JP2928571B2 - Fiber rope - Google Patents
Fiber ropeInfo
- Publication number
- JP2928571B2 JP2928571B2 JP2039701A JP3970190A JP2928571B2 JP 2928571 B2 JP2928571 B2 JP 2928571B2 JP 2039701 A JP2039701 A JP 2039701A JP 3970190 A JP3970190 A JP 3970190A JP 2928571 B2 JP2928571 B2 JP 2928571B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fluororesin
- rope
- coated
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ropes Or Cables (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は耐摩耗性、耐屈曲疲労性、難燃性等の優れた
繊維ロープに関するものである。さらに詳しくは、特定
組成の処理剤により、特定条件下で処理した繊維を用い
ることにより、特に耐摩耗性、耐屈曲疲労性、耐水性、
難燃性を改良した繊維ロープ状物に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fiber rope excellent in wear resistance, bending fatigue resistance, flame retardancy and the like. More specifically, by using a fiber treated under a specific condition by a processing agent of a specific composition, particularly abrasion resistance, bending fatigue resistance, water resistance,
The present invention relates to a fiber rope having improved flame retardancy.
[従来技術] 通常、繊維ロープ状物に使用される素材としては、ポ
リエステル、ナイロン、ビニロン、全芳香族ポリエステ
ル、超高分子量ポリエチレン、全芳香族ポリアミド(ア
ラミド繊維)などがある。これらの繊維は単独かつ無処
理で用いられる場合もあるが、通常は、使用繊維の特性
を充分に発現させるために、糸状で適当な処理剤により
処理された後にロープ状物に編組、あるいは編織加工さ
れるか、又はロープ状に編組、あるいは、編織加工され
た後に適当な処理剤により処理され、それぞれの用途で
使用される。この場合、ロープ状物に対する市場の共通
な重要要求特性として、耐摩耗性、耐屈曲疲労性、耐吸
水性、難燃性がある。[Prior Art] Usually, materials used for a fiber rope include polyester, nylon, vinylon, wholly aromatic polyester, ultrahigh molecular weight polyethylene, wholly aromatic polyamide (aramid fiber) and the like. These fibers may be used alone or in an untreated state, but usually, in order to sufficiently exhibit the characteristics of the fibers used, the fibers are treated with a suitable treating agent and then braided or knitted into a rope. After being processed or braided into a rope shape or knitted and woven, it is treated with an appropriate treating agent and used in each application. In this case, the common important required characteristics in the market for the rope-shaped material include abrasion resistance, bending fatigue resistance, water absorption resistance, and flame retardancy.
これらの要求特性を満足させるために現在では各種処
理剤による繊維表面被覆や含浸加工が多く用いられてお
り、かかる処理剤としては、ポリウレタン系,シリコン
系樹脂等が広く用いられ、これらの剤で加工された繊維
ロープ状物が市場で使用されている。たとえばポリウレ
タン系樹脂を耐摩耗性向上剤ととして用いた技術として
は、「ポリウレタン,酸化ポリエチレンおよびエチレン
尿素化合物を主成分とする混合物で処理されてなる繊維
ロープ」(特公昭62−60511号公報)あるいは「ウレタ
ンプレポリマーブロック化物を主成分とする樹脂を繊維
ベルト類に付与し、加熱処理することにより耐摩耗性を
改善する方法」(特開昭60−173174号公報),さらに
「シラン系カップリング剤を主成分とする第1処理剤で
処理した後、ポリウレタン,酸化ポリエチレン,および
エチレン尿素化合物を主成分とする第2処理剤で処理す
る方法」(特公平1−29909号公報)(以下先行技術と
いう)などがあげられる。In order to satisfy these required characteristics, fiber surface coating and impregnation with various treatment agents are currently used in many cases. As such treatment agents, polyurethane-based and silicone-based resins are widely used. Processed fiber ropes are used in the market. For example, as a technique using a polyurethane-based resin as an abrasion resistance improver, there is disclosed a "fiber rope treated with a mixture mainly composed of polyurethane, polyethylene oxide and an ethylene urea compound" (Japanese Patent Publication No. Sho 62-60511). Alternatively, a "method of improving abrasion resistance by applying a resin containing a urethane prepolymer block product as a main component to a fiber belt and subjecting the fiber belt to heat treatment" (Japanese Patent Application Laid-Open No. 60-173174), A method of treating with a first treating agent containing a ring agent as a main component, followed by treating with a second treating agent containing polyurethane, polyethylene oxide, and an ethylene urea compound as main components ”(Japanese Patent Publication No. 1-29099). Prior art).
確かに上記先行技術に示された処理剤で表面被覆又は
含浸処理された繊維ロープ状物は耐摩耗性の改善される
ことが認められている。しかしながら最近の市場におけ
る用途の細分化,技術の高度化に伴い、製品に対する要
求性能はますます向上、拡大する傾向があり、上述の先
行技術(従来技術)では耐摩耗性,耐屈曲疲労性がまだ
まだ不十分でりあ、用途によっては充分対応することが
できない。例えばパラ系アラミド繊維は20グラム/デニ
ー以上の高強度を有するため、最近、この繊維を使用し
た種々の繊維ロープ状物が開発され、コード,ロープ等
の用途分野で活用されつつあるが、繊維/繊維間,繊維
/金属間などの摩擦により、フィブリル化し易く、これ
が主因となって強度劣化を生じ、繊維が本来有するすぐ
れた高強度特性を充分に発現できないという欠点を有し
ている。Indeed, it has been found that fiber ropes surface-coated or impregnated with the treatment agents shown in the above prior art have improved abrasion resistance. However, with the recent fragmentation of applications and the advancement of technology in the market, the required performance of products tends to be further improved and expanded, and the above-mentioned prior art (conventional technology) has poor wear resistance and bending fatigue resistance. It is still insufficient, and cannot be adequately handled depending on the application. For example, para-aramid fiber has a high strength of 20 g / deny or more, and various fiber ropes using this fiber have recently been developed and are being used in application fields such as cords and ropes. It is easy to fibrillate due to friction between fibers / fibers and between fibers / metals, and this is the main cause of the deterioration of strength, which has the disadvantage that the excellent high strength characteristics inherent to fibers cannot be sufficiently exhibited.
この欠点を改善するために耐摩耗性の比較的良好なナ
イロン系繊維等を繊維ロープ状物の表層部に用いた芯部
にアラミド繊維を用いて複合体構造にするなどの工夫が
なされ実用化されている。しかしながら、これらの複合
体構造の繊維ロープ状物でもまだまだ不充分であり、特
にアラミド繊維のフィブリル化を完全に防止するには至
っていない。すなわちアラミド繊維使用製品がくりかえ
し屈曲使用される過程で芯部繊維相互間の摩擦により、
繊維が部分的にフィブリル化して、その結果、充分な製
品強力を長期にわたって維持できないという問題を生じ
る。In order to remedy this drawback, a relatively good wear-resistant nylon fiber etc. was used for the surface layer of the fiber rope-like material. Have been. However, even these fiber ropes having a composite structure are still insufficient, and in particular, they have not yet completely prevented fibrillation of aramid fibers. In other words, due to friction between core fibers in the process of repeated use of aramid fiber using products,
The fiber is partially fibrillated, resulting in a problem that sufficient product strength cannot be maintained for a long period of time.
さらに、最近、特に電気工事関連分野では高度の防水
性,難燃性,電気絶縁性も要求されるようになりつつあ
るが、表面被覆処理された繊維は一般に、防水性,電気
絶縁性,難燃性が無処理のものに比べて劣るために、ア
ラミド繊維が本来有するすぐれた電気絶縁性,難燃性を
充分発揮できないという問題も有る。Further, recently, especially in the field of electric construction, high waterproofness, flame retardancy, and electrical insulation have been required, but fibers coated with a surface coating are generally waterproof, electrically insulative, and difficult to use. Since the flammability is inferior to that of the untreated one, there is also a problem that the excellent electrical insulation and flame retardancy inherent in the aramid fiber cannot be sufficiently exhibited.
<発明の目的> 本発明は従来技術におけるかかる問題、特に摩擦によ
る繊維のフィブリル化を防止するために鋭意研究の結
果、案出されたものである。その目的は、熱分解温度が
230℃以上の有機耐熱性繊維から構成された繊維ロープ
状物に電気絶縁性,高度の耐摩耗性,耐屈曲疲労性,並
びに防水性,難燃性を付与することにある。本発明者ら
はかかる目的を達成するために種々の検討を重ねた結
果、フッ素系樹脂を特定条件下で熱処理して、特別な形
態で繊維表面に被覆、又は含浸付着せしめることによ
り、市場の要求に充分対応でき得る耐摩耗性,耐屈曲疲
労性,並びに防水性,難燃性にすぐれた繊維ロープ状物
が得られることを見出し本発明に至った。<Object of the Invention> The present invention has been devised as a result of intensive studies to prevent such problems in the prior art, in particular, fibrillation of fibers due to friction. The purpose is that the thermal decomposition temperature
It is intended to impart electrical insulation, high abrasion resistance, flex fatigue resistance, waterproofness, and flame retardancy to a fiber rope made of organic heat-resistant fibers of 230 ° C or higher. The present inventors have conducted various studies in order to achieve such an object, and as a result, by heat-treating a fluororesin under specific conditions to coat or impregnate and adhere to the fiber surface in a special form, the market has been developed. The present inventors have found that a fiber rope having excellent abrasion resistance, bending fatigue resistance, waterproofness, and flame retardancy that can sufficiently meet the requirements can be obtained, and the present invention has been accomplished.
<発明の構成> すなわち本発明は 1) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維からなる繊
維ロープ状物において、該フッ素系樹脂は、80〜130℃
の温度で乾燥された後、フッ素系樹脂の融点±60℃の温
度範囲で熱処理されて繊維表面に径0.1〜1.0μmの微粒
子状に固着され、該微粒子状フッ素系樹脂による単繊維
表面被覆率が35%以上であり、繊維が撚係数0.4〜10.0
で合撚されてなることを特徴とする繊維ロープ状物。<Constitution of the Invention> That is, the present invention relates to: 1) a fiber rope-like material comprising a fiber having a thermal decomposition temperature of 230 ° C. or higher and a fiber surface coated with a fluororesin; Is 80 ~ 130 ℃
After being dried at a temperature of, it is heat-treated in a temperature range of the melting point of the fluorine-based resin ± 60 ° C. and fixed to the fiber surface in the form of fine particles having a diameter of 0.1 to 1.0 μm. Is 35% or more, and the fiber has a twist coefficient of 0.4 to 10.0
A fiber rope-like material characterized by being twisted with:
2) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維からなる繊
維ロープ状物において、該フッ素系樹脂は、80〜130℃
の温度で乾燥された後、フッ素系樹脂の融点±60℃の温
度範囲で熱処理されて繊維表面に径0.1〜1.0μmの微粒
子状に固着され、該微粒子状フッ素系樹脂による単繊維
表面被覆率が35%以上であり、繊維が編組されてなるこ
とを特徴とする繊維ロープ状物。2) A fiber rope having a pyrolysis temperature of 230 ° C. or higher and a fiber coated with a fluororesin on the fiber surface, wherein the fluororesin is 80 to 130 ° C.
After being dried at a temperature of, it is heat-treated in a temperature range of the melting point of the fluorine-based resin ± 60 ° C. and fixed to the fiber surface in the form of fine particles having a diameter of 0.1 to 1.0 μm. Is 35% or more, and the fibers are braided.
3) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維からなる芯
鞘構造のロープ状物において、該フッ素系樹脂は、80〜
130℃の温度で乾燥された後、フッ素系樹脂の融点±60
℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0μm
の微粒子状に固着され、該微粒子状フッ素系樹脂による
単繊維表面被覆率が35%以上であり、芯部は撚係数0.4
〜10.0で合撚され鞘部は編組されてなることを特徴とす
る繊維ロープ状物。3) A fiber having a pyrolysis temperature of 230 ° C. or higher, and a core-sheath structure made of a fiber whose surface is coated with a fluororesin, wherein the fluororesin is 80 to
After drying at a temperature of 130 ° C, the melting point of the fluororesin ± 60
Heat treated in a temperature range of ℃ and the fiber surface has a diameter of 0.1 ~ 1.0μm
Is fixed in the form of fine particles, and the surface coverage of a single fiber with the fine particle fluororesin is 35% or more, and the core has a twist coefficient of 0.4.
A fiber rope-like material characterized in that the sheath is braided at 10.0 to 10.0.
4) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維からなる芯
鞘構造のロープ状物において、該フッ素系樹脂は、80〜
130℃の温度で乾燥された後、フッ素系樹脂の融点±60
℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0μm
の微粒子状に固着され、該微粒子状フッ素系樹脂による
単繊維表面被覆率が35%以上であり、芯部は引揃えられ
鞘部は編組されてなることを特徴とする繊維ロープ状
物。4) Fibers having a thermal decomposition temperature of 230 ° C. or higher and a core-in-sheath rope made of fibers having a fiber surface coated with a fluororesin, wherein the fluororesin is 80 to
After drying at a temperature of 130 ° C, the melting point of the fluororesin ± 60
Heat treated in a temperature range of ℃ and the fiber surface has a diameter of 0.1 ~ 1.0μm
A fibrous rope-like material which is fixed in the form of fine particles having a surface coverage of a single fiber of 35% or more with the fine particle-like fluororesin, the core portion is aligned and the sheath portion is braided.
5) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む芯鞘
構造を有するロープ状物において、該フッ素系樹脂は、
80〜130℃の温度で乾燥された後、フッ素系樹脂の融点
±60℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0
μmの微粒子状に固着され、該微粒子状フッ素系樹脂に
よる単繊維表面被覆率が35%以上であり、芯部は該フッ
素系樹脂被覆繊維の合撚糸であり、鞘部はポリエステル
繊維またはナイロン繊維を編組してなることを特徴とす
る繊維ロープ状物。5) A rope having a core-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or higher and a fiber coated with a fluororesin on the fiber surface, wherein the fluororesin is:
After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C and the fiber surface has a diameter of 0.1-1.0.
μm is fixed in the form of fine particles, the surface coverage of the single fiber with the fine particle-like fluororesin is 35% or more, the core part is a plied yarn of the fluororesin-coated fiber, and the sheath part is polyester fiber or nylon fiber. A fiber rope-like material characterized by being braided.
6) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む芯鞘
構造を有するロープ状物において、該フッ素系樹脂は、
80〜130℃の温度で乾燥された後、フッ素系樹脂の融点
±60℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0
μmの微粒子状に固着され、該微粒子状フッ素系樹脂に
よる単繊維表面被覆率が35%以上であり、芯部が該フッ
素系樹脂被覆繊維が引揃えられ、鞘部はポリエステル繊
維またはナイロン繊維を編組してなることを特徴とする
繊維ロープ状物。6) In a rope having a core-in-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or more and a fiber coated with a fluororesin on the fiber surface, the fluororesin is:
After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C and the fiber surface has a diameter of 0.1-1.0.
μm is fixed in the form of fine particles, the single-fiber surface coverage of the fine-particle fluororesin is 35% or more, the core is made of the fluororesin-coated fiber, and the sheath is made of polyester fiber or nylon fiber. A fiber rope-shaped material characterized by being braided.
7) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む二重
被覆芯鞘構造を有するロープ状物において、該フッ素系
樹脂は、80〜130℃の温度で乾燥された後、フッ素系樹
脂の融点±60℃の温度範囲で熱処理されて繊維表面に径
0.1〜1.0μmの微粒子状に固着され、該微粒子状フッ素
系樹脂による単繊維表面被覆率が35%以上であり、かつ
芯部と内部被覆層とは該フッ素系樹脂被覆繊維からな
り、芯部は引揃えられ、内部被覆層は編組され、外部被
覆層はポリエステル繊維またはナイロン繊維を編組して
なることを特徴とする繊維ロープ状物。7) In a rope having a double-coated core-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or more and a fiber coated with a fluororesin on the fiber surface, the fluororesin is: After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluorine-based resin ± 60 ° C,
0.1 to 1.0 μm is fixed in the form of fine particles, the surface coverage of the single fiber with the fine particle-like fluororesin is 35% or more, and the core and the inner coating layer are composed of the fluorine-containing resin-coated fibers, A fibrous rope-shaped article characterized in that the fibers are aligned, the inner covering layer is braided, and the outer covering layer is braided of polyester fiber or nylon fiber.
8) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む二重
被覆芯鞘構造を有するロープ状物において、該フッ素系
樹脂は、80〜130℃の温度で乾燥された後、フッ素系樹
脂の融点±60℃の温度範囲で熱処理されて繊維表面に径
0.1〜1.0μmの微粒子状に固着され、該微粒子状フッ素
系樹脂による単繊維表面被覆率が35%以上であり、芯部
は該フッ素系樹脂被覆繊維が引揃えられ、内部被覆層と
外部被覆層とはポリエステル繊維またはナイロン繊維で
編組されてなることを特徴とする繊維ロープ状物。8) In a rope having a double-coated core-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or more and a fiber coated with a fluororesin on the fiber surface, the fluororesin is: After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluorine-based resin ± 60 ° C,
It is fixed to fine particles of 0.1 to 1.0 μm, the surface coverage of a single fiber by the fine particle-like fluororesin is 35% or more, and the core portion is made of the same fluororesin-coated fiber, and the inner coating layer and the outer coating The layer is a fiber rope-like material characterized by being braided with polyester fiber or nylon fiber.
9) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む芯鞘
構造を有するロープ状物において、該フッ素系樹脂は、
80〜130℃の温度で乾燥された後、フッ素系樹脂の融点
±60℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0
μmの微粒子状に固着され、該微粒子状フッ素系樹脂に
よる単繊維表面被覆率が35%以上であり、芯部は該フッ
素系樹脂被覆繊維が撚係数0.4〜10.0で合撚された合撚
糸であり、鞘部は樹脂であることを特徴とする繊維ロー
プ状物。9) In a rope having a core-in-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or higher and a fiber coated with a fluororesin on the fiber surface, the fluororesin is:
After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C and the fiber surface has a diameter of 0.1-1.0.
μm is fixed in the form of fine particles, and the surface coverage of the single fiber with the fine particle fluorine resin is 35% or more, and the core is a plied yarn in which the fluorine resin coated fiber is plied with a twist coefficient of 0.4 to 10.0. A fiber rope-shaped material, wherein the sheath is made of resin.
10) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む芯鞘
構造を有するロープ状物において、該フッ素系樹脂は、
80〜130℃の温度で乾燥された後、フッ素系樹脂の融点
±60℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0
μmの微粒子状に固着され、該微粒子状フッ素系樹脂に
よる単繊維表面被覆率が35%以上であり、芯部は該フッ
素系樹脂被覆繊維が編組され、鞘部は樹脂であることを
特徴とする繊維ロープ状物。10) A fiber having a core-in-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or more and a fiber coated with a fluororesin on the fiber surface, wherein the fluororesin is:
After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C and the fiber surface has a diameter of 0.1-1.0.
μm is fixed in the form of fine particles, the surface coverage of a single fiber with the fine particle fluorine resin is 35% or more, the core is braided with the fluorine resin coating fiber, and the sheath is resin. Fiber rope-like material.
11) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む芯鞘
構造を有するロープ状物において、該フッ素系樹脂は、
80〜130℃の温度で乾燥された後、フッ素系樹脂の融点
±60℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0
μmの微粒子状に固着され、該微粒子状フッ素系樹脂に
よる単繊維表面被覆率が35%以上であり、芯部は該フッ
素系樹脂被覆繊維が引揃えられ、鞘部は樹脂であること
を特徴とする繊維ロープ状物。11) In a rope having a core-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or more and a fiber coated with a fluororesin on the fiber surface, the fluororesin is:
After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C and the fiber surface has a diameter of 0.1-1.0.
μm is fixed in the form of fine particles, the surface coverage of the single fiber with the fine particle fluorine resin is 35% or more, the fluorine resin coated fiber is aligned in the core, and the sheath is resin. Fiber rope-like material.
12) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む二重
被覆芯鞘構造を有するロープ状物において、該フッ素系
樹脂は、80〜130℃の温度で乾燥された後、フッ素系樹
脂の融点±60℃の温度範囲で熱処理されて繊維表面に径
0.1〜1.0μmの微粒子状に固着され、該微粒子状フッ素
系樹脂による単繊維表面被覆率が35%以上であり、芯部
は該フッ素系樹脂被覆繊維が引揃えられ、内部被覆層は
該フッ素系樹脂被覆繊維で編組され、外部被覆層は樹脂
であることを特徴とする繊維ロープ状物。12) In a rope having a double-coated core-sheath structure including a fiber having a thermal decomposition temperature of 230 ° C. or more and a fiber coated with a fluororesin on the fiber surface, the fluororesin is: After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluorine-based resin ± 60 ° C,
0.1 to 1.0 μm is fixed in the form of fine particles, the surface coverage of the single fiber with the fine particle-like fluororesin is 35% or more, the core is made of the fluorine-containing resin-coated fiber, and the inner coating layer is the fluorine-containing resin. A fibrous rope-shaped article which is braided with a base resin-coated fiber and the outer coating layer is a resin.
13) 熱分解温度が230℃以上の繊維であって、該繊維
表面にはフッ素系樹脂が被覆されてなる繊維を含む芯鞘
構造を有するロープ状物において、該フッ素系樹脂は、
80〜130℃の温度で乾燥された後、フッ素系樹脂の融点
±60℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0
μmの微粒子状に固着され、該微粒子状フッ素系樹脂に
よる単繊維表面被覆率が35%以上であり、芯部は該フッ
素系樹脂被覆繊維に樹脂が被覆された樹脂被覆繊維が引
揃えられ、鞘部は樹脂であることを特徴とする繊維ロー
プ状物。13) A fiber having a core-in-sheath structure including a fiber having a pyrolysis temperature of 230 ° C. or more and a fiber coated with a fluororesin on the fiber surface, wherein the fluororesin is:
After drying at a temperature of 80-130 ° C, it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C and the fiber surface has a diameter of 0.1-1.0.
μm is fixed in the form of fine particles, the surface coverage of a single fiber with the fine particle-like fluorine-based resin is 35% or more, and the core portion is made up of resin-coated fibers obtained by coating the fluorine-based resin-coated fibers with a resin, A fiber rope-shaped material characterized in that the sheath is made of resin.
ここに繊維ロープ状物とは、通常の繊維ロープの他
に、ロープと同様の目的で使用される繊維コードも含ま
れる。Here, the term "fiber rope-like material" includes, in addition to a normal fiber rope, a fiber cord used for the same purpose as the rope.
また、繊維ロープを構成する熱分解温度が230℃以上
の繊維とは、例えばアラミド繊維,全芳香族ポリエステ
ル繊維等である。The fibers constituting the fiber rope and having a thermal decomposition temperature of 230 ° C. or higher include, for example, aramid fibers and wholly aromatic polyester fibers.
また、フッ素系樹脂とは4フッ化エチレン重合体,3フ
ッ化塩化エチレン重合体,4フッ化エチレン・6フッ化プ
ロピレン共重合体,4フッ化エチレン・パーフロロアルキ
ルビニルエーテル共重合体,4フッ化エチレン・6フッ化
プロピレン・パーフロロアルキルビニルエーテル共重合
体,フッ化ビニリデン重合体,エチレン・4フッ化エチ
レン共重合体などである。Fluorinated resins include tetrafluoroethylene polymer, trifluoroethylene chloride polymer, tetrafluoroethylene hexafluoropropylene copolymer, tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, Ethylene / propylene hexafluoride / perfluoroalkyl vinyl ether copolymer, vinylidene fluoride polymer, ethylene / tetrafluoroethylene copolymer and the like.
フッ素系樹脂は分散剤を用いて分散媒体中に微粒子状
フッ素系樹脂を分散せしめた分散体あるいは乳化剤を用
いて水系媒体中に微粒子状フッ素系樹脂を乳化せしめた
水乳化体を用いる。繊維ロープ状物に対するフッ素系樹
脂の付着量は固形分として0.5〜80重量%、好ましくは
4〜70重量%である。0.5重量%未満では充分な耐摩耗
性,耐屈曲疲労性,耐吸水性,電気絶縁性および難燃性
を得ることができない。80重量%を越えると、フッ素系
樹脂の加工作業性が悪くなるばかりでなく得られる特性
の割にコスト高となり、かつ、フッ素樹脂の被膜強度も
低下してくる。繊維又は繊維ロープ状物にフッ素系樹脂
を付与する方法は従来の方法でよい。例えば含浸方式,
スプレー方式,コーティング方式などでよい。これらの
方法により繊維又は繊維ロープ状物に、微粒子状フッ素
系樹脂を所定量付着せしめた後、80℃以上の温度でノン
タッチドライヤー,テンターなどの通常用いられる任意
の乾燥機で乾燥する。乾燥後、微粒子状のフッ素系樹脂
の繊維への固着性を増すためにフッ素系樹脂の融点±60
℃の温度で熱処理する。As the fluororesin, use is made of a dispersion obtained by dispersing a particulate fluororesin in a dispersion medium using a dispersant, or a water emulsion obtained by emulsifying the particulate fluororesin in an aqueous medium using an emulsifier. The amount of the fluorine resin adhered to the fiber rope is 0.5 to 80% by weight, preferably 4 to 70% by weight as a solid content. If the content is less than 0.5% by weight, sufficient wear resistance, bending fatigue resistance, water absorption resistance, electric insulation and flame retardancy cannot be obtained. If the content exceeds 80% by weight, not only does the workability of the fluororesin deteriorate, but also the cost is high for the properties obtained, and the film strength of the fluororesin also decreases. A conventional method may be used to apply the fluororesin to the fiber or the fiber rope. For example, impregnation method,
A spray method, a coating method, or the like may be used. After a predetermined amount of the particulate fluororesin is adhered to the fiber or the fiber rope by these methods, it is dried at a temperature of 80 ° C. or more by an ordinary dryer such as a non-touch drier or a tenter. After drying, the melting point of the fluororesin ± 60 to increase the adhesion of the particulate fluororesin to the fiber
Heat treatment at a temperature of ° C.
かかる温度範囲で処理することにより微粒子状フッ素
系樹脂の一部は繊維表面に島状に(カズノコの表面状
に)残存固着される。例えばフッ素系樹脂が四フッ化エ
チレン重合体の場合、270〜380℃で0.3〜15分間、四フ
ッ化エチレン・六フッ化プロピレン共重合体の場合、21
0〜310℃程度で0.3〜15分間熱処理することにより微粒
子状フッ素系樹脂の一部が繊維表面にカズノコの表面状
に残存固着される。繊維表面にカズノコの表面状に固着
されたフッ素系樹脂微粒子状物の粒径は繊維径にもよる
が、特に0.1〜1μmが好ましい。粒径が0.1μ未満では
単繊維相互間あるいは繊維と金属間等の密着性が高くな
り、かつ、当該微粒子同志が凝集し易くなるため、コロ
的効果が不充分となる。粒径が1μmを越えると繊維と
の固着が不完全となり、コロ的効果も充分発現しなくな
る。By performing the treatment in such a temperature range, a part of the particulate fluororesin remains and adheres to the surface of the fiber in an island shape (on the surface of Kazunoko). For example, when the fluororesin is an ethylene tetrafluoride polymer, at 270 to 380 ° C. for 0.3 to 15 minutes, in the case of an ethylene tetrafluoride / propylene hexafluoride copolymer, 21
By performing a heat treatment at about 0 to 310 ° C. for about 0.3 to 15 minutes, a part of the particulate fluorine-based resin remains and adheres to the surface of the fiber in the form of a kazunoko. The particle size of the fine particles of the fluorine-based resin fixed on the surface of the fiber in the form of a fir tree depends on the fiber diameter, but is preferably 0.1 to 1 μm. When the particle size is less than 0.1 μm, the adhesion between single fibers or between fibers and metal becomes high, and the fine particles are easily aggregated, so that the roller-like effect becomes insufficient. If the particle size exceeds 1 μm, the adhesion to the fiber becomes incomplete and the roller-like effect is not sufficiently exhibited.
繊維表面の全体(100%)がカズノコの表面状に微粒
子状フッ素系樹脂で覆われていてもよい。繊維/繊維間
又は繊維/物体間で、この固着した微粒子状のフッ素系
樹脂がコロの役割をはたし繊維相互間又は繊維/物体間
の摩擦を低下させ、いわゆるコロ効果(物体/物体間に
コロを介在させ物体/物体間のすべりを良好にする効
果)を発現させる。この微粒子状フッ素系樹脂で表面被
覆された繊維を、繊維ロープ状物の全部、もしくは一部
に使用することにより本発明の目的とする下記の諸効果
を達成することが出来る。The entire surface (100%) of the fiber surface may be covered with fine-particle fluorine-based resin on the surface of Kazunoko. Between the fibers / fibers or between the fibers / objects, the fixed fine particle-like fluororesin serves as a roller and reduces the friction between the fibers or between the fibers / objects, so-called roller effect (between the objects / objects). In this case, an effect of improving the slip between the objects by interposing the rollers is developed. By using the fiber whose surface is coated with the particulate fluorine-based resin for all or a part of the fiber rope, the following effects aimed at by the present invention can be achieved.
<発明の効果> 1)本発明の繊維ロープ状物は耐摩耗性に極めて優れて
いる。<Effects of the Invention> 1) The fiber rope-shaped material of the present invention is extremely excellent in abrasion resistance.
2)本発明の繊維ロープ状物は耐屈曲疲労性に極めて優
れている。2) The fiber rope of the present invention is extremely excellent in bending fatigue resistance.
3)本発明の繊維ロープ状物は、難燃性が向上する。3) The fiber rope of the present invention has improved flame retardancy.
4)本発明の繊維ロープは、耐吸水性が良好である。4) The fiber rope of the present invention has good water absorption resistance.
以下実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.
<実施例> 一般的に、摩擦により、単繊維のフィブリル化が最も
発生し易いと言われているパラ系アラミド繊維を用い、
これに本願発明を適用しながら、コード形態およびロー
プ形態の繊維ロープ状物を試作して本発明の効果を確認
した実施例について詳述する。なお、耐摩耗性,耐屈曲
疲労性,吸水性,難燃性,微粒子状フッ素系樹脂による
単繊維表面被覆率の評価、測定は下記の方法に従って実
施した。<Examples> In general, a para-aramid fiber, which is said to be most likely to cause fibrillation of a single fiber by friction,
An example in which the effects of the present invention were confirmed by trial production of a cord-shaped and rope-shaped fiber rope while applying the present invention to this will be described in detail. Evaluation and measurement of abrasion resistance, bending fatigue resistance, water absorption, flame retardancy, and surface coverage of a single fiber with a particulate fluorine resin were performed according to the following methods.
1)耐摩耗性評価方法 [主としてコード形態のものについての評価方法] 評価装置を第1図に示す。図において、1は2.0mmφ
の緊張したピアノ線,2は荷重,3は評価サンプルである。
また、評価は次のように実施した。即ち、コード形態の
サンプル3の一端に0.2g/deの荷重2を取付けた後、該
サンプルの他端を往復運動させ、サンプル3がピアノ線
1との摩擦により切断するまでの往復回路で耐摩耗性を
比較判定した。1) Evaluation method for abrasion resistance [Evaluation method mainly for cord type] An evaluation device is shown in FIG. In the figure, 1 is 2.0mmφ
The tensioned piano wire, 2 is the load, and 3 is the evaluation sample.
The evaluation was performed as follows. That is, after a load 2 of 0.2 g / de is attached to one end of the sample 3 in the form of a cord, the other end of the sample is reciprocated to withstand a reciprocating circuit until the sample 3 is cut by friction with the piano wire 1. The abrasion was compared and determined.
2)屈曲疲労性評価方法 [主としてロープ形態のものについての評価方法] 2対のフリーローラによるS曲げ法により比較評価す
る。試験条件はフリーローラ径(D)の繊維ロープ(評
価サンプル)径(d)に対する比(D/d)が6〜7にな
るように選択し、また繊維ロープに与える引張力を該繊
維ロープの引張破断強力の1/3(安全率=3)になるよ
うに設定した後、繊維ロープを往復運動させてS曲げ屈
曲疲労を与え、該繊維ロープが切断するまでの往復回数
で耐屈曲疲労性を比較評価した。2) Flexural fatigue evaluation method [Evaluation method mainly for rope form] Comparative evaluation is performed by the S-bending method using two pairs of free rollers. The test conditions are selected so that the ratio (D / d) of the free roller diameter (D) to the fiber rope (evaluation sample) diameter (d) is 6 to 7, and the tensile force applied to the fiber rope is adjusted to After setting to 1/3 of the tensile breaking strength (safety factor = 3), the fiber rope is reciprocated to give S-bending bending fatigue, and the bending fatigue resistance is determined by the number of reciprocations until the fiber rope is cut. Were evaluated comparatively.
3)吸水率評価方法(耐吸水性評価) 糸状又はロープ状サンプルを約3g(糸状物)または約
10g(ロープ状物)採取して、温度70〜90℃の乾燥機で6
0分〜120分予備乾燥する。次にこのサンプルを温度20±
2℃,相対湿度85±3%RHに調整されたデシケータ中に
入れて3昼夜以上放置して充分に吸水させた後に秤量
(W)する。その後、該サンプルを105±2℃の乾燥機
中で120分間(糸状物)または240分間(ロープ状物)乾
燥した後すみやかに秤量(W0)し、下記計算式により吸
水率を算出比較判定した。3) Water absorption rate evaluation method (evaluation of water absorption resistance) Approximately 3 g (filament) or approx.
Collect 10g (rope-like material) and dry in a dryer at a temperature of 70-90 ° C.
Pre-dry for 0 to 120 minutes. Next, this sample was heated to a temperature of 20 ±
It is placed in a desiccator adjusted to 2 ° C. and a relative humidity of 85 ± 3% RH, left for three days or more to allow sufficient water absorption, and then weighed (W). Thereafter, the sample was dried in a dryer at 105 ± 2 ° C. for 120 minutes (filament) or 240 minutes (rope), immediately weighed (W 0 ), and the water absorption was calculated according to the following formula. did.
吸水率(%)= (乾燥前の重量W−乾燥後の重量W0/乾燥後の重量W0)×1
00 (注)吸水率の多いものほど耐久性が劣る。Water absorption (%) = (weight before drying W-weight after drying W 0 / weight after drying W 0 ) × 1
(Note) The higher the water absorption, the lower the durability.
4)難燃性評価方法 JIS K7201−72酸素指数法に準じて実施した。但し試
験片は試料間の有意差を明確にするために、比較的密度
の粗な丸編地を試作して評価した。4) Flame retardancy evaluation method It was carried out according to the JIS K7201-72 oxygen index method. However, in order to clarify a significant difference between samples, a circular knitted fabric having a relatively coarse density was experimentally produced and evaluated.
(注)評価編地:丸編,5G(針,5本/インチ)で編成 5)微粒子状フッ素系樹脂による単繊維表面被覆率の算
出方法 走査型電子顕微鏡(日本電子,JSM−840)を用いて200
0〜8000倍程度の範囲で単繊維の表面を観察し、撮影し
た写真より、下記判断基準に従って微粒子状フッ素系樹
脂による単繊維表面被覆率を算出する。(Note) Knitted fabric for evaluation: circular knitting, knitting with 5G (needle, 5 needles / inch) 5) Calculation method of single fiber surface coverage by fine particle fluorine resin Scanning electron microscope (JEOL, JSM-840) 200 using
The surface of the single fiber is observed in the range of about 0 to 8000 times, and from the photographed image, the surface coverage of the single fiber with the particulate fluororesin is calculated according to the following criteria.
A:単繊維表面の表面積の定義;電子顕微鏡写真(平面状
観察)中において、単繊維が平面状に観察される全体の
面積(写真上における繊維の全側面積) B:微粒子状フッ素系樹脂による表面被覆面積の定義;前
記Aの電子顕微鏡写真(平面状観察)中において微粒子
状の形態でフッ素系樹脂が点在固着している面積、但
し、微粒子間距離が粒径の20倍以内のときはコロ状効果
を発現しうるので微粒子状フッ素系樹脂で表面被覆され
ている面積と見なす。A: Definition of surface area of single fiber surface; whole area where single fiber is observed in flat form in electron micrograph (planar observation) (all side areas of fiber in the photograph) B: Fine-particle fluorine-based resin Definition of the surface coating area according to the following formula: In the electron microscope photograph (planar observation) of the above A, the area where the fluororesin is fixedly scattered in the form of fine particles, provided that the distance between the fine particles is within 20 times the particle diameter. In some cases, since a roller-like effect can be exerted, the area is regarded as an area covered with the fine-particle fluorine-based resin.
C:微粒子状フッ素系樹脂による表面被覆率%=(B/A)
×100 <実施例1> 繊維として、1500デニール1000フィラメントからなる
アラミド長繊維糸[テクノーラ ;帝人(株)]を用
い、これを4フッ化エチレン重合体水分散液(濃度15
%)に充分浸漬した後、第1表に示した所定温度で所定
時間乾燥し、次いで所定の温度で所定時間熱処理を行っ
た。得られた処理アラミド長繊維糸を2本引き揃えてZ
方向に25回/10cmの撚り(撚係数;約4.8)をかけた後こ
れをさらに3本合わせてS方向に16回/10cmの撚り(撚
係数;約5.3)をかけて9000デニールのコード状のロー
プ(合撚糸)を得た。このロープについて耐摩耗成,耐
屈曲疲労性,吸水率,微粒子状フッ素系樹脂による表面
被覆率などの諸特性を評価,測定した結果は第1表に示
した通りであった。尚、この処理アラミド長繊維糸のフ
ッ素系樹脂付着率は7.9〜8.4重量%であり、また、この
処理糸をZ方向に撚係数が1近辺になるように約7.5回/
10cm加撚した後、丸編地を編成し、難燃性を評価した結
果も第1表に示した。C:% surface coverage by fine-particle fluorine resin = (B / A)
× 100 <Example 1> The fiber is composed of 1500 denier 1000 filaments
Aramid long fiber yarn [Technora ; Teijin Limited]
This was mixed with an aqueous tetrafluoroethylene polymer dispersion (concentration 15
%) And then immersed at the specified temperature shown in Table 1
After drying for a period of time, heat-treat at a predetermined temperature for a predetermined time.
Was. Two of the obtained treated aramid filament fibers are aligned and Z
After twisting 25 times / 10cm (twisting coefficient: about 4.8) in the direction
Combine these three more and twist them 16 times / 10cm in the S direction (twist
Multiplied by a factor of about 5.3) 9000 denier cord-shaped row
(Twisted yarn) was obtained. This rope is wear resistant and resistant
Flexural fatigue, water absorption, surface made of particulate fluororesin
Table 1 shows the results of evaluating and measuring various properties such as coverage.
It was exactly what I did. In addition, this treated aramid filament yarn
The nitrogen-based resin adhesion rate is 7.9 to 8.4% by weight.
Approximately 7.5 turns of the treated yarn so that the twist coefficient is near 1 in the Z direction.
After twisting 10 cm, knit a circular knitted fabric and evaluate the flame retardancy
The results are also shown in Table 1.
<実施例2> 実施例1と同様に実施して得られた1500デニール1000
フィラメントからなる処理アラミド長繊維糸を2本引き
揃えて、Z及びS方向に8回/10cmの撚りをかけて、300
0デニールの合撚糸品を同本数試作し、これを2本つづ
引き揃えて編組(2×4)し、組紐状繊維ロープを得
た。この組紐状繊維ロープについて、諸特性を評価,測
定した結果は第1表に示す通りであった。また、確認の
ため、ここで用いた処理アラミド長繊維糸について、実
施例1と同様の方法で難燃性を評価した結果も第1表に
示した。<Example 2> 1500 denier 1000 obtained by carrying out in the same manner as in Example 1
Two treated aramid filament yarns consisting of filaments are aligned and twisted 8 times / 10 cm in the Z and S directions,
The same number of 0-denier ply-twisted yarn products were trial-produced, and two of them were aligned and braided (2 × 4) to obtain a braided fiber rope. The characteristics of the braided fiber rope were evaluated and measured, and the results are as shown in Table 1. Table 1 also shows the results of evaluating the flame retardancy of the treated aramid long fiber yarn used here in the same manner as in Example 1 for confirmation.
<実施例3> 実施例1と同様に実施して得られたコードを芯部(繊
維ロープの芯材)とし、その外部を実施例2で得られた
合撚糸で編組(2×4)し、芯材がコード形態の繊維構
成,鞘部が編組されてなる芯鞘構造繊維ロープを得た。
得られたロープの評価結果は第1表に示す通りであっ
た。<Example 3> A cord obtained by carrying out in the same manner as in Example 1 was used as a core (core material of a fiber rope), and the outside thereof was braided (2 × 4) with the plied yarn obtained in Example 2. Thus, a core-sheath structured fiber rope was obtained in which the core material was a cord-shaped fiber structure and the sheath portion was braided.
The evaluation results of the obtained rope were as shown in Table 1.
<実施例4> 実施例3において、実施例1の処理アラミド長繊維糸
(1500デニール1000フィラメント)を単に、引き揃えた
状態で芯部に用いた以外は実施例3と同様に試作し、得
られた芯鞘構造繊維ロープについて、評価した結果は第
1表に示す通りであった。<Example 4> In Example 3, a trial production was performed in the same manner as in Example 3, except that the treated aramid long fiber yarn (1500 denier 1000 filaments) of Example 1 was simply used for the core in a aligned state. The evaluation results of the obtained core-sheath structured fiber rope were as shown in Table 1.
<実施例5> 実施例3において、鞘部を構成する繊維として、1000
デニール96フィラメントからなるポリエステル長繊維を
用い、これを3本引き揃えて、Z方向に10回/10cmの撚
りをかけて、3000デニールのZ方向合撚糸を作成し、ま
た3000デニールのS方向合撚糸を同様に作成し、Z方向
合撚糸とZ方向合撚糸とを引き揃えて編糸とし、これを
編組(2×4)して鞘部を作成した以外は実施例3と同
様に実施して得た芯鞘構造繊維ロープについて、評価し
た結果は第1表に示す通りであった。<Example 5> In Example 3, the fiber constituting the sheath portion was 1000
Using a polyester filament consisting of 96 denier 96 filaments, three of them are aligned and twisted 10 times / 10 cm in the Z direction to produce a 3,000 denier Z-direction plied yarn, and a 3000 denier S-direction yarn. A twisted yarn was prepared in the same manner, a Z-direction twisted yarn and a Z-direction twisted yarn were aligned to form a knitting yarn, and this was braided (2 × 4) to form a sheath portion. The results of evaluation of the core-sheath structured fiber rope obtained as described above are shown in Table 1.
<実施例6> 実施例5において、無撚の1500デニール1000フィラメ
ントからなる処理アラミド長繊維糸を単に引き揃えた状
態で芯部に用いた以外は、実施例5と同様に実施し、評
価した。結果は第1表に示す通りであった。<Example 6> In Example 5, evaluation was performed in the same manner as in Example 5, except that the treated aramid filament yarn composed of untwisted 1500 denier 1000 filaments was used for the core in a state of being simply aligned. . The results were as shown in Table 1.
<実施例7> 芯鞘構造繊維ロープにおいて、特に耐摩耗性および耐
候性を向上ならしめるべく、実施例4で試作した繊維ロ
ープのさらに外層部に実施例5で用いたと同一のポリエ
ステル長繊維により、実施例5と同様の方法で編組し
て、最外層鞘部を形成した二重被覆の多層構造繊維ロー
プを得た。<Example 7> In the core-sheath structure fiber rope, in order to improve particularly abrasion resistance and weather resistance, the same polyester filament as used in Example 5 was further used for the outer layer of the fiber rope prototyped in Example 4. Then, the braid was braided in the same manner as in Example 5 to obtain a double-coated multilayer-structured fiber rope having an outermost sheath layer.
<実施例8> 実施例7において、内層鞘部と外層鞘部とを同一のポ
リエステル長繊維により形成した以外は実施例7と同様
に実施し二重被覆の多層構造繊維ロープを得た。得られ
たロープの評価結果は第1表に示す通りであった。<Example 8> A double-coated multilayer structure fiber rope was obtained in the same manner as in Example 7, except that the inner sheath and the outer sheath were formed of the same polyester filament. The evaluation results of the obtained rope were as shown in Table 1.
<実施例9> 実施例1のコードをジメチルフォルムアミドに溶解し
たポリエーテル系ウレタン溶液(液濃度70%)に浸漬し
た後、円形状の穴を通し、余分のポリエーテル系ウレタ
ン液を除いたのち110℃の温度で約8分間乾燥し、さら
に160℃の温度で約0.5分間、乾熱処理して、最外層がポ
リエーテル系ウレタン樹脂で表面被覆された二重被覆の
多層構造繊維ロープを得た。評価した結果は第1表に示
す通りであった。なおポリエーテル系ウレタン樹脂の付
着率は45重量%であった。<Example 9> After the cord of Example 1 was immersed in a polyether-based urethane solution (solution concentration 70%) dissolved in dimethylformamide, an extra polyether-based urethane solution was removed through a circular hole. After that, it is dried at 110 ° C for about 8 minutes and then heat-treated at 160 ° C for about 0.5 minutes to obtain a double-coated multi-layer fiber rope whose outermost layer is coated with a polyether urethane resin. Was. The results of the evaluation are as shown in Table 1. The adhesion rate of the polyether urethane resin was 45% by weight.
<実施例10> 実施例2で得た組紐状繊維ロープについて、実施例9
と同様、最外層部をポリエーテル系ウレタン樹脂で表面
被覆して芯部が繊維の編組よりなり、鞘部がポリエーテ
ル系ウレタン処理よりなる組紐状二重被覆繊維ロープを
得た。評価結果は第1表に示す通りであった。なおポリ
エーテル系ウレタン樹脂の付着率は55重量%であった。<Example 10> About the braided fiber rope obtained in Example 2, Example 9
In the same manner as described above, the outermost layer was surface-coated with a polyether-based urethane resin to obtain a braided double-coated fiber rope in which the core was made of a braided fiber and the sheath was made of a polyether-based urethane treatment. The evaluation results were as shown in Table 1. The adhesion rate of the polyether-based urethane resin was 55% by weight.
<実施例11> 実施例1の処理アラミド長繊維糸に、撚係数が約1近
辺になるように、4.7回/10cm程度の撚りをかけた後、こ
れを20本引き揃えて芯部用ストランドとし樹脂液濃度80
重量%のポリエーテル系ウレタン溶液を用いて実施例9
と同様に実施し、芯部が有撚糸の引き揃えストランドか
らなる樹脂被覆繊維ロープを得た。評価結果は第1表に
示す通りであった。なおポリエーテル系ウレタン樹脂の
付着率は68重量%であった。<Example 11> The treated aramid long fiber yarn of Example 1 was twisted about 4.7 times / 10 cm so that the twist coefficient was about 1, and then 20 pieces of this were aligned to form a core strand. And resin solution concentration 80
Example 9 using a polyether-based urethane solution having a weight percentage of 9%
Was carried out in the same manner as in Example 1 to obtain a resin-coated fiber rope having a core made of a twisted twisted strand. The evaluation results were as shown in Table 1. The adhesion rate of the polyether urethane resin was 68% by weight.
<実施例12> 芯部が無撚糸の引き揃えストランドより構成され、鞘
部が編組構造よりなる実施例4の芯鞘構造繊維ロープを
用いて実施例9と同様の方法により、最外層部をポリエ
ーテル系ウレタン樹脂で表面被覆して二重被覆繊維ロー
プを得た。評価結果は第1表に示す通りであった。なお
樹脂付着率は52重量%であった。<Example 12> The outermost layer portion was formed by the same method as in Example 9 using the core-sheath structured fiber rope of Example 4 in which the core portion was formed of a non-twisted drawn strand and the sheath portion was a braided structure. The surface was coated with a polyether-based urethane resin to obtain a double-coated fiber rope. The evaluation results were as shown in Table 1. The resin adhesion rate was 52% by weight.
<実施例13> 実施例1の処理アラミド長繊維糸(1500デニール1000
フィラメント)を2本引き揃えて実施例9で用いたポリ
エーテル系ウレタン溶液中に浸漬した後、小円形状の穴
を通して、余分の樹脂を取り除き、実施例9と同様の方
法で乾燥、熱処理して、3000デニールの表面樹脂被覆繊
維ストランドを得た。これをさらに10本引き揃えて、再
度実施例11で用いたポリエーテル系ウレタン樹脂溶液中
に浸漬した後、円形状の穴を通して余分の樹脂を取り除
き、上記と同様の方法で乾燥,熱処理して2重被覆繊維
ロープを得た。評価結果を第1表に示した。なお樹脂付
着率は78重量%であった。<Example 13> The treated aramid long fiber yarn of Example 1 (1500 denier 1000
After two filaments were aligned and immersed in the polyether-based urethane solution used in Example 9, excess resin was removed through small circular holes, and dried and heat-treated in the same manner as in Example 9. Thus, 3000 denier surface resin coated fiber strand was obtained. After further arranging 10 of these, they were immersed again in the polyether-based urethane resin solution used in Example 11, then the excess resin was removed through the circular holes, and dried and heat-treated in the same manner as above. A double coated fiber rope was obtained. Table 1 shows the evaluation results. The resin adhesion was 78% by weight.
<実施例14> 繊維として、200デニール133フィラメントからなるア
ラミド長繊維糸(テクノーラ ;帝人(株))を用い、
これを4フッ化エチレン重合体からなる濃度20%のフッ
素系樹脂水分散液中に充分浸漬した後、ロールで軽くし
ごき、第1表に示した所定温度で所定時間乾燥した後
に、15本引き揃えて、Z方向に20回/10cmの撚数で撚糸
し、さらに、この撚糸品を3本合せて、S方向に20回/1
0cmの撚数で合撚して、9000デニールのコードを作成
し、さらにこれを第1表に示した所定温度で所定時間熱
処理して、目的とするロープを得た。このものについて
微粒子状フッ素樹脂による表面被覆率,耐摩耗性,耐屈
曲疲労性,吸水率及び難燃性を評価した結果を第1表に
示した。但し難燃性評価用の丸編地の作成は、200デニ
ールを8本引き揃えて6回/10cmの撚数で撚糸したもの
を使用して編成,評価した。フッ素系樹脂付着率は12.9
重量%であった。<Example 14> As a fiber, an fiber consisting of 200 denier 133 filaments was used.
Lamid filament yarn (Technola ; Teijin Limited)
This is treated with a 20% concentration of fluorotetrafluoroethylene polymer.
After fully immersing in the base resin aqueous dispersion, lighten with a roll.
After drying at a predetermined temperature shown in Table 1 for a predetermined time
, 15 yarns are aligned and twisted 20 times in the Z direction with a twist of 10cm
Then, three twisted yarns are combined, and 20 times / 1 in the S direction
Twisted with 0cm twist to create 9000 denier cord
And heat it at a predetermined temperature shown in Table 1 for a predetermined time.
After processing, the desired rope was obtained. About this one
Surface coverage, abrasion resistance, bending resistance of fine particle fluororesin
Table 1 shows the results of evaluating bending fatigue, water absorption and flame retardancy.
Indicated. However, the production of circular knitted fabric for flame retardancy evaluation is 200 denier.
8 yarns and twisted 6 times / 10cm
Was organized and evaluated. Fluorine resin adhesion rate is 12.9
% By weight.
さらに熱処理温度と耐摩耗性との関係を明確に把握す
べく、前記の9000デニールのロープを用いて、熱処理時
間を3.0分間に固定し、熱処理温度を260〜400℃の範囲
内で種々変化させ、得られたロープについて耐摩耗性を
評価した結果を第2図に示した。Furthermore, in order to clearly understand the relationship between the heat treatment temperature and the wear resistance, using the 9000 denier rope, the heat treatment time was fixed at 3.0 minutes, and the heat treatment temperature was variously changed within the range of 260 to 400 ° C. FIG. 2 shows the results of evaluating the abrasion resistance of the obtained rope.
耐摩耗性は第2図から、このフッ素系樹脂の場合、熱
処理温度280〜370℃の範囲内において特に良好であるこ
とが明らかである。From FIG. 2, it is apparent from FIG. 2 that the abrasion resistance is particularly good in the heat treatment temperature range of 280 to 370 ° C. in the case of this fluorine-based resin.
そこで、これらのロープにおけるフッ素系樹脂の固着
状態と耐摩耗性との関係を把握すべく、第2図の条件で
作成されたロープの比較的内層部に近い部分より単繊維
数本を取り出し、走査型電子顕微鏡(日本電子,JSM−84
0)を用いて3000倍の倍率で単繊維表面に固着している
フッ素系樹脂の固着状態を観察し、写真にして比較評価
した。また、その写真を参考にして描いた図を第4図に
示す。第4図中のAは第2図のAに示す条件のものであ
り、以下同様に対応する。Therefore, in order to grasp the relationship between the state of fixation of the fluororesin in these ropes and the abrasion resistance, several single fibers were taken out from a portion relatively close to the inner layer of the rope created under the conditions of FIG. Scanning electron microscope (JEOL, JSM-84
Using 0), the state of fixation of the fluororesin fixed to the surface of the single fiber was observed at a magnification of 3000 times and photographed for comparative evaluation. FIG. 4 shows a drawing drawn with reference to the photograph. A in FIG. 4 is based on the condition shown in FIG. 2A, and the same applies hereinafter.
第4図から明らかなように比較的低温で熱処理された
ものはフッ素系樹脂の大半が微粒子状の形態を残存保持
した状態で単繊維表面に付着しており、これらの微粒子
状フッ素系樹脂が、他物体との摩擦、又は繊維と繊維と
の摩擦時にコロ的効果を発現して耐摩耗性をより良好な
らしめることが第4図より理解される。As is clear from FIG. 4, in the case of heat-treated at a relatively low temperature, most of the fluorine-based resin adheres to the surface of the single fiber in a state where the fine-particle form is retained and retained. It can be understood from FIG. 4 that a roller-like effect is exerted at the time of friction with another object or at the time of friction between the fiber and the fiber to improve the wear resistance.
一方、比較的高温で熱処理(400℃以上)されたもの
は微粒子状フッ素系樹脂が溶融してフィルム状の膜を形
成しつつあり、微粒子状の形態で残存保持されるフッ素
系樹脂の割合が大巾に減少している。その結果、耐摩耗
性は第2図のように低下傾向を示す。On the other hand, when heat-treated at a relatively high temperature (400 ° C. or higher), the fine-particle fluororesin is melting to form a film-like film, and the ratio of the fluorine-based resin remaining and retained in the fine-particle form is low. It has been greatly reduced. As a result, the wear resistance tends to decrease as shown in FIG.
なお、このフッ素系樹脂の場合280℃未満の熱処理温
度、特に260℃未満の熱処理温度で処理されたものは著
しく耐摩耗性が低下している。これはフッ素系樹脂の大
半が微粒子状の形態で繊維表面に付着しているものの、
熱処理温度が低いため繊維とフッ素系樹脂またはフッ素
系樹脂相互間の接着力が不充分となって、耐摩耗性評価
の際、微粒子状フッ素系樹脂が脱落し、その結果耐摩耗
性並びに摩耗耐久性が低下するものと理解される。In the case of this fluororesin, the one treated at a heat treatment temperature of less than 280 ° C., particularly at a heat treatment temperature of less than 260 ° C., has remarkably reduced wear resistance. This is because although most of the fluorine resin adheres to the fiber surface in the form of fine particles,
Due to the low heat treatment temperature, the adhesive strength between the fiber and the fluororesin or fluororesin is insufficient, and the particulate fluororesin falls off during the evaluation of abrasion resistance, resulting in abrasion resistance and abrasion durability It is understood that the sex is reduced.
上記の関係をさらに明確にするために、熱処理温度を
変化させた場合におけるアラミド繊維とフッ素系樹脂と
の剥離接着強力変化について検討した結果を第3図に示
す。なお検討方法は、以下の通りである。まず本実施例
14で用いた200デニール133フィラメントからなるアラミ
ド長繊維を経糸及び緯糸に用いて経糸密度,緯糸密度が
それぞれ同数の34本/25mmになるようにして平組織の織
物を試織した。次いでこの織物を脱油処理,乾燥した
後、本実施例で使用したと同一のフッ素系樹脂水分散体
(但し液濃度20%)中に充分浸漬し、さらに本実施例と
同様の条件で乾燥した。次に乾燥後の織布を15cm×20cm
の大きさに切断し、これを2枚重ねたものを数組作成し
た。In order to further clarify the above relationship, FIG. 3 shows the results of examining the change in peel adhesion strength between the aramid fiber and the fluororesin when the heat treatment temperature was changed. The study method is as follows. First, this embodiment
Aramid filaments composed of 133 filaments of 200 denier used in 14 were used for the warp and the weft so that the warp density and the weft density were the same number of 34 yarns / 25 mm, respectively, and a flat-woven fabric was trial-woven. Next, the woven fabric is subjected to deoiling treatment and dried, and then sufficiently immersed in the same fluororesin aqueous dispersion (liquid concentration: 20%) used in this example, and further dried under the same conditions as in this example. did. Next, the woven fabric after drying is 15cm x 20cm
, And two sets of these were stacked to make several sets.
これらを加熱,加圧可能なプレス機にはさみ、圧力10
0kg/cm2,熱処理時間3.0分,熱処理温度260〜400℃で加
熱加圧した。得られた2枚重ね織布を長さ方向に2cmの
巾に切断して測定用サンプルとし、T型剥離強力(織布
と織布とをT字型に引きはがすときの剥離に要する強
力)を比較測定した。結果をまとめてグラフ化したもの
を第3図に示した。These are sandwiched between presses that can be heated and pressurized.
Heating and pressing were performed at 0 kg / cm 2 , heat treatment time of 3.0 minutes, and heat treatment temperature of 260 to 400 ° C. The obtained two-ply woven fabric is cut into a width of 2 cm in the length direction to obtain a measurement sample, and has a T-type peeling strength (strength required for peeling when the woven fabric and the woven fabric are peeled off in a T-shape). Was measured comparatively. FIG. 3 shows a graph of the results.
この図から、アラミド繊維とこのフッ素系樹脂との接
着力は280℃近辺から徐々に350℃近辺まで増加し、それ
以上の温度ではほぼ一定値となる。この現象は280℃未
満の熱処理温度ではアラミド繊維とこのフッ素系樹脂と
の接着(固着)が不充分であって、フッ素系樹脂が脱落
し易く、従ってこれに近い条件で処理された繊維ロープ
は充分満足でき得る耐摩耗性を発揮できないことを示し
ているものと考えられる。また360℃以上の温度で熱処
理されたものの接着力に増加がみられないのは、すで
に、この温度で熱処理されるよりも低温の条件下でフッ
素系樹脂が溶融し、繊維と充分に固着しているためと考
えられる。これ以上の温度で熱処理された場合は、微粒
子状フッ素系樹脂が、繊維表面にほとんど見られない。
この場合、第2図に示したコード状ロープでは、同一条
件の熱処理品においても、まだ微粒子状フッ素系樹脂の
存在が認められる。その理由は、コード状ロープが9000
デニールと比較的太く、前記2枚重ねの織物に比べて数
倍の厚みを有するために、織布の場合と同一の熱処理温
度で実質的に熱量不足となるためと考えられる。このコ
ード状ロープの場合においても熱処理温度を400℃以上
にすると前述のごとく微粒子状フッ素系樹脂の存在割合
が大巾に減少し、耐摩耗性も低下する。From this figure, the adhesive force between the aramid fiber and the fluororesin gradually increases from around 280 ° C. to around 350 ° C., and becomes almost constant at a temperature higher than that. This phenomenon is that at a heat treatment temperature of less than 280 ° C., the adhesion (fixation) between the aramid fiber and the fluororesin is insufficient, and the fluororesin tends to fall off. This is considered to indicate that a sufficiently satisfactory wear resistance cannot be exhibited. In addition, the fact that the adhesive strength did not increase even though it was heat-treated at a temperature of 360 ° C or higher was because the fluorocarbon resin had already melted at a lower temperature than when heat-treated at this temperature, and had sufficiently adhered to the fibers. It is thought that it is. When the heat treatment is performed at a temperature higher than this, almost no particulate fluororesin is found on the fiber surface.
In this case, in the cord-shaped rope shown in FIG. 2, even in the heat-treated product under the same conditions, the presence of the particulate fluorine-based resin is still recognized. The reason is that the cord rope is 9000
It is considered that the denier is relatively thick and has a thickness several times as large as that of the two-ply fabric, so that the calorific value becomes substantially insufficient at the same heat treatment temperature as that of the woven fabric. Even in the case of this cord-shaped rope, when the heat treatment temperature is set to 400 ° C. or higher, as described above, the abundance ratio of the particulate fluorine-based resin is greatly reduced, and the wear resistance is also reduced.
以上のことから、このフッ素系樹脂の場合には、ロー
プ状物の構造にもよるが、フッ素系樹脂の融点±60℃の
温度範囲で、かつ微粒子状フッ素系樹脂が充分残存し得
る時間内で熱処理することが耐摩耗性向上の観点から良
好であることが理解できる。従って、フッ素系樹脂を完
全にすべて被膜化してしまうことはコロ的効果が発現し
なくなり耐摩耗性,耐屈曲疲労性の点で劣ることにな
る。From the above, in the case of this fluorine-based resin, although it depends on the structure of the rope-like material, the melting point of the fluorine-based resin is within a temperature range of ± 60 ° C., and the time within which the particulate fluorine-based resin can sufficiently remain. It can be understood that the heat treatment is favorable from the viewpoint of improving the wear resistance. Therefore, completely coating the fluororesin completely does not exhibit the roller-like effect, and is inferior in terms of wear resistance and bending fatigue resistance.
<比較例1> 比較のため実施例1においてフッ素系樹脂で未処理の
アラミド長繊維糸を用いて、実施例1と同様の方法で繊
維ロープを試作し、評価した。結果は第2表に示す通り
であった。<Comparative Example 1> For comparison, a fiber rope was trial-produced in the same manner as in Example 1 using an aramid long fiber yarn untreated with a fluororesin in Example 1, and evaluated. The results were as shown in Table 2.
<比較例2> フッ素系樹脂で処理されていないアラミド長繊維糸を
用いて、実施例2と同様の方法で組紐状繊維ロープを試
作し、評価した。第2表に結果を示した。<Comparative Example 2> A braided fiber rope was trial-produced in the same manner as in Example 2 using aramid filament fibers not treated with a fluororesin, and evaluated. Table 2 shows the results.
<比較例3および4> フッ素系樹脂で処理されていないアラミド長繊維糸を
用いた以外は実施例3,実施例4と同様の方法で芯鞘構造
繊維ロープを試作した。評価結果は第2表に示した。<Comparative Examples 3 and 4> A core-sheath structured fiber rope was prototyped in the same manner as in Examples 3 and 4, except that an aramid long fiber yarn not treated with a fluororesin was used. The evaluation results are shown in Table 2.
<比較例5および6> フッ素系樹脂で処理されていないアラミド長繊維糸を
用いた、芯部を構成した以外は、実施例5および実施例
6とそれぞれ同様の方法で芯鞘構造繊維ロープを試作し
て評価した。結果を第2表に示した。<Comparative Examples 5 and 6> A core-sheath structured fiber rope was produced in the same manner as in Examples 5 and 6, respectively, except that a core portion was formed using aramid long fiber yarn not treated with a fluororesin. The prototype was evaluated. The results are shown in Table 2.
<比較例7および8> フッ素系樹脂で処理されていないアラミド長繊維糸を
用いた以外は実施例7および実施例8と同様の方法で多
層構造の繊維ロープを試作し、それぞれについて評価し
た。結果を第2表に示した。<Comparative Examples 7 and 8> Except that an aramid long fiber yarn not treated with a fluororesin was used, a fiber rope having a multilayer structure was trial-produced in the same manner as in Examples 7 and 8, and each was evaluated. The results are shown in Table 2.
<比較例9〜13> フッ素系樹脂で処理されていないアラミド長繊維糸を
用いた以外は、それぞれ対応する実施例9〜13と同様の
方法で、樹脂被覆繊維ロープを試作して評価した。第2
表に結果を示した。<Comparative Examples 9 to 13> Resin-coated fiber ropes were trial-produced and evaluated in the same manner as in Examples 9 to 13 respectively, except that aramid long fiber yarns not treated with a fluororesin were used. Second
The results are shown in the table.
<比較例14> フッ素系樹脂で処理されていないアラミド長繊維糸を
用いた以外は、実施例14と同様の方法で実施してコード
状ロープを得た。評価結果を第2表に示した。<Comparative Example 14> A cord-like rope was obtained in the same manner as in Example 14, except that an aramid long fiber yarn not treated with a fluororesin was used. The evaluation results are shown in Table 2.
<比較例15および16> 実施例1において、熱処理条件を、それぞれ第2表に
示した該当する所定条件に変更して、熱処理後における
微粒子状フッ素系樹脂による単繊維表面被覆率を変化さ
せた以外は実施例1と同様に実施して目的とするコード
状ロープを得、これについて評価した結果を第2表に示
した。<Comparative Examples 15 and 16> In Example 1, the heat treatment conditions were changed to the corresponding predetermined conditions shown in Table 2 to change the surface coverage of the single fiber with the particulate fluororesin after the heat treatment. Except for the above, the same procedure as in Example 1 was carried out to obtain a target cord-like rope, and the results of the evaluation are shown in Table 2.
第1図は耐摩耗性評価装置を示す側断面図である。 1は2.0mmφの断面円形のピアノ線,2は荷重,3は評価サ
ンプル。 第2図は耐摩耗性と熱処理温度との関係を示す。 A〜Eの各点は電子顕微鏡写真A〜Eに対応する。 第3図は剥離接着強力と熱処理温度との関係を示す。 第4図は繊維表面にフッ素系樹脂が付着又は固着してい
る状態を示す電子顕微鏡写真を参考にして描いた図であ
る。A〜Eは第2図の各点(A〜E)に対応するサンプ
ルについて、フッ素系樹脂の付着又は固着状態を示す図
である。なお図中1は単繊維,2は単繊維表面に固着して
いるフッ素系樹脂微粒子,3はフイルム状の膜を形成しつ
つあるフッ素系樹脂。FIG. 1 is a side sectional view showing a wear resistance evaluation device. 1 is a 2.0 mmφ circular piano wire, 2 is a load, and 3 is an evaluation sample. FIG. 2 shows the relationship between wear resistance and heat treatment temperature. Points A to E correspond to electron micrographs A to E, respectively. FIG. 3 shows the relationship between peel adhesion strength and heat treatment temperature. FIG. 4 is a drawing drawn with reference to an electron micrograph showing a state in which a fluororesin is attached or fixed to the fiber surface. FIGS. 2A to 2E are diagrams showing the state of adhesion or fixation of the fluororesin for the sample corresponding to each point (A to E) in FIG. In the drawing, 1 is a single fiber, 2 is fine particles of a fluororesin adhered to the surface of the single fiber, and 3 is a fluororesin forming a film-like film.
フロントページの続き (51)Int.Cl.6 識別記号 FI D06M 15/256 (56)参考文献 特開 昭60−75675(JP,A) 特開 昭52−96233(JP,A) 特開 昭54−42444(JP,A) 特開 昭53−31851(JP,A) 実開 平2−46895(JP,U)Continuation of the front page (51) Int.Cl. 6 Identification code FI D06M 15/256 (56) References JP-A-60-75675 (JP, A) JP-A-52-96233 (JP, A) JP-A-54 JP-A-42444 (JP, A) JP-A-53-31851 (JP, A) JP-A-2-46895 (JP, U)
Claims (13)
該繊維表面にはフッ素系樹脂が被覆されてなる繊維から
なる繊維ロープ状物において、該フッ素系樹脂は、80〜
130℃の温度で乾燥された後、フッ素系樹脂の融点±60
℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0μm
の微粒子状に固着され、該微粒子状フッ素系樹脂による
単繊維表面被覆率が35%以上であり、繊維が撚係数0.4
〜10.0で合撚されてなることを特徴とする繊維ロープ状
物。1. A fiber having a pyrolysis temperature of 230 ° C. or higher,
In a fiber rope-like material made of fibers coated with a fluororesin on the fiber surface, the fluororesin is 80 to
After drying at a temperature of 130 ° C, the melting point of the fluororesin ± 60
Heat treated in a temperature range of ℃ and the fiber surface has a diameter of 0.1 ~ 1.0μm
Is fixed in the form of fine particles, and the surface coverage of the single fiber with the fine particle fluororesin is 35% or more, and the fiber has a twist coefficient of 0.4.
A fibrous rope-like material characterized by being twisted at 10.0.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維から
なる繊維ロープ状物において、該フッ素系樹脂は、80〜
130℃の温度で乾燥された後、フッ素系樹脂の融点±60
℃の温度範囲で熱処理されて繊維表面に径0.1〜1.0μm
の微粒子状に固着され、該微粒子状フッ素系樹脂による
単繊維表面被覆率が35%以上であり、繊維が編組されて
なることを特徴とする繊維ロープ状物。2. A fiber having a pyrolysis temperature of 230 ° C. or higher,
In a fiber rope-like material made of fibers coated with a fluororesin on the fiber surface, the fluororesin is 80 to
After drying at a temperature of 130 ° C, the melting point of the fluororesin ± 60
Heat treated in a temperature range of ℃ and the fiber surface has a diameter of 0.1 ~ 1.0μm
A fiber rope-shaped material which is fixed in the form of fine particles, has a surface coverage of a single fiber of 35% or more by the fine-particle fluorine-based resin, and is formed by braiding fibers.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維から
なる芯鞘構造のロープ状物において、該フッ素系樹脂
は、80〜130℃の温度で乾燥された後、フッ素系樹脂の
融点±60℃の温度範囲で熱処理されて繊維表面に径0.1
〜1.0μmの微粒子状に固着され、該微粒子状フッ素系
樹脂による単繊維表面被覆率が35%以上であり、芯部は
撚係数0.4〜10.0で合撚され鞘部は編組されてなること
を特徴とする繊維ロープ状物。3. A fiber having a pyrolysis temperature of 230 ° C. or higher,
The fiber surface is a core-sheath rope formed of a fiber coated with a fluororesin, and the fluororesin is dried at a temperature of 80 to 130 ° C., and then the melting point of the fluororesin ± 60. Heat treated in a temperature range of ℃ C
It is fixed to fine particles of up to 1.0 μm, the surface coverage of a single fiber with the fine particle fluororesin is 35% or more, the core is twisted with a twist coefficient of 0.4 to 10.0, and the sheath is braided. Characteristic fiber rope.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維から
なる芯鞘構造のロープ状物において、該フッ素系樹脂
は、80〜130℃の温度で乾燥された後、フッ素系樹脂の
融点±60℃の温度範囲で熱処理されて繊維表面に径0.1
〜1.0μmの微粒子状に固着され、該微粒子状フッ素系
樹脂による単繊維表面被覆率が35%以上であり、芯部は
引揃えられ鞘部は編組されてなることを特徴とする繊維
ロープ状物。4. A fiber having a pyrolysis temperature of 230 ° C. or higher,
The fiber surface is a core-sheath rope formed of a fiber coated with a fluororesin, and the fluororesin is dried at a temperature of 80 to 130 ° C., and then the melting point of the fluororesin ± 60. Heat treated in a temperature range of ℃ C
The fiber rope is fixed in the form of fine particles of about 1.0 μm, has a surface coverage of a single fiber of 35% or more by the fine-particle fluorine-based resin, and has a core portion aligned and a sheath portion braided. Stuff.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維を含
む芯鞘構造を有するロープ状物において、該フッ素系樹
脂は、80〜130℃の温度で乾燥された後、フッ素系樹脂
の融点±60℃の温度範囲で熱処理されて繊維表面に径0.
1〜1.0μmの微粒子状に固着され、該微粒子状フッ素系
樹脂による単繊維表面被覆率が35%以上であり、芯部は
該フッ素系樹脂被覆繊維の合撚糸であり、鞘部はポリエ
ステル繊維またはナイロン繊維を編組してなることを特
徴とする繊維ロープ状物。5. A fiber having a pyrolysis temperature of 230 ° C. or higher,
In a rope-shaped material having a core-sheath structure containing a fiber coated on a surface of a fluororesin, the fluororesin is dried at a temperature of 80 to 130 ° C., and then the melting point of the fluororesin ± Heat treated in a temperature range of 60 ° C and the fiber surface has a diameter of 0.
1 to 1.0 μm fine particles are fixed, the surface coverage of the single fiber with the fine particle-like fluororesin is 35% or more, the core is a plied yarn of the fluororesin-coated fiber, and the sheath is polyester fiber. Or a fiber rope-like material characterized by being braided with nylon fibers.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維を含
む芯鞘構造を有するロープ状物において、該フッ素系樹
脂は、80〜130℃の温度で乾燥された後、フッ素系樹脂
の融点±60℃の温度範囲で熱処理されて繊維表面に径0.
1〜1.0μmの微粒子状に固着され、該微粒子状フッ素系
樹脂による単繊維表面被覆率が35%以上であり、芯部は
該フッ素系樹脂被覆繊維が引揃えられ、鞘部はポリエス
テル繊維またはナイロン繊維を編組してなることを特徴
とする繊維ロープ状物。6. A fiber having a pyrolysis temperature of 230 ° C. or higher,
In a rope-shaped material having a core-sheath structure containing a fiber coated on a surface of a fluororesin, the fluororesin is dried at a temperature of 80 to 130 ° C., and then the melting point of the fluororesin ± Heat treated in a temperature range of 60 ° C and the fiber surface has a diameter of 0.
It is fixed to fine particles of 1 to 1.0 μm, the surface coverage of a single fiber with the fine particle fluororesin is 35% or more, the fluororesin coated fiber is aligned in the core, and the sheath is polyester fiber or A fiber rope-like material characterized by being braided with nylon fibers.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維を含
む二重被覆芯鞘構造を有するロープ状物において、該フ
ッ素系樹脂は、80〜130℃の温度で乾燥された後、フッ
素系樹脂の融点±60℃の温度範囲で熱処理されて繊維表
面に径0.1〜1.0μmの微粒子状に固着され、該微粒子状
フッ素系樹脂による単繊維表面被覆率が35%以上であ
り、かつ芯部と内部被覆層とは該フッ素系樹脂被覆繊維
からなり、芯部は引揃えられ、内部被覆層は編組され、
外部被覆層はポリエステル繊維またはナイロン繊維を編
組してなることを特徴とする繊維ロープ状物。7. A fiber having a pyrolysis temperature of 230 ° C. or higher,
In a rope-like material having a double-coated core-sheath structure containing fibers coated with a fluororesin on the fiber surface, the fluororesin is dried at a temperature of 80 to 130 ° C., and then the fluororesin is dried. Is heat-treated in a temperature range of the melting point of ± 60 ° C., and is fixed on the fiber surface in the form of fine particles having a diameter of 0.1 to 1.0 μm. The inner coating layer is made of the fluororesin-coated fiber, the core is aligned, the inner coating layer is braided,
A fiber rope-like article characterized in that the outer coating layer is formed by braiding polyester fibers or nylon fibers.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維を含
む二重被覆芯鞘構造を有するロープ状物において、該フ
ッ素系樹脂は、80〜130℃の温度で乾燥された後、フッ
素系樹脂の融点±60℃の温度範囲で熱処理されて繊維表
面に径0.1〜1.0μmの微粒子状に固着され、該微粒子状
フッ素系樹脂による単繊維表面被覆率が35%以上であ
り、芯部は該フッ素系樹脂被覆繊維が引揃えられ、内部
被覆層と外部被覆層とはポリエステル繊維またはナイロ
ン繊維で編組されてなることを特徴とする繊維ロープ状
物。8. A fiber having a pyrolysis temperature of 230 ° C. or higher,
In a rope-like material having a double-coated core-sheath structure containing fibers coated with a fluororesin on the fiber surface, the fluororesin is dried at a temperature of 80 to 130 ° C., and then the fluororesin is dried. Heat-treated at a melting point of ± 60 ° C. to be fixed to the fiber surface in the form of fine particles having a diameter of 0.1 to 1.0 μm. The surface coverage of the single fiber with the fine particle-like fluororesin is 35% or more. A fibrous rope-like article characterized in that the fluororesin-coated fibers are aligned and the inner coating layer and the outer coating layer are braided with polyester fibers or nylon fibers.
該繊維表面にはフッ素系樹脂が被覆されてなる繊維を含
む芯鞘構造を有するロープ状物において、該フッ素系樹
脂は、80〜130℃の温度で乾燥された後、フッ素系樹脂
の融点±60℃の温度範囲で熱処理されて繊維表面に径0.
1〜1.0μmの微粒子状に固着され、該微粒子状フッ素系
樹脂による単繊維表面被覆率が35%以上であり、芯部は
該フッ素系樹脂被覆繊維が撚係数0.4〜10.0で合撚され
た合撚糸であり、鞘部は樹脂であることを特徴とする繊
維ロープ状物。9. A fiber having a pyrolysis temperature of 230 ° C. or higher,
In a rope-shaped material having a core-sheath structure containing a fiber coated on a surface of a fluororesin, the fluororesin is dried at a temperature of 80 to 130 ° C., and then the melting point of the fluororesin ± Heat treated in a temperature range of 60 ° C and the fiber surface has a diameter of 0.
1 to 1.0 μm fixed in the form of fine particles, the single-fiber surface coverage by the fine-particle fluorine-based resin is 35% or more, and the core is twisted with the fluorine-based resin-coated fiber with a twist coefficient of 0.4 to 10.0. A fibrous rope-like material, which is a ply-twisted yarn and a sheath portion is made of resin.
て、該繊維表面にはフッ素系樹脂が被覆されてなる繊維
を含む芯鞘構造を有するロープ状物において、該フッ素
系樹脂は、80〜130℃の温度で乾燥された後、フッ素系
樹脂の融点±60℃の温度範囲で熱処理されて繊維表面に
径0.1〜1.0μmの微粒子状に固着され、該微粒子状フッ
素系樹脂による単繊維表面被覆率が35%以上であり、芯
部は該フッ素系樹脂被覆繊維が編組され、鞘部は樹脂で
あることを特徴とする繊維ロープ状物。10. A rope having a core-sheath structure containing fibers having a pyrolysis temperature of 230 ° C. or higher and coated on the fiber surface with a fluororesin, wherein the fluororesin is: After being dried at a temperature of 80 to 130 ° C., it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C. and fixed to the fiber surface in fine particles having a diameter of 0.1 to 1.0 μm. A fiber rope-shaped article having a fiber surface coverage of 35% or more, a core portion formed by braiding the fluororesin-coated fiber, and a sheath portion formed of resin.
て、該繊維表面にはフッ素系樹脂が被覆されてなる繊維
を含む芯鞘構造を有するロープ状物において、該フッ素
系樹脂は、80〜130℃の温度で乾燥された後、フッ素系
樹脂の融点±60℃の温度範囲で熱処理されて繊維表面に
径0.1〜1.0μmの微粒子状に固着され、該微粒子状フッ
素系樹脂による単繊維表面被覆率が35%以上であり、芯
部は該フッ素系樹脂被覆繊維が引揃えられ、鞘部は樹脂
であることを特徴とする繊維ロープ状物。11. A rope having a core-sheath structure comprising a fiber having a pyrolysis temperature of 230 ° C. or higher and a fiber coated with a fluororesin on its surface, wherein the fluororesin is: After being dried at a temperature of 80 to 130 ° C., it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C. and fixed to the fiber surface in fine particles having a diameter of 0.1 to 1.0 μm. A fiber rope-like material having a fiber surface coverage of 35% or more, a core portion made of the fluororesin-coated fibers, and a sheath portion made of resin.
て、該繊維表面にはフッ素系樹脂が被覆されてなる繊維
を含む二重被覆芯鞘構造を有するロープ状物において、
該フッ素系樹脂は、80〜130℃の温度で乾燥された後、
フッ素系樹脂の融点±60℃の温度範囲で熱処理されて繊
維表面に径0.1〜1.0μmの微粒子状に固着され、該微粒
子状フッ素系樹脂による単繊維表面被覆率が35%以上で
あり、芯部は該フッ素系樹脂被覆繊維が引揃えられ、内
部被覆層は該フッ素系樹脂被覆繊維で編組され、外部被
覆層は樹脂であることを特徴とする繊維ロープ状物。12. A rope having a double sheathed core-sheath structure comprising a fiber having a thermal decomposition temperature of 230 ° C. or higher, and a fiber coated with a fluororesin on the surface of the fiber.
After the fluororesin is dried at a temperature of 80 to 130 ° C.,
Heat-treated at a temperature range of the melting point of the fluorine-based resin ± 60 ° C. and fixed to the fiber surface in the form of fine particles having a diameter of 0.1 to 1.0 μm. A fiber rope-shaped article, wherein the portion is made of the fluororesin-coated fibers, the inner coating layer is braided with the fluororesin-coated fibers, and the outer coating layer is a resin.
て、該繊維表面にはフッ素系樹脂が被覆されてなる繊維
を含む芯鞘構造を有するロープ状物において、該フッ素
系樹脂は、80〜130℃の温度で乾燥された後、フッ素系
樹脂の融点±60℃の温度範囲で熱処理されて繊維表面に
径0.1〜1.0μmの微粒子状に固着され、該微粒子状フッ
素系樹脂による単繊維表面被覆率が35%以上であり、芯
部は該フッ素系樹脂被覆繊維に樹脂が被覆された樹脂被
覆繊維が引揃えられ、鞘部は樹脂であることを特徴とす
る繊維ロープ状物。13. A rope having a core-in-sheath structure comprising a fiber having a thermal decomposition temperature of 230 ° C. or higher and a fiber coated on the fiber surface, wherein the fluorine-based resin is After being dried at a temperature of 80 to 130 ° C., it is heat-treated at a temperature range of the melting point of the fluororesin ± 60 ° C. and fixed to the fiber surface in fine particles having a diameter of 0.1 to 1.0 μm. A fiber rope-like material having a fiber surface coverage of 35% or more, a core portion made of resin-coated fibers obtained by coating the fluororesin-coated fibers with a resin, and a sheath portion made of resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2039701A JP2928571B2 (en) | 1990-02-22 | 1990-02-22 | Fiber rope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2039701A JP2928571B2 (en) | 1990-02-22 | 1990-02-22 | Fiber rope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03249276A JPH03249276A (en) | 1991-11-07 |
JP2928571B2 true JP2928571B2 (en) | 1999-08-03 |
Family
ID=12560318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2039701A Expired - Lifetime JP2928571B2 (en) | 1990-02-22 | 1990-02-22 | Fiber rope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2928571B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2686889B2 (en) * | 1992-10-23 | 1997-12-08 | 四電エンジニアリング株式会社 | Fictitious scaffolding for electrical work |
JP5290808B2 (en) * | 2009-02-27 | 2013-09-18 | 株式会社クラレ | Rope structure |
JP6633094B2 (en) | 2016-06-21 | 2020-01-22 | 国立研究開発法人産業技術総合研究所 | Rope and manufacturing method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6011153B2 (en) * | 1976-02-05 | 1985-03-23 | 古河電気工業株式会社 | Method for producing fiber yarn for filters |
JPS5331851A (en) * | 1976-09-06 | 1978-03-25 | Mitsubishi Rayon Co | Double structural wire |
US4275117A (en) * | 1977-09-02 | 1981-06-23 | Ashaway Line & Twine Mfg. Co. | String construction produced by subjecting a fibrous strand composed of fibrous materials having differing melting points to heating conditions sufficient to melt some but not all of the fibrous materials |
JPS5442444A (en) * | 1977-09-08 | 1979-04-04 | Kojima Seni Kougiyou Kk | Processing and treating of dial cord |
DE3465353D1 (en) * | 1983-07-04 | 1987-09-17 | Akzo Nv | Aromatic polyamide yarn impregnated with lubricating particles, a process for the manufacture of such a yarn, and packing material or rope containing this yarn |
JPH0433866Y2 (en) * | 1986-05-16 | 1992-08-13 | ||
JPH0246895U (en) * | 1988-09-27 | 1990-03-30 |
-
1990
- 1990-02-22 JP JP2039701A patent/JP2928571B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03249276A (en) | 1991-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02210071A (en) | Fiber structure | |
RU2204631C2 (en) | Fire-resistant fabrics | |
RU2552248C2 (en) | Yarn and fabrics of fibre mixture containing oxidized polymer fibres | |
KR101576509B1 (en) | Fishing line of core-sheath structure containing short fibers | |
US20070144135A1 (en) | Method for coating fibers and yarns and the coated products formed therefrom | |
US6413636B1 (en) | Protective yarn | |
US10633789B2 (en) | Flame retardant fabrics and process to make same | |
US5595284A (en) | Conveyor belt | |
JP2009527661A (en) | Rope with excellent pulley repeated bending performance | |
JP2928571B2 (en) | Fiber rope | |
JP6038461B2 (en) | Gloves and method of manufacturing gloves | |
JP2004263360A (en) | Method for producing hydrophobically finished aramid fabric and use thereof | |
EP1491668B1 (en) | Textile yarn | |
JP4258681B2 (en) | Composite spun yarn and woven / knitted fabric comprising the same | |
JPH03249280A (en) | Treating agent for improving abrasion resistance | |
JP3313796B2 (en) | Thread | |
JP3380326B2 (en) | Thread | |
NL1043320B1 (en) | High-performance multi-filament yarns with an electroconductive coating and items made from such yarns | |
JPH09209280A (en) | Ropy material of resin-coated fiber | |
JP2969055B2 (en) | Non-combustible fabric and method for producing the same | |
JPH08218274A (en) | Method for treating fiber | |
JP2008190115A (en) | Composite spun yarn and woven and knitted fabric therefrom | |
JPH04126880A (en) | Fiber rope | |
JP2788336B2 (en) | Fishing net | |
JPH07145565A (en) | Production of antistatic waterproof cloth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 11 |