JPH0939899A - Atmosphere reentry capsule - Google Patents

Atmosphere reentry capsule

Info

Publication number
JPH0939899A
JPH0939899A JP7189352A JP18935295A JPH0939899A JP H0939899 A JPH0939899 A JP H0939899A JP 7189352 A JP7189352 A JP 7189352A JP 18935295 A JP18935295 A JP 18935295A JP H0939899 A JPH0939899 A JP H0939899A
Authority
JP
Japan
Prior art keywords
atmosphere
capsule
acceleration
deceleration
machine body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7189352A
Other languages
Japanese (ja)
Inventor
Ryujiro Kurosaki
隆二郎 黒崎
Yoshiko Nakamura
淑子 中村
Takuji Kurotaki
卓司 黒滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7189352A priority Critical patent/JPH0939899A/en
Publication of JPH0939899A publication Critical patent/JPH0939899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To decease aerodynamic heat and acceleration of decelerating, to be received by an atmosphere reentry capsule in reentering the atmosphere, by developing a plurality of decelerating plates housed in machine side surfaces on the circumearth orbit from the machine body surfaces according to the specified sequence after reentering the atmosphere. SOLUTION: In a capsule 1, a plurality of decelerating plates 5 are housed on machine body side surfaces, and the decelerating plates 5 are developed from the machine body by an actuator 6 according to the specified sequence after reentering the atmosphere. In this case, preferably, the developing amounts of the decelerating plates 5 are controlled by a controller 8 so that the acceleration of decelerating detected by an acceleration sensor 7 may be held to the approximately constant value after reentering the atmosphere. The decrease of the machine body is increased by the development of the decelerating plates 5, the deceleration of the machine body is speeded up, and the maximum aerodynamic heating amount to be applied to the capsule 1 is decreased. A peak value of the acceleration of decelerating to be applied to the machine body is decreased, and the conditions of environment of a capsule main body and the pay load are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、大気圏再突入カプセ
ルが再突入時に受ける空力加熱および減速加速度の低減
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to reduction of aerodynamic heating and deceleration that an atmosphere re-entry capsule undergoes during re-entry.

【0002】[0002]

【従来の技術】図10は、従来の大気圏再突入カプセル
の概略図であり、図10(a)は側面図、図10(b)
は再突入時における状態を示す図である。大気圏再突入
カプセルにおいては、再突入時の空力特性を考慮し、正
面投影面積を大きくするために、図10のような形状と
なることが多い。図中、1はカプセル本体、2は極超音
速の気流である。このような再突入カプセルが大気圏再
突入時に音速を超えて超音速で飛行すると、機体の前方
に強い衝撃波3が発生し、急激に空気が圧縮され、運動
エネルギ熱エネルギに変換されるため、カプセル前面の
空気が加熱される。この現象を空力加熱と呼んでいる。
また、圧縮された空気の圧力により、カプセルへの減速
力が生じ、減速加速度が発生する。
2. Description of the Related Art FIG. 10 is a schematic view of a conventional atmosphere reentry capsule, FIG. 10 (a) is a side view, and FIG. 10 (b).
FIG. 6 is a diagram showing a state at the time of reentry. The atmosphere re-entry capsule often has a shape as shown in FIG. 10 in order to increase the front projection area in consideration of the aerodynamic characteristics during re-entry. In the figure, 1 is a capsule body, and 2 is a hypersonic airflow. When such a re-entry capsule flies at a supersonic speed exceeding the speed of sound during re-entry into the atmosphere, a strong shock wave 3 is generated in front of the airframe, and air is rapidly compressed and converted into kinetic energy and heat energy. The front air is heated. This phenomenon is called aerodynamic heating.
In addition, the pressure of the compressed air produces a deceleration force on the capsule, which produces deceleration acceleration.

【0003】空力加熱は、特に超音速で飛行する大気圏
再突入時において、機体設計上の重要な課題となる。空
気の運動エネルギが熱エネルギに変換されて高温となっ
た気流は4のように流れ、機体の周りの空気の薄い層即
ち境界層の中に熱が流入し、境界層内の空気の温度が上
昇する。空力加熱による理想機体の温度上昇は、大気圏
再突入時の飛行マッハ数の二乗に比例し、以下の式で与
えられる。
Aerodynamic heating is an important issue in airframe design, especially at the time of reentry into the atmosphere flying at supersonic speed. The kinetic energy of the air is converted into heat energy and the temperature of the airflow becomes high, and the heat flows into the thin layer of the air around the airframe, that is, the boundary layer, and the temperature of the air in the boundary layer changes. To rise. The temperature rise of the ideal aircraft due to aerodynamic heating is proportional to the square of the flight Mach number at the time of reentry into the atmosphere, and is given by the following equation.

【0004】[0004]

【数1】 [Equation 1]

【0005】ここで、γは機体の比熱比であり通常1.
4程度の値を用いる。M∞は大気圏再突入時の飛行マッ
ハ数、T∞は機体の絶対温度である。例えば、気温0℃
の空気中を大気圏再突入カプセルが音速の10倍、即ち
マッハ数M∞=10で飛行する際、大気圏再突入カプセ
ルのよどみ点での空気の温度は5000℃以上になる。
このように、非常に高温に加熱された空気から、カプセ
ルの周りに形成された境界層を通じ、機体表面に熱が侵
入し、機体温度が上昇する。
Here, γ is the specific heat ratio of the airframe and is usually 1.
A value of about 4 is used. M∞ is the flight Mach number at the time of reentry into the atmosphere, and T∞ is the absolute temperature of the airframe. For example, the temperature is 0 ℃
When the atmosphere re-entry capsule flies in the air at 10 times the speed of sound, that is, Mach number M∞ = 10, the temperature of the air at the stagnation point of the atmosphere re-entry capsule becomes 5000 ° C. or higher.
In this way, from the air heated to a very high temperature, heat penetrates into the body surface through the boundary layer formed around the capsule, and the body temperature rises.

【0006】また、このような大気圏再突入カプセルで
は、大気圏再突入時には、大きな減速加速度が機体に発
生する。図11に発生する加速度パターンの例を示す。
空力加熱量もほぼ同様のパターンを示す。何らかの軌道
変更機構を持たない弾道型のカプセルでは、発生する減
速加速度の大きさは時間とともに変化し、ピーク時には
重力加速度の10倍程度となる。カプセル本体は、この
最大加速度に耐える構造をとる必要があり、かつペイロ
ードである内部搭載物の環境条件にも重大な影響を与え
る。
Further, in such an atmosphere re-entry capsule, a large deceleration acceleration occurs in the airframe when the atmosphere re-entry. FIG. 11 shows an example of the generated acceleration pattern.
The amount of aerodynamic heating shows almost the same pattern. In a ballistic capsule that does not have any trajectory changing mechanism, the magnitude of the deceleration acceleration that occurs changes with time, and is about 10 times the gravitational acceleration at the peak. The capsule body must have a structure that can withstand this maximum acceleration, and also has a significant impact on the environmental conditions of the internal payload that is the payload.

【0007】空力加熱および空力加速度は、大気圏への
再突入パラメータ、即ち突入角、カプセル形状および質
量により変化するものであり、突入角が浅く、正面面積
が大きく、質量が軽ければ、いずれも軽減される。しか
し、現実的には、打ち上げロケットの搭載条件、突入後
の着地点分散等の制約条件により、限界が存在する。特
に、カプセルとしての基本形状を固定すると、前述のよ
うに、減速加速度は、重力加速度の10倍程度となるこ
とが知られている。
Aerodynamic heating and aerodynamic acceleration change depending on reentry parameters into the atmosphere, that is, plunge angle, capsule shape and mass. If the plunge angle is shallow, the frontal area is large, and the mass is light, both are reduced. To be done. However, in reality, there is a limit due to the conditions for mounting the launch vehicle and the constraints such as the dispersion of landing points after the entry. In particular, when the basic shape of the capsule is fixed, as described above, the deceleration acceleration is known to be about 10 times the gravitational acceleration.

【0008】[0008]

【発明が解決しようとする課題】以上説明した通り、大
気圏再突入カプセルは、再突入時には厳しい空力加熱お
よび減速加速度を受ける。したがって、これらの条件に
耐え得る熱防御策および耐加速度構造をとる必要があ
り、そのための重量増加により、ペイロード質量が充分
にとれないという課題があった。
As described above, the atmosphere re-entry capsule undergoes severe aerodynamic heating and deceleration upon re-entry. Therefore, it is necessary to take a heat protection measure and an acceleration resistant structure capable of withstanding these conditions, and there is a problem that the payload mass cannot be sufficiently taken due to the increase in weight for that purpose.

【0009】また、一時的に発生するピーク加速度の大
きさによっては、ペイロードに大きなダメージを与える
という課題があった。さらに打ち上げロケットの制約に
より、質量に対し充分なカプセル正面面積がとれない場
合には、空力荷重および空力加熱がより厳しくなるとい
う課題もあった。
Further, there is a problem that the payload is seriously damaged depending on the magnitude of the peak acceleration which is temporarily generated. Further, due to the constraints of the launch vehicle, there was also a problem that aerodynamic load and aerodynamic heating would be more severe if a sufficient capsule frontal area could not be taken for the mass.

【0010】この発明は、このような課題を解決するた
めになされたもので、カプセルの飛行速度を、最大加
熱、最大加速度を受けると想定される高度より高い大気
圏の高層域で減速させることで、カプセルに加わる最大
空力加熱量を抑制し、さらに機体に加わるピーク時加速
度を抑えることを目的とするものである。
The present invention has been made in order to solve such a problem, and is achieved by decelerating the flight speed of a capsule in a higher region of the atmosphere, which is higher than the altitude assumed to be subjected to maximum heating and maximum acceleration. The purpose is to suppress the maximum amount of aerodynamic heating applied to the capsule and further suppress the peak acceleration applied to the airframe.

【0011】[0011]

【課題を解決するための手段】この発明の実施例1によ
る大気圏再突入カプセルは、所定のシーケンスに従い、
複数の減速板をアクチュエータにより機体から展開する
ものである。
The atmosphere re-entry capsule according to the first embodiment of the present invention, according to a predetermined sequence,
An actuator is used to deploy a plurality of reduction plates from the machine body.

【0012】また、この発明の実施例2による大気圏再
突入カプセルは、機体に加わる減速加速度を検知し、そ
の値により減速板の機体からの展開量を制御するもので
ある。
The atmosphere reentry capsule according to the second embodiment of the present invention detects deceleration acceleration applied to the airframe and controls the amount of expansion of the deceleration plate from the airframe by the detected value.

【0013】また、この発明の実施例3による大気圏再
突入カプセルは、機体に加わる減速加速度、機体角速度
および機体の姿勢角を検知し、それらの値により、減速
板の機体からの展開量を個別に制御するものである。
Further, the atmosphere reentry capsule according to the third embodiment of the present invention detects deceleration acceleration applied to the airframe, airframe angular velocity and attitude angle of the airframe, and based on these values, the expansion amount of the deceleration plate from the airframe is individually detected. To control.

【0014】また、この発明の実施例4による大気圏再
突入カプセルは、隣り合う減速板の間に制動膜を設け、
それらを所定のシーケンスに従い、アクチュエータによ
り機体から展開するものである。
Further, the atmosphere reentry capsule according to the fourth embodiment of the present invention has a braking film provided between adjacent speed reducers,
These are deployed from the machine body by an actuator according to a predetermined sequence.

【0015】また、この発明の実施例5による大気圏再
突入カプセルは、隣り合う減速板の間の制動膜に周方向
のスリットを設けたものである。
Further, the atmospheric re-entry capsule according to the fifth embodiment of the present invention is one in which a circumferential slit is provided in the braking film between the adjacent reduction plates.

【0016】また、この発明の実施例6による大気圏再
突入カプセルは、機体に加わる減速加速度を検知し、そ
の値により減速板と制動膜の展開量を制御するものであ
る。
Further, the atmosphere reentry capsule according to the sixth embodiment of the present invention detects the deceleration acceleration applied to the airframe, and controls the expansion amount of the reduction plate and the braking film according to the value.

【0017】また、この発明の実施例7による大気圏再
突入カプセルは、機体に加わる減速加速度、機体角速度
および機体の姿勢角を検知し、それらの値により、減速
板と制動膜の展開量を個別に制御するものである。
Further, the atmosphere reentry capsule according to the seventh embodiment of the present invention detects deceleration acceleration applied to the airframe, airframe angular velocity and attitude angle of the airframe, and based on these values, the expansion amounts of the speed reducer and the braking film are individually detected. To control.

【0018】[0018]

【作用】この発明の実施例1によれば、大気圏に再突入
したカプセルは、所定のシーケンスに従い、複数の減速
板を、アクチュエータを使い、機体から展開する。展開
した減速板が抵抗となり、カプセルの減速が早まること
で、カプセルへの最大空力加熱量が減少し、かつ、最大
減速加速度は低減する。
According to the first embodiment of the present invention, the capsule that has re-entered the atmosphere has a plurality of reduction plates deployed from the machine body by using actuators according to a predetermined sequence. The developed deceleration plate acts as a resistance and the deceleration of the capsule is accelerated, so that the maximum aerodynamic heating amount to the capsule is reduced and the maximum deceleration acceleration is reduced.

【0019】また、この発明の実施例2によれば、大気
圏再突入後に機体に加わる減速加速度を検知し、ほぼ一
定の加速度を保つように、減速板の機体からの展開量を
制御する。最大加速度は、実施例1よりさらに小さくな
る。
Further, according to the second embodiment of the present invention, the deceleration applied to the airframe after reentry into the atmosphere is detected, and the expansion amount of the deceleration plate from the airframe is controlled so as to maintain a substantially constant acceleration. The maximum acceleration is smaller than that in the first embodiment.

【0020】また、この発明の実施例3によれば、大気
圏再突入後に、機体に加わる減速加速度をほぼ一定に保
ち、かつ角速度の発生を抑え、姿勢角の変化が小さくな
るように、減速板の機体からの展開量を個別に制御す
る。安定した姿勢で飛行することから、カプセルへの環
境条件は、実施例2よりもさらに改善される。
According to the third embodiment of the present invention, after the reentry into the atmosphere, the deceleration acceleration applied to the airframe is kept substantially constant, the generation of the angular velocity is suppressed, and the change of the attitude angle is reduced, so that the deceleration plate is reduced. Individually control the amount of deployment from the aircraft. Due to the stable attitude of flight, the environmental conditions to the capsule are further improved over those of Example 2.

【0021】また、この発明の実施例4によれば、隣り
合う減速板の間に制動膜を設けたことで、実施例1より
さらに制動力が高まる。より効率的に飛行速度が減速す
ることによって、カプセルへの最大空力加熱量はさらに
減少し、かつ、最大減速加速度も低減する。
Further, according to the fourth embodiment of the present invention, the braking force is further increased as compared with the first embodiment by providing the braking film between the adjacent speed reducing plates. By reducing the flight speed more efficiently, the maximum aerodynamic heating amount to the capsule is further reduced, and the maximum deceleration acceleration is also reduced.

【0022】また、この発明の実施例5によれば、制動
膜の周方向のスリットがあることで、カプセル周りの気
流が整流されやすく、機体はより安定飛行する。
Further, according to the fifth embodiment of the present invention, since the braking film has the slits in the circumferential direction, the air flow around the capsule is easily rectified, and the airframe flies more stably.

【0023】また、この発明の実施例6によれば、大気
圏再突入後にほぼ一定の加速度を保つように、減速板と
制動膜の機体からの展開量を制御する。最大加速度は実
施例4よりさらに小さくなる。
Further, according to the sixth embodiment of the present invention, the expansion amount of the reduction plate and the braking film from the airframe is controlled so as to maintain a substantially constant acceleration after reentry into the atmosphere. The maximum acceleration is smaller than that in the fourth embodiment.

【0024】また、この発明の実施例7によれば、大気
圏再突入後に、機体に加わる減速加速度をほぼ一定に保
ち、かつ角速度の発生を抑え、姿勢角の変化が小さくな
るように、減速板と制動膜の機体からの展開量を個別に
制御する。安定した姿勢で飛行することから、カプセル
へ環境条件は、さらに改善される。
Further, according to the seventh embodiment of the present invention, after the reentry into the atmosphere, the deceleration acceleration applied to the airframe is kept substantially constant, the generation of the angular velocity is suppressed, and the change of the attitude angle is reduced, so that the deceleration plate is reduced. And the amount of deployment of the braking film from the airframe is controlled individually. From flying in a stable attitude, the environmental conditions to the capsule are further improved.

【0025】[0025]

【実施例】【Example】

実施例1.図1は、この発明の実施例1を示す説明図で
あり、図1(a)は地球周回軌道上での側面図、図1
(b)は再突入後のカプセルの飛行状態を示す図であ
る。図1において5は減速板、6はアクチュエータであ
る。図2は、この発明の実施例1によるカプセルに加わ
る加速度および空力加熱量のパターンを示す説明図であ
る。図2において、実線イは実施例1の加速度および空
力加熱量、破線ロは従来のカプセルの加速度および空力
加熱量である。
Embodiment 1 FIG. 1 is an explanatory view showing a first embodiment of the present invention, and FIG. 1 (a) is a side view in an orbit around the earth, FIG.
(B) is a figure which shows the flight state of the capsule after re-entry. In FIG. 1, 5 is a reduction plate and 6 is an actuator. FIG. 2 is an explanatory diagram showing a pattern of acceleration and aerodynamic heating amount applied to the capsule according to the first embodiment of the present invention. In FIG. 2, the solid line a is the acceleration and aerodynamic heating amount of the first embodiment, and the broken line b is the acceleration and aerodynamic heating amount of the conventional capsule.

【0026】図1に示すように、この発明によるカプセ
ル1は、機体側面に収納された減速板5を有しており、
大気圏に再突入後、所定のシーケンスに従い、アクチュ
エータ6により、複数の減速板5を機体から展開する。
減速板5の展開により機体の抵抗が増加し、図2に示す
ように機体の減速が早まることから、カプセルに加わる
最大空力加熱量が減少し、かつ、機体に加わる減速加速
度のピーク値は低くなり、カプセル本体およびペイロー
ドの環境条件は改善される。
As shown in FIG. 1, the capsule 1 according to the present invention has a reduction plate 5 accommodated on the side surface of the machine body.
After re-entry into the atmosphere, a plurality of reduction plates 5 are deployed from the machine body by the actuator 6 according to a predetermined sequence.
The expansion of the speed reducer plate 5 increases the resistance of the airframe and accelerates the deceleration of the airframe as shown in FIG. 2. Therefore, the maximum aerodynamic heating amount applied to the capsule is reduced, and the peak value of the deceleration acceleration applied to the airframe is low. And the environmental conditions of the capsule body and payload are improved.

【0027】実施例2.図3は、この発明の実施例2を
示す説明図であり、図3(a)は地球周回軌道上での側
面図、図3(b)は再突入後のカプセルの飛行状態を示
す図である。図3において、7は加速度センサ、8は制
御装置、9は制御ラインである。図4は、この発明の実
施例2によるカプセルに加わる加速度および空力加熱量
のパターンを示す説明図である。図4において、実線ハ
は実施例2の加速度および空力加熱量である。
Embodiment 2 FIG. 3A and 3B are explanatory views showing a second embodiment of the present invention, FIG. 3A is a side view in an orbit around the earth, and FIG. 3B is a view showing a flight state of the capsule after reentry. is there. In FIG. 3, 7 is an acceleration sensor, 8 is a control device, and 9 is a control line. FIG. 4 is an explanatory diagram showing a pattern of acceleration and aerodynamic heating amount applied to the capsule according to the second embodiment of the present invention. In FIG. 4, the solid line C represents the acceleration and aerodynamic heating amount of the second embodiment.

【0028】図3に示すように、この実施例2は、実施
例1の機体内部に加速度センサ7および制御装置8を有
している。この実施例2では、大気圏再突入後、加速度
センサ7が検知した減速加速度がほぼ一定の値を保つよ
うに、制御装置8が減速板5の展開量を制御する。展開
量が制御されることにより、図4に示すように機体に生
じる加速度の時間変化が平滑化され、最大加速度はさら
に低減する。
As shown in FIG. 3, the second embodiment has an acceleration sensor 7 and a control device 8 inside the body of the first embodiment. In the second embodiment, after re-entry into the atmosphere, the control device 8 controls the expansion amount of the reduction plate 5 so that the deceleration acceleration detected by the acceleration sensor 7 maintains a substantially constant value. By controlling the expansion amount, the time change of the acceleration generated in the airframe is smoothed as shown in FIG. 4, and the maximum acceleration is further reduced.

【0029】実施例3.図5は、この発明の実施例3を
示す説明図であり、図5(a)は地球周回軌道上での側
面図、図5(b)は再突入後のカプセルの飛行状態を示
す図である。図5において、10は角速度センサであ
る。図5に示すように、この実施例3は、実施例2の機
体内部に角速度センサ10を有している。この実施例3
では、大気圏再突入後、加速センサ7が検知した減速加
速度がほぼ一定の値を保ち、かつ角速度センサ10が検
知した機体の角速度と制御装置8内で積分演算された姿
勢角が安定するように、減速板5の展開量を制御装置8
が個別に制御する。展開量の制御が個別に行えることか
らカプセルは安定飛行し、かつ、加速度の制御は容易に
なる。
Example 3. 5A and 5B are explanatory views showing a third embodiment of the present invention, FIG. 5A is a side view in an orbit around the earth, and FIG. 5B is a view showing a flight state of the capsule after reentry. is there. In FIG. 5, 10 is an angular velocity sensor. As shown in FIG. 5, the third embodiment has an angular velocity sensor 10 inside the airframe of the second embodiment. This Example 3
Then, after re-entry into the atmosphere, the deceleration acceleration detected by the acceleration sensor 7 maintains a substantially constant value, and the angular velocity of the airframe detected by the angular velocity sensor 10 and the attitude angle integrated and calculated in the control device 8 are stabilized. , The expansion amount of the reduction plate 5 is a control device 8
Controlled individually. Since the expansion amount can be controlled individually, the capsule can fly stably and the acceleration can be controlled easily.

【0030】実施例4.図6は、この発明の実施例4を
示す説明図であり、図6(a)は地球周回軌道上での側
面図、図6(b)は再突入後のカプセルの飛行状態を示
す図である。図6において、11は制動膜である。図6
に示すように、この実施例4は、実施例1の隣り合う減
速板5の間に制動膜11を有しており、大気圏に再突入
後、所定のシーケンスに従い、減速板5と制動膜11
を、アクチュエータ6により、機体から展開する。制動
膜11により、カプセルの空力正面面積はより大きくな
り、実施例1よりさらに制動力が高まり、より減速効率
が上がることから、空力加熱および減速加速度がさらに
低減される。
Example 4. 6A and 6B are explanatory views showing a fourth embodiment of the present invention, FIG. 6A is a side view in an orbit around the earth, and FIG. 6B is a view showing a flight state of the capsule after reentry. is there. In FIG. 6, 11 is a damping film. Figure 6
As shown in FIG. 4, the fourth embodiment has the braking film 11 between the adjacent speed reducing plates 5 of the first embodiment, and after re-entry into the atmosphere, according to a predetermined sequence, the speed reducing plate 5 and the braking film 11 are arranged.
Is deployed from the machine body by the actuator 6. Due to the braking film 11, the aerodynamic frontal area of the capsule is larger, the braking force is higher than that of the first embodiment, and the deceleration efficiency is higher. Therefore, the aerodynamic heating and the deceleration are further reduced.

【0031】実施例5.図7は、この発明の実施例5を
示す説明図であり、図7(a)は地球周回軌道上での側
面図、図7(b)は再突入後のカプセルの飛行状態を示
す図である。図7において、12はスリット入り制動膜
である。図7に示すように、この実施例5は、実施例4
の制動膜にスリットの入った制動膜12を用いており、
大気圏に再突入後、所定のシーケンスに従い、減速板5
とスリット入り制動膜12を、アクチュエータ6を使
い、機体から展開する。制動膜にスリットを設けたこと
により、カプセルの周りの気流が整流されやすく、カプ
セルの飛行姿勢はより安定する。
Example 5. FIG. 7 is an explanatory view showing Embodiment 5 of the present invention, FIG. 7 (a) is a side view in an orbit around the earth, and FIG. 7 (b) is a view showing a flight state of the capsule after reentry. is there. In FIG. 7, reference numeral 12 is a slitted braking film. As shown in FIG. 7, this fifth embodiment is similar to the fourth embodiment.
The braking film 12 with a slit is used for the braking film of
After re-entry into the atmosphere, the reduction plate 5
Using the actuator 6, the slitted braking film 12 is unfolded from the machine body. By providing the slit in the braking film, the air flow around the capsule is easily rectified, and the flight posture of the capsule is more stable.

【0032】実施例6.図8は、この発明の実施例6を
示す説明図であり、図8(a)は地球周回軌道上での側
面図、図8(b)は再突入後のカプセルの飛行状態を示
す図である。図8に示すように、この実施例6は、実施
例4の機体内部に加速度センサ7および制御装置8を有
している。この実施例6では、大気圏再突入後、加速度
センサ7が検知した減速加速度がほぼ一定の値を保つよ
うに、制御装置8が減速板5と制動膜11の展開量を制
御する。展開量が制御されることにより、機体に加わる
加速度の時間変化が平滑化され、最大加速度はさらに低
減する。
Example 6. 8A and 8B are explanatory views showing a sixth embodiment of the present invention, FIG. 8A is a side view in an orbit around the earth, and FIG. 8B is a view showing a flight state of the capsule after reentry. is there. As shown in FIG. 8, the sixth embodiment has an acceleration sensor 7 and a control device 8 inside the airframe of the fourth embodiment. In the sixth embodiment, after re-entry into the atmosphere, the control device 8 controls the expansion amount of the reduction plate 5 and the braking film 11 so that the deceleration acceleration detected by the acceleration sensor 7 maintains a substantially constant value. By controlling the amount of expansion, the time change of the acceleration applied to the airframe is smoothed, and the maximum acceleration is further reduced.

【0033】実施例7.図9は、この発明の実施例7を
示す説明図であり、図9(a)は地球周回軌道上での側
面図、図9(b)は再突入後のカプセルの飛行状態を示
す図である。図9に示すように、この実施例7は、実施
例6の機体内部に加速度センサ10を有している。この
実施例7では、大気圏再突入後、加速度センサ7が検知
した減速加速度がほぼ一定の値を保ち、かつ角速度セン
サ10が検知した機体の角速度と制御装置8内で積分演
算された姿勢角が安定するように、減速板5と制動膜5
と制動膜11の展開量を制御装置8が個別に制御する。
展開量の制御が個別に行えることから、カプセルは安定
飛行し、かつ、加速度の制御は容易になる。
Example 7. 9A and 9B are explanatory views showing a seventh embodiment of the present invention, FIG. 9A is a side view in an orbit around the earth, and FIG. 9B is a view showing a flight state of the capsule after reentry. is there. As shown in FIG. 9, the seventh embodiment has an acceleration sensor 10 inside the airframe of the sixth embodiment. In the seventh embodiment, after re-entry into the atmosphere, the deceleration acceleration detected by the acceleration sensor 7 maintains a substantially constant value, and the angular velocity of the airframe detected by the angular velocity sensor 10 and the attitude angle integrated and calculated in the control device 8 are In order to stabilize the speed reduction plate 5 and the braking film 5
The controller 8 individually controls the expansion amount of the brake film 11 and the braking film 11.
Since the expansion amount can be controlled individually, the capsule can fly stably and the acceleration can be easily controlled.

【0034】[0034]

【発明の効果】この発明の実施例1から実施例7によれ
ば、大気圏再突入カプセルが大気圏に再突入後、カプセ
ルの空力形状を変化させることで、カプセルの飛行速度
を可能な限り大気圏の高層域で減速させ、結果としてカ
プセルに加わる空力加熱および減速加速度を低減する。
According to the first to seventh embodiments of the present invention, by changing the aerodynamic shape of the capsule after the atmospheric re-entry capsule re-entry into the atmosphere, the flight speed of the capsule is controlled as much as possible. Decelerates in the high rise, resulting in reduced aerodynamic heating and deceleration acceleration on the capsule.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1による大気圏再突入カプ
セルを示す図である。
FIG. 1 is a diagram showing an atmosphere reentry capsule according to a first embodiment of the present invention.

【図2】 この発明の実施例1による大気圏再突入カプ
セルの大気圏再突入後の加速度および空力加熱量のパタ
ーンを示す図である。
FIG. 2 is a diagram showing a pattern of acceleration and aerodynamic heating amount after reentry of the atmosphere in the atmosphere reentry capsule according to the first embodiment of the present invention.

【図3】 この発明の実施例2による大気圏再突入カプ
セルを示す図である。
FIG. 3 is a diagram showing an atmosphere reentry capsule according to a second embodiment of the present invention.

【図4】 この発明の実施例2による大気圏再突入カプ
セルの大気圏再突入後の加速度および空力加熱量のパタ
ーンを示す図である。
FIG. 4 is a diagram showing a pattern of acceleration and aerodynamic heating amount after reentry of the atmosphere of the atmosphere reentry capsule according to the second embodiment of the present invention.

【図5】 この発明の実施例3による大気圏再突入カプ
セルを示す図である。
FIG. 5 is a view showing an atmosphere re-entry capsule according to Embodiment 3 of the present invention.

【図6】 この発明の実施例4による大気圏再突入カプ
セルを示す図である。
FIG. 6 is a view showing an atmosphere re-entry capsule according to Embodiment 4 of the present invention.

【図7】 この発明の実施例5による大気圏再突入カプ
セルを示す図である。
FIG. 7 is a view showing an atmosphere re-entry capsule according to a fifth embodiment of the present invention.

【図8】 この発明の実施例6による大気圏再突入カプ
セルを示す図である。
FIG. 8 is a view showing an atmosphere re-entry capsule according to Embodiment 6 of the present invention.

【図9】 この発明の実施例7による大気圏再突入カプ
セルを示す図である。
FIG. 9 is a view showing an atmosphere re-entry capsule according to Embodiment 7 of the present invention.

【図10】 従来の大気圏再突入カプセルを示す図であ
る。
FIG. 10 is a view showing a conventional atmosphere reentry capsule.

【図11】 従来の大気圏再突入カプセルの大気圏再突
入後の加速度および空力加熱量のパターンの一例を示す
図である。
FIG. 11 is a diagram showing an example of a pattern of acceleration and aerodynamic heating amount of a conventional atmosphere reentry capsule after reentry into the atmosphere.

【符号の説明】 1 カプセル、2 極超音速気流、3 衝撃波、4 高
温気流、5 減速板、6 アクチュエータ、7 加速度
センサ、8 制御装置、9 制御ライン、10角速度セ
ンサ、11 制動膜、12 スリット入り制動膜。
[Explanation of symbols] 1 capsule, 2 hypersonic air flow, 3 shock wave, 4 high temperature air flow, 5 speed reducer, 6 actuator, 7 acceleration sensor, 8 control device, 9 control line, 10 angular velocity sensor, 11 braking film, 12 slit Incoming braking film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 地球周回軌道上から大気圏内に再突入
し、地上で回収される大気圏再突入カプセルにおいて、
地球周回軌道上では、機体側面に収納されている複数の
減速板と、大気圏再突入後に所定のシーケンスに従い前
記減速板を機体表面から展開させるアクチュエータとを
設けたことを特徴とする大気圏再突入カプセル。
1. An atmosphere re-entry capsule that re-enters the atmosphere from an orbit around the earth and is recovered on the ground,
In orbit around the earth, a plurality of deceleration plates housed on the side surface of the airframe and an actuator for deploying the deceleration plates from the surface of the airframe according to a predetermined sequence after reentry into the atmosphere are provided. .
【請求項2】 加速度センサと、検知した減速加速度の
値によって減速板の機体表面からの展開量を制御するア
クチュエータの制御装置とを設けたことを特徴とする請
求項1記載の大気圏再突入カプセル。
2. The atmosphere reentry capsule according to claim 1, further comprising an acceleration sensor and an actuator control device for controlling the expansion amount of the deceleration plate from the body surface according to the detected deceleration acceleration value. .
【請求項3】 機体角速度センサと、検知した機体の角
速度および積分演算された姿勢角の値によって、減速板
の機体表面からの展開量を個別に制御し、所望の姿勢で
の飛行をするためのアクチュエータの制御装置とを設け
たことを特徴とする請求項2記載の大気圏再突入カプセ
ル。
3. An aircraft body angular velocity sensor, the detected angular velocity of the aircraft body, and the integrated attitude value of the attitude angle are used to individually control the amount of expansion of the reduction plate from the aircraft body surface so that the aircraft can fly in a desired attitude. 3. The atmospheric reentry capsule according to claim 2, further comprising a control device for the actuator.
【請求項4】 隣り合う減速板の間に制動膜を設けたこ
とを特徴とする請求項1記載の大気圏再突入カプセル。
4. The atmosphere re-entry capsule according to claim 1, wherein a braking film is provided between the adjacent speed reducing plates.
【請求項5】 隣り合う減速板の間の制動膜に周方向の
スリットを設けたことを特徴とする請求項4記載の大気
圏再突入カプセル。
5. The atmosphere re-entry capsule according to claim 4, wherein a slit in the circumferential direction is provided in the braking film between the adjacent deceleration plates.
【請求項6】 加速度センサと、検知した減速加速度の
値によって減速板と減速板の間の制御膜の機体表面から
の展開量を制御するアクチュエータの制御装置とを設け
たことを特徴とする請求項4記載の大気圏再突入カプセ
ル。
6. An acceleration sensor, and an actuator control device for controlling the expansion amount of the control film between the speed reducer plate and the speed reducer plate from the body surface according to the value of the detected deceleration acceleration. Atmosphere re-entry capsule described.
【請求項7】 機体角速度センサと、検知した機体の角
速度および積分演算された姿勢角の値によって、減速板
と減速板の間の制動膜の機体表面からの展開量を個別に
制御し、所望の姿勢での飛行をするためのアクチュエー
タの制御装置とを設けたことを特徴とする請求項6記載
の大気圏再突入カプセル。
7. A desired attitude is obtained by individually controlling the amount of expansion of the braking film between the speed reducer plate and the speed reducer plate from the surface of the machine body by means of the machine body angular velocity sensor, the detected angular velocity of the machine body, and the value of the posture angle obtained by integral calculation. 7. An atmosphere re-entry capsule according to claim 6, further comprising a control device for an actuator for flying in the air.
JP7189352A 1995-07-25 1995-07-25 Atmosphere reentry capsule Pending JPH0939899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7189352A JPH0939899A (en) 1995-07-25 1995-07-25 Atmosphere reentry capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7189352A JPH0939899A (en) 1995-07-25 1995-07-25 Atmosphere reentry capsule

Publications (1)

Publication Number Publication Date
JPH0939899A true JPH0939899A (en) 1997-02-10

Family

ID=16239895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7189352A Pending JPH0939899A (en) 1995-07-25 1995-07-25 Atmosphere reentry capsule

Country Status (1)

Country Link
JP (1) JPH0939899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023079A (en) * 2011-07-21 2013-02-04 Sadayuki Amiya Spaceship
WO2014063210A1 (en) * 2012-10-22 2014-05-01 Intituto Nacional De Pesquisas Espaciais - Inpe Flight or atmospheric re-entry method using rotation
CN108216685A (en) * 2016-12-19 2018-06-29 北京空间技术研制试验中心 Suitable for the pneumatic thermal measurement method of blunt body reentry vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023079A (en) * 2011-07-21 2013-02-04 Sadayuki Amiya Spaceship
WO2014063210A1 (en) * 2012-10-22 2014-05-01 Intituto Nacional De Pesquisas Espaciais - Inpe Flight or atmospheric re-entry method using rotation
CN108216685A (en) * 2016-12-19 2018-06-29 北京空间技术研制试验中心 Suitable for the pneumatic thermal measurement method of blunt body reentry vehicle

Similar Documents

Publication Publication Date Title
US8367993B2 (en) Aerodynamic flight termination system and method
CN106021628B (en) A kind of carrier rocket vertically returns to ballistic design method
WO2018047549A1 (en) Spacecraft and landing method therefor
US11772828B2 (en) Aerospace vehicle entry flightpath control
US20230406549A1 (en) Uav system and method for simulation of reduced-gravity environments
Sivan et al. An overview of reusable launch vehicle technology demonstrator
Sengupta et al. Supersonic performance of disk-gap-band parachutes constrained to a 0-degree trim angle
JPH0939899A (en) Atmosphere reentry capsule
JP2016514647A (en) Device for controlling the speed of an airplane during the transition from the space flight phase to the air flight phase and its transition method
Frost et al. Improved deployment characteristics of a tether-connected munition system
Dougherty et al. A correlation of scale model and flight aeroacoustic data for the space shuttle vehicle
US8321077B1 (en) Attitude determination with three-axis accelerometer for emergency atmospheric entry
Finchenko et al. On the use of inflatable decelerators in the design of spacecraft intended for the study of Venus
Pagano et al. Adjustable aerobraking heat shield for satellites deployment and recovery
Desai et al. Mars Exploration Rover six-degree-of-freedom entry trajectory analysis
JP7465531B2 (en) Rocket control system and method for controlling landing operation of rocket
JP3076798B1 (en) Guided flying object
Hoffman et al. Preliminary Design of the Cruise, Entry, Descent, and Landing Mechanical Subsystem for MSL
JP2000199700A (en) Guided projectile
WO2024147165A1 (en) Novel re-entry method for reusable rockets and spaceships returning back to earth from space
Barzda et al. Test Results of Rotary-Wing Decelerator Feasibility Studies for Capsule Recovery Applications
Dhaoya et al. Mission design, preflight and flight performance and observations for Pad Abort Test.
JPH08333000A (en) Space shuttle wing fairing device
Mishra et al. Mission design challenges in sounding rocket based scramjet engine test vehicle
Lorenzoni et al. Preliminary assessment of MSL EDL sensitivity to Martian environments