and FIG. 5 is a diagram showing a conventional recovery spacecraft. (Explanation of reference numerals) 1... Outer structural portion of blunt capsule 2... Atmospheric brake plate 3... Extendable outer edge holding mechanism 4.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−113124(JP,A) 米国特許3062148(US,A) 米国特許3113750(US,A) 米国特許3128964(US,A) (58)調査した分野(Int.Cl.6,DB名) B64G 1/62 ────────────────────────────────────────────────── (5) References JP-A-54-113124 (JP, A) US Patent 3062148 (US, A) US Patent 3,113,750 (US, A) US Patent 3,128,964 (US, A) (58) Field surveyed (Int.Cl. 6 , DB name) B64G 1/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】大気圏に再突入し、空中、海上又は地上で
回収しうる宇宙機において、 アブレーティブ冷却による温度境界層の下流領域に空気
制動力を増加させるための展開式の制御板を装着してい
ることを特徴とする回収型宇宙機。
A spacecraft which reenters the atmosphere and can be recovered in the air, at sea, or on the ground, is provided with an expandable control plate for increasing air braking force in a region downstream of a temperature boundary layer by ablative cooling. A recoverable spacecraft characterized in that:
JP2287470A 1990-10-24 1990-10-24 Collectible spacecraft Expired - Fee Related JP2934494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2287470A JP2934494B2 (en) 1990-10-24 1990-10-24 Collectible spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2287470A JP2934494B2 (en) 1990-10-24 1990-10-24 Collectible spacecraft

Publications (2)

Publication Number Publication Date
JPH04163300A JPH04163300A (en) 1992-06-08
JP2934494B2 true JP2934494B2 (en) 1999-08-16

Family

ID=17717755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2287470A Expired - Fee Related JP2934494B2 (en) 1990-10-24 1990-10-24 Collectible spacecraft

Country Status (1)

Country Link
JP (1) JP2934494B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027119A (en) * 2020-08-10 2020-12-04 北京宇航系统工程研究所 Reusable rocket landing leg collapse energy-absorbing bidirectional buffer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5519594B2 (en) * 2011-07-21 2014-06-11 網矢 貞幸 Spaceship
EP3822177A3 (en) * 2019-11-13 2021-07-21 ArianeGroup GmbH Reusable part of a spacecraft and reusable kit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3062148A (en) 1960-01-25 1962-11-06 Hugh E Nichols Space vehicle
US3113750A (en) 1958-11-28 1963-12-10 Nat Res Associates Inc Method of providing deceleration and lift for re-entry body
US3128964A (en) 1964-04-14 figures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604667A (en) * 1968-11-26 1971-09-14 Martin Marietta Corp Planetary lander

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128964A (en) 1964-04-14 figures
US3113750A (en) 1958-11-28 1963-12-10 Nat Res Associates Inc Method of providing deceleration and lift for re-entry body
US3062148A (en) 1960-01-25 1962-11-06 Hugh E Nichols Space vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112027119A (en) * 2020-08-10 2020-12-04 北京宇航系统工程研究所 Reusable rocket landing leg collapse energy-absorbing bidirectional buffer
CN112027119B (en) * 2020-08-10 2022-05-24 北京宇航系统工程研究所 Reusable rocket landing leg collapse energy-absorbing bidirectional buffer

Also Published As

Publication number Publication date
JPH04163300A (en) 1992-06-08

Similar Documents

Publication Publication Date Title
US20140042275A1 (en) Gossamer apparatus and systems for use with spacecraft
US3576298A (en) Aerospace vehicle
JP2934494B2 (en) Collectible spacecraft
US6068211A (en) Method of earth orbit space transportation and return
Sivan et al. An overview of reusable launch vehicle technology demonstrator
Wilhite et al. Advanced technologies for rocket single-stage-to-orbit vehicles
Preisser et al. Flight Test of a 31.2-Foot-Diameter Modified Ringsail Parachute Deployed at a Mach Number of 1.39 and a Dynamic Pressure of 11.0 Pounds Per Square Foot
Dougherty et al. A correlation of scale model and flight aeroacoustic data for the space shuttle vehicle
CN113753246A (en) Small unmanned aerial vehicle falling protection device and working method thereof
JPH07149299A (en) Atmosphere reentering aircraft
Carver et al. Detection and control of flow separation using pressure sensors and micro-vortex generators
Finchenko et al. On the use of inflatable decelerators in the design of spacecraft intended for the study of Venus
Talay et al. Impact of atmospheric uncertainties and viscous interaction effects on the performance of aeroassisted orbital transfer vehicles
JPH0939899A (en) Atmosphere reentry capsule
Patti The Huygens mission: Design approach for an atmosphere entry probe
Hanley et al. Spacecraft heat-protection requirements for mars aerodynamic braking
FLORENCE Aerothermodynamic design feasibility of a Mars aerocapture/aeromaneuver vehicle
Blanchard et al. Full-Scale Flight Test From Sea Level of an Abort-Escape System for a Project Mercury Capsule
Clausen et al. The Huygens Probe and mission design
Hoffman A comparison of aerobraking and aerocapture vehicles for interplanetary missions
Yuvaraja et al. Challenges in APEX Cover Separation Dynamics Analysis
Sims Evolution of the Hyperflo Parachute
ANDREWS et al. Optimization of aerobraked orbital transfer vehicles
Patten et al. A novel approach to spacecraft re-entry and recovery
Carley Mars entry and landing capsule

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees