JP2928016B2 - Method for forming transparent conductive film - Google Patents
Method for forming transparent conductive filmInfo
- Publication number
- JP2928016B2 JP2928016B2 JP4066465A JP6646592A JP2928016B2 JP 2928016 B2 JP2928016 B2 JP 2928016B2 JP 4066465 A JP4066465 A JP 4066465A JP 6646592 A JP6646592 A JP 6646592A JP 2928016 B2 JP2928016 B2 JP 2928016B2
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- film
- sputtering
- conductive film
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Photovoltaic Devices (AREA)
- Manufacturing Of Electric Cables (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Electrodes Of Semiconductors (AREA)
- Liquid Crystal (AREA)
- Surface Treatment Of Glass (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、太陽電池、薄膜ディス
プレイ装置等に用いられる透明導電膜の成膜方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a transparent conductive film used for a solar cell, a thin film display device and the like.
【0002】[0002]
【従来の技術】太陽電池の光入射側の電極に用いられる
透明導電膜材料として、SnO2 、ITOが実用化されて
いる。なかでもSnO2 は安価であり、水素処理による低
抵抗化が可能である。膜製造条件により膜表面の凹凸を
制御する、いわゆるテキスチャ化により有効な光の閉じ
込めを期待できることから、薄膜太陽電池の集電電極と
して広く用いられている。ただCVDによる成膜法が主
体となるため、基板温度を約400 ℃程度にしなければな
らず、たとえばアモルファスシリコン等の材料の上に後
付けで堆積することが不可能であった。2. Description of the Related Art SnO 2 and ITO have been put into practical use as transparent conductive film materials used for electrodes on the light incident side of solar cells. Above all, SnO 2 is inexpensive, and its resistance can be reduced by hydrogen treatment. It is widely used as a current-collecting electrode for thin-film solar cells because it is possible to expect effective light confinement by controlling unevenness on the film surface according to the film manufacturing conditions, that is, by so-called texturing. However, since the film formation method by CVD is mainly used, the substrate temperature must be set to about 400 ° C., and it has not been possible to deposit later on a material such as amorphous silicon.
【0003】これに対し、ITOは150 ℃程度の低い基
板温度で、水分を含んだ雰囲気中でのスパッタ法によ
り、低抵抗で高透過率の膜特性が得られているが、高価
なInを使用するので電力用太陽電池等の面積の大きいも
のはコスト面での制約がある。このためZnO系材料が再
び見直されてきている。ZnOは従来より圧電材料、ガス
センサ材料として実用化されてきており、弾性表面波デ
バイス、ガス漏れ警報器、バリスタ等の製品が市販され
ている。[0003] On the other hand, ITO has a film characteristic of low resistance and high transmittance obtained by sputtering at a substrate temperature as low as about 150 ° C. in an atmosphere containing moisture. A large area such as a solar cell for electric power is limited in terms of cost because it is used. For this reason, ZnO-based materials have been reviewed again. ZnO has been practically used as a piezoelectric material and a gas sensor material, and products such as surface acoustic wave devices, gas leak alarms, and varistors are commercially available.
【0004】ZnO、SnO2 は酸素欠損型の導電機構を持
っており、欠陥格子の電子との授受(酸化還元反応) に
よりその抵抗率が容易に変化する。すなわち、酸化反応
で抵抗率は増大し、還元反応で低下する。このため、A
l、B等の不純物を添加して低抵抗化、特性安定化を図
っている。N型半導体ZnOの抵抗率は、移動度をμN 、
キャリア密度をNN としたときに次式(1) で与えられ
る。[0004] ZnO and SnO 2 have an oxygen-deficient conduction mechanism, and the resistivity thereof easily changes due to the exchange (oxidation-reduction reaction) with the electrons of the defective lattice. That is, the resistivity increases in the oxidation reaction and decreases in the reduction reaction. Therefore, A
Impurities such as l and B are added to reduce resistance and stabilize characteristics. The resistivity of the N-type semiconductor ZnO is represented by a mobility of μ N ,
When the carrier density is N N , it is given by the following equation (1).
【0005】 ρ=1/ (μN NN ) ────── (1) 従って、高μN 化、高NN 化により抵抗率を下げること
ができる。高μN 化は結晶性を改善することで、高NN
化は不純物の添加濃度を高めることで実現できる。一
方、もう一つの重要な特性である光透過率は、透過光強
度をI、入射光強度をIO 、吸収係数α、膜厚をt、電
子の電荷をe、波長をλ、屈折率をn、光速をC、電子
の有効質量をm* 、緩和時間をτとしたとき、次の2式
(2)、(3) で表わされる。Ρ = 1 / (μ N N N ) ────── (1) Accordingly, the resistivity can be reduced by increasing μ N and increasing N N. High mu N of the to improve the crystallinity, high N N
Can be realized by increasing the concentration of the impurity added. On the other hand, another important characteristic, light transmittance, is: transmitted light intensity I, incident light intensity I O , absorption coefficient α, film thickness t, electron charge e, wavelength λ, refractive index n, the speed of light C, and the effective mass of the electron m *, when the relaxation time was tau, the following two formulas
(2) and (3).
【0006】 I=IO exp(−αt) ──────(2) α=NN e2 λa / (πnC3 m* τ) ──────(3) (3) 式より、吸収係数αを低減し高透過率化を図るに
は、NN を低減することが重要であることがわかる。こ
のことは、(1) 式によりρを下げるためにNN を高くす
ることと矛盾する。したがって、適当な量の不純物を添
加し、かつ結晶性を悪化させず、高μN を保ことが良く
光を透過させ抵抗率の低い薄膜形成の条件となる。[0006] I = I O exp (-αt) ────── (2) α = N N e 2 λ a / (πnC 3 m * τ) ────── (3) (3) formula From this, it is understood that it is important to reduce N N in order to reduce the absorption coefficient α and increase the transmittance. This is inconsistent with increasing the N N in order to reduce the ρ by (1). Therefore, adding a suitable amount of impurities, and without deteriorating the crystallinity, the condition of high mu N low film formation resistivity by transmitting good light coercive a.
【0007】[0007]
【発明が解決しようとする課題】たとえば、太陽電池へ
の適用を考えると電流収集効率より、ρ<1×10-3Ω・
cmが必要である。また光出力電流は透過率に比例するた
め、SnO2 なみの電流を得ようとすると、透過率を90%
程度まで高める必要がある。しかし、不純物としてAl2
O3 を用い、これを2重量%程度添加したZnOでは2×
10-4Ω・cmの抵抗率が得られており、熱的安定性も良い
ため透明導電膜として従来用いられていたが、透過率は
約70%と低かった。For example, considering application to a solar cell, ρ <1 × 10 −3 Ω ·
cm is required. In addition, since the light output current is proportional to the transmittance, if a current as high as SnO 2 is to be obtained, the transmittance becomes 90%.
It is necessary to raise to the extent. However, Al 2 as an impurity
O 3 is used, and ZnO to which about 2% by weight is added is 2 ×
A resistivity of 10 −4 Ω · cm was obtained, and thermal stability was good, so that it was conventionally used as a transparent conductive film, but the transmittance was as low as about 70%.
【0008】本発明の目的は、Al2 O3 を不純物として
添加したZnOからなり、高透過率で低抵抗率の透明導電
膜の成膜方法を提供することにある。An object of the present invention is to provide a method for forming a transparent conductive film having high transmittance and low resistivity, which is made of ZnO to which Al 2 O 3 is added as an impurity.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明のよれば、0.5重量パ−セント〜1重量
パ−セントの濃度の酸化アルミニウムを含む酸化亜鉛か
らなるタ−ゲットを用い、水素を含む不活性ガス雰囲気
中でスパッタリングする透明導電膜の成膜方法であっ
て、水素を含む不活性ガス雰囲気中でのスパッタリング
により薄膜を形成する工程と、形成された薄膜を水素を
含む不活性ガス雰囲気にさらす工程とを交互に繰り返す
こととする。ここで、不活性ガスがアルゴンガスである
と好ましい。また、スパッタリングをRFマグネトロン
スパッタリング装置を用いて行うと良い。According to the present invention, there is provided, according to the present invention, a zinc oxide containing aluminum oxide at a concentration of 0.5 to 1 weight percent. A method for forming a transparent conductive film by sputtering in an inert gas atmosphere containing hydrogen, using a get, a step of forming a thin film by sputtering in an inert gas atmosphere containing hydrogen, and forming the formed thin film. The step of exposing to an inert gas atmosphere containing hydrogen is alternately repeated. Here, it is preferable that the inert gas is an argon gas. In addition, sputtering is preferably performed using an RF magnetron sputtering device.
【0010】[0010]
【作用】0.5重量%以上のAl2 O3 をZnOに添加するこ
とにより高NN 化がはかれるが、Al2 O3 濃度を1重量
%以下に抑えると共にスパッタリング雰囲気中へ水素を
添加することにより低μN 化がはかれる。これで高透過
率が実現する。ただしAl 2 O3 が1重量%より多い場合
に比べて抵抗率は高くなるが、膜堆積と水素を含む不活
性ガス雰囲気中にさらすことによる還元反応を交互に繰
り返すことで、膜中の酸素濃度を低下させることなく水
素を添加することができる。この水素が格子欠陥部の酸
素を補償して伝導に寄与するため膜の抵抗が低減する。[Action] 0.5% by weight or more of AlTwoOThreeCan be added to ZnO
And higher NNAl can be removedTwoOThree1 weight concentration
% And hydrogen into the sputtering atmosphere
Low μ by addingNIs being measured. High transparency with this
The rate is realized. Where Al TwoOThreeIs more than 1% by weight
Resistivity, but film deposition and inertness including hydrogen
Reduction reaction by exposure to an inert gas atmosphere.
By repeating the process, water can be reduced without lowering the oxygen concentration in the film.
Element can be added. This hydrogen is the acid at the lattice defect.
Since the element is compensated and contributes to conduction, the resistance of the film is reduced.
【0011】[0011]
【実施例】RFマグネトロンスパッタ装置を用いて、Zn
Oターゲツト中のAl2 O3 濃度を0〜2重量%、雰囲気
ガスであるArガス中のH2 濃度を0〜10%迄の範囲で変
え、ガラス基板へのZnO薄膜を形成した。基板温度は15
0 ℃とし、シート抵抗率が10Ωになるように膜厚を調整
した。成膜された透明導電膜の抵抗率と白色光透過率を
タングステンランプを用いて測定した結果を図1、図2
に示す。[Embodiment] Using an RF magnetron sputtering apparatus, Zn
The ZnO thin film was formed on a glass substrate by changing the concentration of Al 2 O 3 in the O target within the range of 0 to 2% by weight and the concentration of H 2 in the atmosphere gas, Ar gas, within the range of 0 to 10%. Substrate temperature is 15
The temperature was set to 0 ° C., and the film thickness was adjusted so that the sheet resistivity became 10Ω. FIGS. 1 and 2 show the results of measuring the resistivity and the white light transmittance of the formed transparent conductive film using a tungsten lamp.
Shown in
【0012】図1は抵抗率のZnOターゲツト中のAl2 O
3 濃度依存性をAr雰囲気中に含有されたH2 濃度とパラ
メータとして示し、実線11はAr100 %、鎖線12はH2 2
%含有Ar、点線13はH2 10%含有Ar中でスパッタリング
した場合である。図2は白色光透過率のZnOターゲツト
中のAl2 O3 濃度依存性をAr雰囲気中に含有されたH2
濃度とパラメータとして示し、各線に付した符号の示す
条件は図1の同一符号の場合に対応している。FIG. 1 shows Al 2 O in a ZnO target of resistivity.
3 The concentration dependency is shown as a parameter and the concentration of H 2 contained in the Ar atmosphere. The solid line 11 is 100% Ar and the chain line 12 is H 2 2
% Containing Ar, dotted line 13 is the case where sputtering is performed in H 2 containing 10% Ar. FIG. 2 shows the dependence of the white light transmittance on the Al 2 O 3 concentration in the ZnO target in the presence of H 2 in the Ar atmosphere.
The conditions shown as the density and the parameters, and the symbols attached to each line correspond to the case of the same symbol in FIG.
【0013】図1、図2に示すように、従来例のAl2 O
3 濃度2重量%のターゲツトを用い水素無添加の雰囲気
中でスパッタリングした場合は、抵抗率ρ=2×10-4Ω
・cmが得られているが、透過率は73%と低い値を示して
いる。これに対し本発明の実施例のAl2 O3 濃度0.5重
量%あるいは0.8重量%で水素添加の雰囲気中でスパッ
タリングしたときには、透過率は90%になり、SnO2 同
様の特性が得られた。さらに、数秒程度のスパッタリン
グで1分子程度の薄膜を堆積したのち、スパッタリング
チャンバ中の雰囲気にさらす操作を繰り返すことによ
り、抵抗率を2×10-4Ω・cmにまで下げることができ
た。As shown in FIGS. 1 and 2, the conventional Al 2 O
(3) When sputtering is performed in a hydrogen-free atmosphere using a target having a concentration of 2% by weight, the resistivity ρ = 2 × 10 −4 Ω
-Although cm was obtained, the transmittance showed a low value of 73%. On the other hand, when sputtering is performed in an atmosphere of hydrogen addition at an Al 2 O 3 concentration of 0.5% by weight or 0.8% by weight according to the embodiment of the present invention, the transmittance becomes 90%, and characteristics similar to SnO 2 are obtained. Obtained. Furthermore, by repeating the operation of depositing a thin film of about one molecule by sputtering for about several seconds and exposing it to the atmosphere in the sputtering chamber, the resistivity could be reduced to 2 × 10 −4 Ω · cm.
【0014】別の実施例として、基板をプラスチックフ
ィルムに変え、H2 濃度を2%にしてAl2 O3 含有ZnO
ターゲツトを用いて透明導電膜を成膜したところ、ガラ
ス基板上の同等の抵抗率、透過率の膜特性が得られた。
プラスチックフィルムのような熱ダメージに弱い基板上
へのZnO薄膜の形成は、従来はプラズマ収束性の良いD
Cマグネトロンスパッタ法によりのみ可能であったが、
水素添加による低プラズマ温度化により制御性のよいR
Fマグネトロンスパッタ法によるフィルム上への成膜が
可能になった。In another embodiment, the substrate is changed to a plastic film, the H 2 concentration is set to 2%, and ZnO containing Al 2 O 3 is used.
When a transparent conductive film was formed using the target, film characteristics with the same resistivity and transmittance on a glass substrate were obtained.
Conventionally, formation of a ZnO thin film on a substrate that is vulnerable to thermal damage, such as a plastic film, has conventionally required a D
Although it was possible only by the C magnetron sputtering method,
R with good controllability by lowering plasma temperature by adding hydrogen
Film formation on a film by F magnetron sputtering has become possible.
【0015】[0015]
【発明の効果】本発明によれば、低抵抗化のためのZnO
ターゲツト中へのAl添加濃度を抑えるスパッタリング雰
囲気中にH2 を加えることにより、SnO2 なみの透過率
をもつ透明導電膜を形成することが可能になった。そし
て、スパッタリング時の雰囲気への水素添加により、プ
ラズマ温度が下げるとともに、成膜と雰囲気中にさらす
ことを交互に繰り返すことにより、Al2 O3 濃度の低下
による抵抗率の上昇も補償することも可能になり、低コ
ストのZnO膜として、太陽電池用の透明導電膜としてば
かりでなく、表示ディスプレイ用の透明導電膜等にも応
用でき、また結露防止用薄膜等にも実用化できる。According to the present invention, ZnO for lowering the resistance is used.
By adding H 2 to a sputtering atmosphere that suppresses the concentration of Al added to the target, a transparent conductive film having a transmittance similar to that of SnO 2 can be formed. The addition of hydrogen to the atmosphere during sputtering lowers the plasma temperature, and alternately repeats film formation and exposure to the atmosphere, thereby compensating for the increase in resistivity due to the decrease in Al 2 O 3 concentration. It can be applied to a low-cost ZnO film not only as a transparent conductive film for a solar cell but also as a transparent conductive film for a display and the like, and can be put into practical use as a thin film for preventing dew condensation.
【図1】ZnO太陽電池中のAl2 O3 濃度とZnO薄膜の抵
抗率との関係をAr中のH2 濃度をパラメータとして示す
線図FIG. 1 is a diagram showing the relationship between the Al 2 O 3 concentration in a ZnO solar cell and the resistivity of a ZnO thin film using the H 2 concentration in Ar as a parameter.
【図2】ZnO太陽電池中のAl2 O3 濃度とZnO薄膜白色
光透過率との関係をAr中のH2濃度をパラメータとして
示す線図FIG. 2 is a diagram showing the relationship between the Al 2 O 3 concentration in a ZnO solar cell and the transmittance of white light from a ZnO thin film using the H 2 concentration in Ar as a parameter.
11 Ar 100% 12 H2 2%含有Ar 13 H2 10%含有Ar11 Ar 100% 12 H 2 2% content Ar 13 H 2 10% content Ar
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 C23C 14/08 H01B 13/00 H01L 21/285 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 31/04 C23C 14/08 H01B 13/00 H01L 21/285
Claims (3)
の濃度の酸化アルミニウムを含む酸化亜鉛からなるタ−
ゲットを用い、水素を含む不活性ガス雰囲気中でスパッ
タリングする透明導電膜の成膜方法であって、水素を含
む不活性ガス雰囲気中でのスパッタリングにより薄膜を
形成する工程と、形成された薄膜を水素を含む不活性ガ
ス雰囲気にさらす工程とを交互に繰り返すことを特徴と
する透明導電膜の成膜方法。1. A tar comprising zinc oxide containing aluminum oxide at a concentration of 0.5 to 1% by weight.
A method for forming a transparent conductive film by sputtering in an inert gas atmosphere containing hydrogen, using a get, a step of forming a thin film by sputtering in an inert gas atmosphere containing hydrogen, and forming the formed thin film. A method of alternately repeating the step of exposing to a hydrogen-containing inert gas atmosphere.
記載の透明導電膜の成膜方法。2. The method according to claim 1, wherein the inert gas is argon gas.
The method for forming a transparent conductive film according to the above.
タリング装置を用いて行う請求項1あるいは2記載の透
明導電膜の成膜方法。3. The method according to claim 1, wherein the sputtering is performed using an RF magnetron sputtering apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4066465A JP2928016B2 (en) | 1992-03-25 | 1992-03-25 | Method for forming transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4066465A JP2928016B2 (en) | 1992-03-25 | 1992-03-25 | Method for forming transparent conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05275727A JPH05275727A (en) | 1993-10-22 |
JP2928016B2 true JP2928016B2 (en) | 1999-07-28 |
Family
ID=13316563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4066465A Expired - Lifetime JP2928016B2 (en) | 1992-03-25 | 1992-03-25 | Method for forming transparent conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2928016B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102165559B (en) * | 2008-09-30 | 2013-09-04 | Lg化学株式会社 | Transparent conductive film, and transparent electrode comprising same |
EP2338178A1 (en) * | 2008-10-21 | 2011-06-29 | Applied Materials, Inc. | Transparent conductive zinc oxide display film and production method therefor |
WO2011070901A1 (en) | 2009-12-11 | 2011-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
DE102009060547A1 (en) * | 2009-12-23 | 2011-06-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 | Process for coating a substrate with aluminum-doped zinc oxide |
JP5635430B2 (en) * | 2011-02-02 | 2014-12-03 | 株式会社アルバック | Substrate with transparent conductive film, solar cell, and production method thereof |
JP2013062185A (en) * | 2011-09-14 | 2013-04-04 | Ulvac Japan Ltd | Transparent conductive film forming method |
-
1992
- 1992-03-25 JP JP4066465A patent/JP2928016B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05275727A (en) | 1993-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4423403A (en) | Transparent conductive films and methods of producing same | |
US5397920A (en) | Light transmissive, electrically-conductive, oxide film and methods of production | |
Haacke | Transparent electrode properties of cadmium stannate | |
US6094292A (en) | Electrochromic window with high reflectivity modulation | |
JP4392477B2 (en) | Polycrystalline semiconductor member and method for producing the same | |
Nagatomo et al. | Electrical and optical properties of vacuum-evaporated indium-tin oxide films with high electron mobility | |
US5603778A (en) | Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device | |
JPH06506266A (en) | Light-transparent conductive oxide | |
JP2000067657A (en) | Transparent conductive film excellent in infrared transmission and its manufacture | |
EP0115645B1 (en) | Process for forming passivation film on photoelectric conversion device and the device produced thereby | |
JP4939058B2 (en) | Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device | |
US20110084239A1 (en) | Transparent Conducting Oxides and Production Thereof | |
JP2928016B2 (en) | Method for forming transparent conductive film | |
Bárdoš et al. | Effect of the oxygen absorption on properties of ITO layers | |
Lakshmanan | Optical and electrical properties of semiconducting cadmium oxide films | |
JPH07105166B2 (en) | Fluorine-doped tin oxide film and method for reducing resistance thereof | |
Ruth et al. | Aluminum doped zinc oxide thin films deposited by ion beam sputtering | |
Lee et al. | Heat treatment effects on electrical and optical properties of ternary compound In 2 O 3–ZnO films | |
US4670334A (en) | Transparent electroconductive film | |
JPH053895B2 (en) | ||
Dhere et al. | Electro-optical properties of thin indium tin oxide films: Limitations on performance | |
JP2000108244A (en) | Transparent conductive film, its manufacture, and base having transparent conductive film | |
Sihvonen et al. | Transparent indium contacts to CdS | |
JPH10190028A (en) | High refractive index transparent conductive film and solar cell | |
JP3837903B2 (en) | Transparent conductive film and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |